Orbitrap Mass Spectrometry-Based Profiling of Secondary Metabolites in Two Unexplored Eminium Species and Bioactivity Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenol and Total Flavonoid Contents
2.2. UHPLC-HRMS (Orbitrap) of Specialized Metabolites in Eminium Extracts
Carboxylic, Hydroxybenzoic, Hydroxycinnamic, Acylquinic Acids, and Saccharides
2.3. Flavonoids
2.4. Flavonoid O-Glycosides
2.5. Flavonoid C-Glycosides
2.6. Flavonoid C,O-Diglycosides
2.7. Amino Acids and Derivatives
2.8. Fatty Acids
3. Antioxidant Activity
4. Enzymes Inhibitory Activities
4.1. α-Amylase and α-Glucosidase Inhibition
4.1.1. Cholinesterase Inhibition
4.1.2. Tyrosinase Inhibition
4.1.3. Data Analysis
5. Materials and Methods
5.1. Plant Materials
5.2. Extraction of Samples
5.3. Chemicals
5.4. Total Quantification of Phenolics and Flavonoids
5.5. UHPLC-HRMS (Orbitrap)
5.6. Assays for Antioxidant and Enzyme Inhibition
5.7. Data Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, S.; Nakin, M.D.; Makhosayafana, Z.; Lall, N. The role of aquatic plants in natural products and drug discovery. Lett. Drug Des. Discov. 2023, 20, 386–407. [Google Scholar] [CrossRef]
- Noor, F.; Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals 2022, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; Belmehdi, O.; Salhi, N.; Imtara, H.; Mrabti, H.N.; El-Shazly, M. Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trend Food Sci. Technol. 2021, 115, 147–254. [Google Scholar]
- Siddiqui, A.J.; Jahan, S.; Singh, R.; Saxena, J.; Ashraf, S.A.; Khan, A.; Choudhary, R.K.; Balakrishnan, S.; Badraoui, R.; Bardakci, F. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention. BioMed Res. Int. 2022, 2022, 5425485. [Google Scholar] [CrossRef]
- Ergün, Z. The revision of the genus Eminium of turkey. Int. J. Agric. Nat. Sci. 2021, 14, 124–138. [Google Scholar]
- Hasan, A.; Çeçen, C.; Balos, M.M. Şanlıurfa yöresinde doğal Yayılış gösteren Eminium (Blume) Schott (Araceae Juss.) cinsine ait taksonların anatomik ve morfolojik yönden incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Derg. 2019, 22, 296–309. [Google Scholar]
- Al-Qura’n, S. Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon 2005, 46, 119–129. [Google Scholar] [CrossRef]
- Sezik, E.; Yesilada, E.; Shadidoyatov, H.; Kulivey, Z.; Nigmatullaev, A.M.; Aripov, H.N.; Takaishi, Y.; Takeda, Y.; Honda, G. Folk medicine in Uzbekistan: I. Toshkent, Djizzax, and Samarqand provinces. J. Ethnopharmacol. 2004, 92, 197–207. [Google Scholar] [CrossRef]
- Afifi, F.U.; Abu-Dahab, R. Phytochemical screening and biological activities of Eminium spiculatum (Blume) Kuntze (family Araceae). Nat. Prod. Res. 2012, 26, 878–882. [Google Scholar] [CrossRef]
- Obeidat, M. Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens. J. Med. Plant Res. 2011, 5, 3856–3860. [Google Scholar]
- Alkofahi, A.S.; Alzoubi, K.H.; Khabour, O.F.; Mhaidat, N.M. Screening of selected medicinal plants from Jordan for their protective properties against oxidative DNA damage. Ind. Crop. Prod. 2016, 88, 106–111. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Marti, G.; Ferreira Queiroz, E. Advances in techniques for profiling crude extracts and for the rapid identificationof natural products: Dereplication, quality control and metabolomics. Curr. Org. Chem. 2010, 14, 1808–1832. [Google Scholar] [CrossRef]
- Boudet, A.-M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Rostami, Z.; Fazeli, A.; Hojati, Z. The isolation and expression analysis of cinnamate 4-hydroxylase and chalcone synthase genes of Scrophularia striata under different abiotic elicitors. Sci. Rep. 2022, 12, 8128. [Google Scholar] [CrossRef]
- Bahari, Z.; Pallardy, S.; Parker, W. Photosynthesis, water relations, and drought adaptation in six woody species of oak-hickory forests in central Missouri. For. Sci. 1985, 31, 557–569. [Google Scholar]
- Henry, R.J.; Furtado, A.; Rangan, P. Pathways of photosynthesis in non-leaf tissues. Biology 2020, 9, 438. [Google Scholar] [CrossRef]
- Wen, Y.; Su, S.-C.; Ma, L.-Y.; Wang, X.-N. Effects of gibberellic acid on photosynthesis and endogenous hormones of Camellia oleifera Abel. in 1st and 6th leaves. J. For. Res. 2018, 23, 309–317. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Res. Int. 2015, 70, 74–86. [Google Scholar] [CrossRef]
- Al Kadhi, O.; Melchini, A.; Mithen, R.; Saha, S. Development of a LC-MS/MS method for the simultaneous detection of tricarboxylic acid cycle intermediates in a range of biological matrices. J. Anal. Meth. Chem. 2017, 2017, 5391832. [Google Scholar] [CrossRef] [Green Version]
- de Rijke, E.; Out, P.; Niessen, W.M.; Ariese, F.; Gooijer, C.; Udo, A.T. Analytical separation and detection methods for flavonoids. J. Chrom. A 2006, 1112, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Gevrenova, R.; Zheleva-Dimitrova, D.; Balabanova, V.; Voynikov, Y.; Sinan, K.I.; Mahomoodally, M.F.; Zengin, G. Integrated phytochemistry, bio-functional potential and multivariate analysis of Tanacetum macrophyllum (Waldst. & Kit.) Sch. Bip. and Telekia speciosa (Schreb.) Baumg. (Asteraceae). Ind. Crop. Prod. 2020, 155, 112817. [Google Scholar]
- Pascale, R.; Acquavia, M.A.; Cataldi, T.R.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI (−)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
- Zheleva-Dimitrova, D.; Zengin, G.; Balabanova, V.; Voynikov, Y.; Lozanov, V.; Lazarova, I.; Gevrenova, R. Chemical characterization with in vitro biological activities of Gypsophila species. J. Pharm. Biomed. Anal. 2018, 155, 56–69. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, J.; Wong, L.; Yi, T.; Chen, H.; Zhao, Z. Characterization of secondary metabolites from the raphides of calcium oxalate contained in three Araceae family plants using laser microdissection and ultra-high performance liquid chromatography-quadrupole/time of flight-mass spectrometry. Eur. J. Mass Spectr. 2013, 19, 195–210. [Google Scholar] [CrossRef]
- ERGUN, Z. Determination of fatty acid composition of seed and tuber oils of Eminium rauwolffii (Blume) Schott var. rauwolffii. Karaelmas Fen Mühendislik Derg. 2021, 11, 28–32. [Google Scholar]
- Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [Google Scholar] [CrossRef]
- Gupta, R.K.; Patel, A.K.; Shah, N.; Choudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac. J. Cancer Prev. 2014, 15, 4405–4409. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxidat. Med. Cell. Long. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Santhakumar, A.B.; Bulmer, A.C.; Singh, I. A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. J. Hum. Nutr. Diet. 2014, 27, 1–21. [Google Scholar] [CrossRef]
- El Omari, N.; Sayah, K.; Fettach, S.; El Blidi, O.; Bouyahya, A.; Faouzi, M.E.A.; Kamal, R.; Barkiyou, M. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid. Based Complement Altern. Med. 2019, 2019, 7384735. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Laguerre, M.; Lecomte, J.; Villeneuve, P. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Prog. Lipid Res. 2007, 46, 244–282. [Google Scholar] [CrossRef]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatograpic–mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chrom. A 2006, 1120, 221–229. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.-H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Carballo, J.; Cofrades, S. Healthier meat and meat products: Their role as functional foods. Meat Sci. 2001, 59, 5–13. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Al-Ismail, K.; Herzallah, S.; Rustom, A. Antioxidant activities of some edible wild Mediterranean plants. Ital. J. Food Sci. 2007, 19, 287–296. [Google Scholar]
- Janakat, S.; Al-Thnaibat, O. Antilipoperoxidative effect of three edible plants extracts: Viscum album, Arum dioscoridis and Eminium spiculatum. J. Food Qual. 2008, 31, 1–12. [Google Scholar] [CrossRef]
- Ercan, P.; El, S.N. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem. 2016, 205, 163–169. [Google Scholar] [CrossRef]
- Saltos, M.B.V.; Puente, B.F.N.; Faraone, I.; Milella, L.; De Tommasi, N.; Braca, A. Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl. Phytochem. Lett. 2015, 14, 45–50. [Google Scholar]
- Guzman, M.K.D.; Parween, S.; Butardo, V.M.; Alhambra, C.M.; Anacleto, R.; Seiler, C.; Bird, A.R.; Chow, C.-P.; Sreenivasulu, N. Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination. Sci. Rep. 2017, 7, 5854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamar, G.; Estadella, D.; Pisani, L.P. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors 2017, 43, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, S.; Suresh, S.; Kadeppagari, R.K. Amylase inhibitors and their biomedical applications. Starch-Stärke 2013, 65, 535–542. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Yibchok-Anun, S.; Charoenlertkul, P.; Wongsasiripat, N. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase. J. Clin. Biochem. Nutr. 2011, 49, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Kajaria, D.; Tripathi, J.; Tripathi, Y.B.; Tiwari, S. In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug—Shirishadi. J. Adv. Pharm. Technol. Res. 2013, 4, 206. [Google Scholar] [CrossRef]
- Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Mandal, S.C. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Giuberti, G.; Rocchetti, G.; Lucini, L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview. Curr. Opin. Food Sci. 2020, 31, 102–113. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.J.; Tomas, M. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Sebastião, A.M.; Ribeiro, J.A. Adenosine receptors and the central nervous system. Handb. Exp. Pharmacol. 2009, 193, 471–534. [Google Scholar]
- Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem. 2013, 70, 165–188. [Google Scholar] [CrossRef]
- Zimmermann, M. Pathobiology of neuropathic pain. Eur. J. Pharm. 2001, 429, 23–37. [Google Scholar] [CrossRef]
- Nasr, R.B. Investigation Phytochimique, Évaluation des Activités Larvicide et Anti-Acétylcholinestérase de Différents Extraits de Mercurialis Annua L. Université de Lorraine; Université de Carthage: Tunis, Tunisia, 2021. [Google Scholar]
- Rahhal, B.M.; Jaradat, N.; Hawash, M.; Qadi, M.; Issa, L.; Yahya, A.; Sanyora, S.; Saed, M.; Al-Rimawi, F. Phytochemical screening, antioxidative, antiobesity, antidiabetic and antimicrobial investigations of Artemisia scoparia Grown in Palestine. Processes 2022, 10, 2050. [Google Scholar] [CrossRef]
- Traoré, A. Plantes Insecticides et Inhibition de L’acétylcholinestérase; USTTB: Bamako, Mali, 2016. [Google Scholar]
- Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration. Int. J. Mol. Sci. 2009, 10, 4066–4087. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferré, M.; Hu, F.B.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Opperman, L.; De Kock, M.; Klaasen, J.; Rahiman, F. Tyrosinase and melanogenesis inhibition by indigenous African plants: A review. Cosmetics 2020, 7, 60. [Google Scholar] [CrossRef]
- Wijesinghe, W.; Jeon, Y.-J. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review. Phytochem. Rev. 2011, 10, 431–443. [Google Scholar] [CrossRef]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M. Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S. Afr. J. Bot. 2016, 103, 89–94. [Google Scholar] [CrossRef]
- Bonesi, M.; Xiao, J.; Tundis, R.; Aiello, F.; Sicari, V.; Loizzo, M.R. Advances in the tyrosinase inhibitors from plant source. Curr. Med. Chem. 2019, 26, 3279–3299. [Google Scholar] [CrossRef]
- Khan, K.M.; Maharvi, G.M.; Abbaskhan, A.; Hayat, S.; Khan, M.T.H.; Makhmoor, T.; Choudhary, M.I.; Shaheen, F. Three tyrosinase inhibitors and antioxidant compounds from Salsola foetida. Helvet. Chim. Acta 2003, 86, 457–464. [Google Scholar] [CrossRef]
- Souza, P.M.; Elias, S.T.; Simeoni, L.A.; de Paula, J.E.; Gomes, S.M.; Guerra, E.N.S.; Fonseca, Y.M.; Silva, E.C.; Silveira, D.; Magalhães, P.O. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity. PLoS ONE 2012, 7, e48589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, K.U.; Ali, S.A.; Ali, A.; Naaz, I. Natural tyrosinase inhibitors: Role of herbals in the treatment of hyperpigmentary disorders. Mini Rev. Med. Chem. 2019, 19, 796–808. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.; Shikha, D.; Thakur, M.; Aneja, A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J. Food Biochem. 2022, 46, e13950. [Google Scholar] [CrossRef]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxid. Med. Cell Longev. 2016, 2016, 3571614. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.; Guan, Y.-Y.; Zhang, Z.-L.; Rahman, K.; Wang, S.-J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. J. Evid. Based Compl. Altern. Med. 2016, 21, 1–7. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharm. 2017, 8, 290. [Google Scholar] [CrossRef]
Species | Parts | TP (mg GAE/g) | TF (mg RE/g) |
---|---|---|---|
Eminium intortum | Leaves | 25.86 ± 0.58 b | 65.08 ± 0.38 a |
Flowers | 50.82 ± 0.71 a | 39.38 ± 0.65 b | |
Tubers | 21.31 ± 0.33 c | 9.81 ± 0.05 c | |
Eminium spiculatum | Leaves | 23.90 ± 0.57 a | 46.54 ± 0.40 a |
Flowers | 21.30 ± 1.25 b | 19.91 ± 0.15 b | |
Tubers | 18.68 ± 0.34 c | 3.93 ± 0.12 c |
№ | Identified/Tentatively Annotated Compound | Molecular Formula | Exact Mass [M-H]− | Fragmentation Pattern in (-) ESI-MS/MS | tR (min) | Δ ppm | Distribution |
---|---|---|---|---|---|---|---|
Carboxylic, hydroxybenzoic, hydroxycinnamic, acylquinic acids, and saccharides | |||||||
1. | sucrose | C12H22O11 | 341.1089 | 341.1089 (100), 179.0550 (46.7), 161.0444 (12.4), 143.0337 (10.1), 131.0336 (5.7), 119.0335 (36.7), 101.0228 (39.3), 89.0228 (91.1), 71.0122 (75.6), 59.0122 (57.5) | 0.68 | −0.043 | 1,2,3,4,5,6 |
2. | citric acid | C6H8O7 | 191.0189 | 191.0189 (9.6), 173.0080 (1.5), 147.0287 (0.5), 129.0179 (5.9), 111.0072 (100), 87.0071 (47.8), | 0.91 | −4.428 | 1,2,3,4,5,6 |
3. | salicylic acid O-hexoside | C13H16O8 | 299.0779 | 137.0230 (100), 93.0330 (63.1) | 1.28 | 2.037 | 1,2,3,4,5,6 |
4. | protocatechuic acid-O-hexoside | C13H16O9 | 315.0723 | 315.0723 (100), 153.0181 (25.7), 152.0103 (56.8), 109.0289 (7.3), 108.0201 (81.9), 123.0071 (3.9) | 1.64 | 0.459 | 1,2,3,4,5,6 |
5. | salicylic acid O-hexoside isomer | C13H16O8 | 299.0772 | 299.0772 (100), 239.0557 (20.5), 209.0449 (3.1), 179.0339 (40.4), 137.0230 (97.6) | 2.04 | −0.102 | 1,2,3,4,5,6 |
6. | caffeic acid-O hexoside O-caffeoylhexose | C15H18O9 | 341.0877 | 341.0877 (27.6), 281.0659 (1.8), 251.0557 (0.9), 221.0447 (1.6), 161.0231 (100), 135.0438 (6.4) | 2.60 | −0.279 | 1,2,3,4,5,6 |
7. | caffeic acid O-dihexoside | C21H28O14 | 503.1412 | 503.1412 (72.8), 179.0341 (15.9), 161.0232 (100), 135.0437 (9.3), 133.0281 (31.4) | 2.76 | 1.752 | 1,2,3,4,5 |
8. | caffeic acid O-dihexoside isomer | C21H28O14 | 503.1415 | 503.1415 (100), 341.0888 (3.5), 323.0760 (9.3), 281.0680 (16.9), 251.0563 (9.9), 221.0443 (4.1), 179.0338 (27.3), 161.0231 (80.5), 135.0437 (25.8), 133.0280 (23.3) | 3.14 | 1.076 | 1,2,3,4,5,6 |
9. | chlorogenic (5-caffeoylquinic) acid a | C16H18O9 | 353.0896 | 353.0896 (4.9), 191.0552 (100), 179.0340 (1.0) | 3.19 | 4.998 | 1,2,3,4,5,6 |
10. | ferulic acid O-dihexoside | C22H30O14 | 517.1566 | 517.1566 (39.5), 193.0497 (100), 175.0390 (65.8), 149.0596 (4.7), 160.0153 (52.2), 134.0359 (29.9) | 3.26 | 0.660 | 1,3,6 |
11. | coumaric acid-O-hexoside | C15H18O8 | 325.0930 | 325.0930 (13.3), 265.0714 (2.2), 235.0605 (0.4), 205.0500 (1.7), 163.0388 (12.9), 145.0282 (100), 119.0487 (4.7), 117.0331 (18.3) | 3.31 | 0.490 | 1,2,3,4,5,6 |
12. | p-coumaric acid a | C9H8O3 | 163.0387 | 163.0387 (80.35), 135.0437 (100), 119.0487 (63.6) | 3.34 | −8.510 | 1,2,3,4,5,6 |
13. | caffeic acid a | C9H8O4 | 179.0339 | 179.0339 (20.5), 135.0437 (100), 117.0332 (0.64), 107.0489 (1.4) | 3.55 | −5.932 | 1,2,3,4,5,6 |
14. | ferulic acid O-hexoside | C16H20O9 | 355.1036 | 355.1036 (18.1), 295.0817 (2.1), 265.0713 (0.7), 235.0609 (3.6), 193.0497 (22.1), 175.0390 (100), 160.0154 (50.5), 149.0593 (1.1), 134.0593 (1.1), 132.0203 (12.1) | 3.71 | 0.351 | 1,2,3,4,5,6 |
15. | sinapic acid O-dihexoside | C23H32O15 | 547.1669 | 547.1669 (58.7), 487.1464 (1.3), 223.0607 (100), 205.0499 (71.9), 190.0263 (62.3), 175.0026 (34.1), 149.0230 (23.4), 119.0124 (6.3) | 3.80 | 0.158 | 1,3,4,5,6 |
16. | sinapic acid O-hexoside | C17H22O10 | 385.1143 | 385.1143 (29.6), 325.0927 (1.8), 295.0809 (0.7), 265.0717 (3.5), 223.0607 (22.9), 205.0499 (100), 190.0262 (40.1), 175.0026 (27.7), 149.0232 (4.2), 119.0124 (4.2) | 3.82 | 0.701 | 1,2,3,4,5,6 |
17. | vanillic acid O-hexoside | C14H18O9 | 329.0888 | 329.1144 (100), 285.1242 (43.7), 167.0603 (82.7) | 4.03 | 2.962 | 1,2,3,4,5,6 |
18. | o-coumaric acid a | C9H8O3 | 163.0389 | 163.0389 (9.9), 135.0438 (1.3), 119.0487 (100) | 4.56 | −7.099 | 1,2,3,4,5,6 |
19. | ferulic acid a | C10H10O4 | 193.0497 | 193.0497 (100), 178.0259 (3.5), 161.0232 (20.1), 134.0361 (7.6), 133.0281 (12.5), | 6.51 | −4.825 | 1,2,3,4,5,6 |
Flavonoids | |||||||
20. | luteolin 6,8-C-hexoside | C27H30O16 | 609.1468 | 609.1468 (100), 519.1131 (4.7), 489.1039 (16.4), 471.0955 (2.4), 429.0829 (7.5), 399.0723 (27.4), 369.0618 (29.4), 339.0516 (3.5), 311.0564 (4.6), 175.0392 (1.74), 133.0280 (6.01) | 3.61 | 1.120 | 1,2,4,5 |
21. | luteolin C,O-dihexoside | C27H30O16 | 609.1468 | 609.1468 (100), 489.1036 (1.9), 447.0934 (22.9), 369.0618 (1.8), 357.0615 (13.6), 327.0511 (49.2), 313.0354 (13.3), 285.0401 (3.9), 299.0558 (10.1), 298.0408 (5.7), 175.0392 (1.5), 133.0280 (4.9) | 3.85 | 1.120 | 1,2,4,5,6 |
22. | apigenin 6,8-diC-hexoside | C27H30O15 | 593.1517 | 593.1517 (100), 503.1192 (3.4), 473.1095 (15.6), 413.0893 (0.9), 395.0784 (2.4), 383.0778 (19.8), 353.0668 (30.8), 325.0719 (1.2), 297.0766 (11.9), 161.0232 (1.2), 117.0331 (3.4), | 4.01 | 0.601 | 1,2,3,4,5,6 |
23. | luteolin C,O-hexoside isomer | C27H30O16 | 609.1466 | 609.1466 (100), 489.1053 (1.1), 447.0929 (13.4), 369.0617 (1.5), 357.0616 (23.8), 327.0511 (78.8), 313.0352 (9.3), 285.0400 (3.8), 299.0565 (11.2), 298.0487 (7.8), 175.0387 (1.8), 133.0282 (8.8) | 4.07 | 0.824 | 1,2,4,5,6 |
24. | luteolin 6-C-hexoside-8-C-pentoside | C26H28O15 | 579.1362 | 579.1362 (100), 561.1286 (0.9), 519.1138 (2.7), 489.1041 (16.6), 429.0825 (7.9), 411.0732 (2.9), 399.0724 (29.9), 381.0612 (1.9), 369.0617 (28.8), 339.0505(4.2), 311.0563 (3.9), 299.0557 (1.7), 298.0483 (4.44), 175.0390 (1.6), 133.0281 (6.0) | 4.10 | 1.289 | 1,2,3,4,5,6 |
25. | saponarin a | C27H30O15 | 593.1512 | 593.1517 (100), 473.1094 (4.4), 431.0982 (8.4), 341.0666 (3.8), 311.0563 (28.2), 297.0403 (19.3), 269.0458 (3.5), 225.0546 (0.4), 161.0237 (1.9), 117.0332 (3.5) | 4.37 | 0.804 | 1,2,3,4,5,6 |
26. | apigenin 6-C-hexoside-8-C-pentoside | C26H28O14 | 563.1406 | 563.1411 (100), 503.1190 (0.8), 473.1087 (11.4), 443.0981 (14.7), 425.0881 (0.8), 413.0887 (2.5), 383.0779 (12.9), 365.0659 (1.5), 353.0669 (20.7), 325.0717 (2.1), 323.0574 (1.7), 297.0769 (10.2), 283.0611 (2.6), 175.0388 (0.8), 135.0434 (1.8), 117.0331 (3.7) | 4.50 | 0.748 | 1,2,3,4,5,6 |
27. | homoorientin a | C21H20O11 | 447.0936 | 447.0936 (100), 369.0632 (2.2), 357.0618 (37.3), 339.0519 (3.7), 327.0511 (59.3), 311.0558 (3.1), 299.0561 (9.5), 298.0470 (37.3), 297.0406 (12.6), 285.0407 (7.7), 133.0282 (12.8), 175.0393 (2.5) | 4.53 | 0.437 | 1,2,3,4,5,6 |
28. | chrysoeriol C-O-dihexoside | C28H32O16 | 623.1625 | 623.1625 (100), 503.1204 (4.5), 461.1087 (4.2), 371.0773 (2.2), 341.0665 (31.4), 327.0514 (16.2), 312.0276 (11.6), 299.0542 (1.9), 298.0408 (8.9), 340.0584 (0.5), 298.0480 (8.9), 284.0330 (5.2), 269.0457 (14.3), 163.0025 (0.5), 178.9963 (0.43) | 4.60 | 1.255 | 1,2,3,4,5,6 |
29. | luteolin 7-O-sophoroside-6-C-hexoside | C36H36O19 | 771.1778 | 771.1786 (100), 447.0932 (34.8), 429.0760 (1.1), 369.0597 (1.1), 357.0617 (27.0), 339.0501 (4.3), 327.0510 (80.4), 299.0560 (29.3), 285.0400 (4.4), 269.0493 (0.9), 297.0408 (8.9), 133.0280 (17.6) | 4.61 | 1.022 | 2 |
30. | orientin a | C21H20O11 | 447.0937 | 447.0932 (95.5), 369.0605 (3.0), 357.0616 (32.5), 339.0504 (2.8), 327.0509 (100), 311.0558 (0.7), 299.0560 (10.0), 298.0479 (6.8), 297.0402 (12.8), 285.0399 (4.9), 165.0181 (2.1), 133.0281 (17.7), 107.0123 (0.4) | 4.68 | −0.256 | 1,2,3,4,5,6 |
31. | apigenin 6-C-hexoside-8-C-pentoside isomer | C26H28O14 | 563.1408 | 563.1408 (100), 503.1183 (0.4), 473.1093 (12.2), 443.0884 (19.3), 413.0893 (2.1), 383.0776 (13.7), 353.0667 (23.4), 325.0721 (2.2), 311.0569 (1.8), 297.0764 (10.4), 283.0612 (2.6), 282.0531 (1.5), 281.0451 (0.6), 175.0387 (1.0), 135.044 (1.4), 117.0331 (4.1) | 4.76 | 0.322 | 2,4,5,6 |
32. | apigenin 2″-O-hexosyl-6-C-hexoside | C27H30O15 | 593.1512 | 593.1516 (100), 413.0876 (3.8), 395.0770 (4.6), 377.0675 (3.0), 353.0670 (21.6), 325.0708 (2.4), 311.0563 (74.3), 283.0612 (22.7), 293.0469 (3.2), 282.0536 (1.5), 281.0451 (3.8), 269.0457 (0.3), 175.0024 (0.6), 117.0330 (5.5) | 4.88 | 0.601 | 1,2,3,4,5,6 |
33. | apigenin O-pentosyl-6-C-hexoside | C26H28O14 | 563.1406 | 563.1411 (100), 443.0986 (08), 383.0772 (2.0), 353.0669 (4.3), 341.0665 (28.1), 323.0561 (2.7), 311.0562 (89.7), 283.0611 (29.5), 282.0554 (1.2), 281.0454 (5.5), 269.0451 (2.0), 237.0553 (0.6), 121.0280 (0.4), 117.0331 (6.6) | 4.99 | 0.748 | 1,2,3,5,6 |
34. | luteolin O-synapoylhexosyl-6-C-hexoside | C38H40O20 | 815.2040 | 815.2053 (100), 447.0936 (21.0), 357.0616 (18.5), 341.0665 (24.3), 327.0512 (79.7), 313.0356 (11.1), 299.0558 (17.1), 298.0477 (15.9), 297.0406 (10.4), 285.0399 (4.1), 133.0279 (11.1) | 5.02 | 1.574 | 1,2,3,4,5,6 |
35. | rutin a | C27H30O16 | 609.1467 | 609.1467 (100), 301.0349 (36.2), 300.0275 (67.0), 271.0247 (35.0), 255.0294 (14.4), 227.0343 (2.5), 211.0391 (1.4), 199.0388 (0.4), 178.9975 (2.4), 163.0021 (0.6), 151.0023 (5.7), 135.0069 (0.6), 107.0123 (2.2) | 5.07 | 0.923 | 2,3,4,5,6 |
36. | apigenin O-caffeoylhexosyl-8-C-hexoside | C36H36O18 | 755.1829 | 755.1838 (92.7), 431.0985 (45.1), 413.0886 (1.6), 353.0638 (2.1), 341.0667 (27.1), 323.0538 (2.7), 311.0564 (100), 283.0612 (40.1), 281.0453 (4.5), 269.0436 (1.4), 161.0231 (15.2), 133.0278 (8.9), 117.0391 (7.8) | 5.13 | 1.262 | 1,2,4,5 |
37. | isovitexin a | C21H20O10 | 431.0985 | 431.0985 (100), 412.0894 (1.4), 341.0669 (18.7), 323.0570 (4.1), 311.0565 (58.4), 283.0614 (18.2), 269.0452 (2.9), 117.0330 (7.7), 161.0233 (2.4), 135.0441 (1.7) | 5.14 | 0.394 | 1,2,3,4,5,6 |
38. | luteolin O-feruloylhexosyl-8-C-hexoside | C37H38O19 | 785.1935 | 785.1940 (100), 447.0940 (28.4), 369.0600 (2.1), 357.0618 (24.0), 339.0502 (1.9), 327.0510 (92.8), 299.0566 (23.2), 298.0485 (14.1), 297.0408 (10.1), 341.0658 (18.4), 285.0413 (2.6), 175.0392 (5.0), 133.0282 (13.0) | 5.20 | 0.736 | 1,2,4,5 |
39. | luteolin 7-O-coumaroylhexosyl-6-C-hexoside | C36H36O18 | 755.1829 | 755.1837 (100), 447.0936 (30.7), 369.0602 (2.2), 357.0618 (23.3), 339.0506 (2.7), 327.0511 (76.6), 299.0562 (18.4), 298.0480 (6.6), 297.0401 (5.2), 285.0393 (2.9), 163.0387 (2.2), 145.0278 (3.2), 133.0279 (8.7), 119.0488 (0.6), 117.0331 (2.5), | 5.27 | 1.103 | 1,2,4,5 |
40. | eryodictiol 7-O-hexoside | C21H22O11 | 449.1089 | 449.1094 (14.8), 287.0561 (100), 151.0023 (61.8), 135.0437 (50.5), 125.0228 (4.1), 107.0123 (13.0) | 5.27 | 1.058 | 1,2,3,4,5,6 |
41. | chrysoeriol 7-O-caffeoylhexosyl-8-C-hexoside | C37H38O19 | 785.1935 | 785.1936 (91.8), 461.1106 (36.0), 371.0775 (29.5), 341.0666 (100), 327.0528 (12.7), 298.0479 (60.7), 299.0531 (6.9), 297.0406 (5.5), 161.0232 (13.3), 133.0283 (11.3) | 5.28 | 0.189 | 1,2,4,5 |
42. | isoquercitrin a | C21H20O12 | 463.0882 | 463.0885 (100), 301.0349 (44.1), 300.0276 (75.1), 271.0248 (37.1), 255.0296 (0.7), 243.0299 (9.3), 227.0342 (2.4), 211.0391 (0.6), 199.0392 (0.5), 178.9969 (3.0), 163.0027 (1.9), 151.0024 (5.3), 135.0072 (0.5), 121.0280 (1.6), 107.0123 (2.8) | 5.28 | 0.714 | 1,2,3,4,5,6 |
43. | luteolin-7-O-glucoside a | C21H20O11 | 447.0937 | 447.0937 (100), 285.0404 (86.7), 284.0327 (36.3), 255.0302 (1.2), 227.0346 (1.9), 211.0397 (1.1), 151.0024 (4.7), 133.0282 (4.2), 107.0124 (3.3) | 5.37 | 0.840 | 1,2,3,4,5,6 |
44. | chrysoeriol 6-C-hexoside | C22H22O11 | 461.1089 | 461.1093 (100), 371.0422 (21.2), 353.0674 (2.8), 341.0665 (69.0), 313.0727 (3.2), 312.0609 (0.5), 299.0520 (4.8), 298.0481 (14.1), 297.0404 (13.3), 284.0327 (1.7), 269.0455 (2.9), 255.0294 (1.4), 133.0284 (2.2) | 5.43 | 0.814 | 1,2,3,4,5,6 |
45. | apigenin 7-O-synapoylhexosyl-8-C-hexoside | C38H40O19 | 799.2103 | 799.2103 (88.3), 431.0984 (53.7), 341.0665 (29.8), 323.0559 (3.8), 311.0563 (100), 283.0610 (44.5), 282.0533 (9.9), 281.0463 (7.4), 190.0265 (4.8), 175.0025 (1.8) | 5.46 | 1.537 | 1,2,4,5 |
46. | chrysoeriol 7-O-dihexoside | C28H32O16 | 623.1620 | 623.1620 (27.1), 299.0561 (100), 284.0326 (40.6), 255.0289 (4.1), 151.0026 (0.9) | 5.49 | 0.469 | 4, 5 |
47. | kaempferol 3-O-rutinoside a | C27H30O15 | 593.1512 | 593.1518 (100), 285.0403 (82.5), 284.0327 (47.6), 255.0298 (37.7), 227.0345 (24.2), 211.0397 (2.5), 135.0071 (1.5), 151.0024 (1.8), 107.0124 (2.4) | 5.63 | 1.006 | 1,2,4,5,6 |
48. | apigenin O-feruloylhexosyl-8-C-hexoside | C38H38O18 | 769.200 | 769.1996 (83.5), 431.0985 (52.3), 353.0680 (3.5), 341.0666 (23.9), 323.0564 (5.2), 311.0563 (100), 283.0611 (41.8), 282.0521 (4.6), 281.0452 (6.7), 269.0443 (2.0), 175.0391 (2.1), 117.0332 (9.1) | 5.70 | 1.382 | 1,2,3,4,5,6 |
49. | chrysoeriol O-feruloylhexoside-8-C-hexoside | C38H40O19 | 799.2091 | 799.2111 (60.9), 461.1094 (83.2), 371.0762 (31.7), 353.0687 (2.1), 341.0667 (100), 309.0394 (7.2), 299.0500 (2.9), 298.0483 (54.9), 297.0399 (13.5), 175.0387 (2.8), 160.0146 (1.7), 132.0201 (2.4) | 5.78 | 2.525 | 1,2,4,5 |
50. | isorhamnetin 3-O-rutinoside a | C28H32O18 | 623.1618 | 623.1622 (100), 315.0509 (95.2), 300.0269 (13.6), 299.0201 (15.1), 271.0248 (33.7), 255.0295 (12.3), 243.0297 (15.8), 227.0345 (4.3), 1561.0022 (1.6) | 5.78 | 0.758 | 1,3,4,5,6 |
51. | apigenin O-coumaroylhexosyl-8-C-hexoside | C36H36O17 | 739.1880 | 739.1893 (87.0), 431.0983 (39.6), 413.0881 (1.1), 253.0668 (2.6), 341.0667 (25.1), 323.0562 (5.9), 311.0564 (100), 283.0612 (44.0), 282.0534 (2.4), 281.0468 (4.4), 145.0282 (5.5), 117.0331 (10.9) | 5.80 | 1.836 | 1, 2, 3, 4, 6 |
52. | kaempferol 3-O-glucoside a | C21H20O11 | 447.0934 | 447.0935(100), 285.0398 (21.9), 284.0327 (52.1), 255.0297 (39.5), 227.0346 (39.1), 211.0394 (0.7), 178.9966 (0.7), 151.0027 (1.8), 107.0126 (0.6) | 5.85 | 0.482 | 1,2,3,4,5,6 |
53. | chrysoeriol O-coumaroylhexoside-8-C-hexoside | C37H38O18 | 769.2000 | 769.2000 (83.7), 461.1091 (62.3), 371.0771 (30.1), 341.0667 (100), 353.0651 (1.5), 309.0401 (6.6), 298.0481 (67.2), 299.0519 (6.7), 297.0400 (14.6), 284.0330 (2.1), | 5.92 | 1.837 | 1,2,4,5 |
54. | apigenin 7-O-neohesperidoside | C27H30O14 | 577.1568 | 577.1568 (69.4), 431.0989 (0.5), 413.0882 (1.0), 269.0454 (100), 211.0390 (0.8), 151.0023 (2.2), 149.0230 (0.8), 117.0330 (3.5), 107.0121 (1.8) | 6.00 | 0.903 | 1,2,3,4,5,6 |
55. | apigenin 7-O-glucoside a | C21H20O10 | 431.0985 | 431.0985 (100), 269.0449 (26.9), 268.0378 (61.1), 211.0394 (1.8), 151.0025 (2.9), 149.0228 (1.2), 107.0124 (2.5), 117.0331 (2.1) | 6.04 | 0.325 | 1,2,3,4,5,6 |
56. | chrysoeriol 7-O-rutinoside | C28H32O15 | 607.1668 | 607.1676 (89.6), 299.0561 (100), 284.0327 (43.3), 255.0299 (43.3) | 6.20 | 1.246 | 1,2,3,4,5,6 |
57. | chrysoeriol 7-O-hexoside | C22H22O11 | 461.1081 | 461.1081 (100), 446.0857 (24.6), 371.0756 (0.2), 341.0648 (0.6), 300.0590 (0.9), 299.0555 (9.3), 298.0482 (12.6), 283.0248 (18.1), 255.0297 (68.6), 227.0348 (0.3), 211.0398 (0.2), 151.0027 (0.7), 117.0331 (1.7), 107.0124 (0.1) | 6.25 | −1.832 | 1,2,3,4,5,6 |
58. | cirsiliol O-hexoside | C23H24O12 | 491.1195 | 491.1191 (100), 476.0944 (21.6), 461.0748 (5.1), 329.0676 (3.7), 328.0594 (6.6), 314.0442 (3.8), 313.0351 (6.4), 299.0198 (6.1), 285.0397 (12.4), 243.0292 (10.3) | 6.30 | −0.854 | 1,2,4,5,6 |
59. | luteolin 2″-O-coumaroyl-6-C-hexoside | C30H26O13 | 593.1301 | 593.1309 (100), 473.0900 (2.3), 447.0922 (31.5), 429.0841 (13.5), 357.0603 (13.6), 339.0526 (2.1), 327.0511 (38.8), 309.0406 (46.4), 299.0560 (12.9), 297.0399 (2.0), 285.0432 (1.4) | 6.71 | 1.342 | 1,2,3,6 |
60. | luteolin O-coumaroyldeoxyhexosyl-6-hexoside | C36H36O17 | 739.1880 | 739.1893 (100), 447.0944 (12.3), 369.0611 (1.2), 357.0617 (13.8), 339.0518 (1.7), 327.0509 (58.8), 313.0355 (20.1), 299.0552 (13.8), 298.0485 (10.1), 297.0402 (7.0), 285.0396 (5.9), 269.0457 (1.1), 163.0396 (1.3), 151.0024 (0.8), 133.0281 (8.9) | 6.75 | 1.836 | 1,2,3,4,5 |
61. | apigenin 2″-O-coumaroyl-6-C-hexoside | C30H26O12 | 577.1351 | 577.1365 (7.4), 431.0986 (100), 413.0882 (77.5), 341.0669 (21.3), 323.0593 (3.0), 311.0505 (65.4), 293.0457 (96.2), 283.1061 (35.7), 269.0435 (1.6), 175.0026 (15.2), 163.0389 (20.3), 119.0487 (34.1), 117.0332 (12.7) | 7.42 | 2.410 | 1,2,5,6 |
62. | apigenin O-coumaroyldeoxyhexosyl-6-C-hexoside | C36H36O16 | 723.1931 | 723.1941 (100), 431.0979 (8.5), 341.0677 (5.4), 311.0564 (53.5), 297.0403 (27.2), 283.0611 (20.3), 282.0534 (9.6), 281.0454 (6.0), 269.0457 (4.9), 163.0387 (2.1), 135.0436 (1.0), 117.0330 (8.1) | 7.47 | 1.427 | 2,4,5 |
63. | apigenin a | C15H10O5 | 269.0455 | 269.0455 (100), 227.0363 (1.3), 151.0027 (6.5), 149.0229 (4.4), 117.0331 (18.6), 107.0123 (4.5), | 8.62 | −0.917 | 1,2,3,4,5,6 |
64. | luteolin a | C15H10O6 | 285.0404 | 285.0404 (100), 241.0493 (0.4), 151.0025 (4.1), 149.0233 (1.9), 133.0280 (20.4), 107.0124 (3.6) | 8.91 | −0.071 | 1,2,3,4,5,6 |
65. | chrysoeriol | C16H12O6 | 299.0561 | 299.0561 (100), 284.0327 (81.0), 256.0375 (16.6), 227.0346 (2.9), 151.0025 (3.1), 107.0123 (2.2) | 8.91 | −0.071 | 1,2,3,4,5,6 |
Amino acids and derivatives | |||||||
66. | N-hexosylglutamic acid | C11H17O8N | 290.0883 | 290.0883 (8.82), 272.0277 (2.2), 254.0680 (1.3), 230.0668 (2.9), 200.0556 (44.1), 170.0448 (8.8), 128.0338 (100), 84.0438 (1.7) | 0.72 | 2.615 | 1,2,3,4,5,6 |
67. | N-hexosylvaline | C11H21O7N | 278.1246 | 278.1246 (1.1), 260.1139 (1.1), 188.0918 (6.2), 158.0810 (4.3), 146.0442 (0.5), 116.0701 (100), 101.0228 (8.8), 85.0280 (0.3) | 0.90 | 0.161 | 1,3,4,5,6 |
68. | N-hexosyltyrosine | C15H21O8N | 342.1197 | 342.1171 (3.8), 324.1084 (0.6), 282.0967 (0.5), 252.0877 (11.5), 222.0766 (9.1), 180.0656 (100), 163.0388 (11.1), 119.0487 (10.2) | 0.92 | 0.644 | 1,2,3,4,5,6 |
69. | N-hexosylleucine | C15H23O7N | 292.1400 | 292.1400 (1.3), 274.1300 (0.4), 232.1179 (0.3), 202.1078 (7.9), 172.0968 (3.1), 152.1058 (0.3), 130.0859 (100) | 1.07 | 1.106 | 1,2,3,4,5,6 |
70. | N-hexosylphenylalanine | C15H21O7N | 326.1248 | 326.1248 (1.8), 308.1145 (1.1), 266.1046 (0.6), 236.0925 (11.2), 206.0816 (6.1), 186.0916 (0.4), 164.0705 (100), 147.0438 (18.9), 119.0485 (1.8), 101.0229 (14.2) | 1.53 | 0.720 | 1,2,3,4,5,6 |
71. | phenylalanine | C9H11O2N | 164.0705 | 164.0705 (53.3), 147.0438 (100), 146.0594 (0.5), 135.0437 (13.0), 119.0489 (8.9), 103.9187 (2.2) | 1.54 | −7.508 | 1,2,3,4,5,6 |
72. | N-hexosyltryptophan | C17H22O7N2 | 365.1360 | 365.1357 (0.6), 275.1040 (10.5), 245.0924 (3.3), 203.0801 (100), 142.0647 (5.9), 159.0915 (2.3) | 2.36 | 1.714 | 1,2,3,4,5,6 |
73. | tryptophan | C11H12O2N2 | 203.0818 | 203.0818 (71.0), 186.0548 (4.4), 159.0916 (19.9), 142.0649 (25.7), 116.0491 (100), 74.0231 (31.2), 72.0075 (30.9) | 2.48 | 2.766 | 1,2,3,4,5,6 |
74. | γ-glutamyl-leucine | C11H20O5N2 | 259.1300 | 241.1191 (20.0), 223.1083 (10.5), 215.1400 (0.4), 197.1287 (11.1), 130.0859 (64.9), 128.0339 (100), 127.0499 (0.8) | 2.82 | 0.212 | 1,2,3,4,5,6 |
Fatty acids | |||||||
75. | trihydroxyoctadecadienoic acid | C18H32O5 | 327.2177 | 327.2177 (100), 309.2070 (0.8), 291.1971 (3.90), 247.2048 (0.5), 239.1286 (3.1), 229.1440 (3.9), 211.1331 (20.4), 183.1382 (2.2), 171.1014 (6.4), 155.1071 (0.6), 127.1112 (0.7), 97.0643 (3.3), 85.0277 (3.9), 70.1990 (0.9) | 9.13 | 0.130 | 1,2,3,4,5,6 |
76. | trihydroxyotadecenoic acid | C18H34O5 | 329.2334 | 329.2334 (100), 311.2224 (1.0), 293.2121 (0.9), 229.1439 (18.8), 211.1332 (24.6), 199.1344 (0.3), 183.1379 (2.9), 171.1014 (4.1), 155.1066 (0.3), 139.111 (1.42), 127.1111 (1.1), 99.0799 (3.6), 83.0488 (0.3), 70.1988 (0.3) | 9.78 | 0.069 | 1,2,3,4,5,6 |
77. | trihydroxyoctadecatrienoic acid | C18H30O5 | 325.2019 | 325.2019 (100), 307.1915 (19.7), 289.1807 (1.9), 263.2015 (12.5), 245.1904 (0.4), 235.2053 (0.9), 209.0526 (0.2), 169.1218 (0.4), 137.0956 (3.9), 125.0957 (2.9), 97.0642 (0.3), 83.0484 (0.9), 57.0328 (1.3) | 11.85 | −0.453 | 1,2,3,4,5,6 |
78. | dihydroxyoctadecadienoic acid | C18H32O4 | 311.2229 | 311.2229 (100), 293.2127 (6.6), 275.2008 (4.0), 235.1698 (4.16), 223.1697 (39.9), 208.2670 (0.3), 196.1057 (1.5), 113.0954 (1.1), 87.0435 (12.4), 57.0330 (5.3) | 12.51 | 0.377 | 1,2,3,4,5,6 |
79. | dihydroxyoctadecenoic acid | C18H34O4 | 313.2385 | 313.2385 (100), 295.2277 (9.5), 277.2174 (2.6), 209.1976 (0.2), 195.1382 (2.7), 183.1380 (25.5), 129.0907 (16.5), 99.0799 (10.5) | 13.46 | 0.183 | 1,2,3,4,5,6 |
80. | dihydroxyoctadecenoic acid | C18H34O4 | 313.2385 | 313.2385 (100), 295.2277 (5.5), 277.2174 (4.6), 201.1124 (43.2), 171.1014 (5.9), 155.1065 (1.0), 139.1116 (0.7), 127.1113 (3.9) | 13.72 | 0.183 | 1,2,3,4,5,6 |
81. | dihydroxyoctadecatrienoic acid | C18H30O4 | 309.2071 | 309.2071 (100), 291.1966 (28.6), 273.1864 (5.00), 263.2047 (0.4), 247.2063 (26.6), 139.1116 (0.6), 70.2070 (0.8), 57.0329 (1.9) | 14.61 | −0.138 | 1,2,3,4,5,6 |
82. | dihydroxyoctadecanoic acid | C18H36O4 | 315.2540 | 315.2540 (100), 297.2435 (5.6), 201.1130 (0.3), 171.1015 (0.9), 155.1064 (0.2), 141.1269 (2.3), 127.1113 (1.1) | 14.85 | −0.385 | 1,2,3,4,5,6 |
83. | linoleic acid | C18H32O2 | 279.2327 | 279.2327 (100), 136.1251 (0.4), 70.0576 (0.7) | 21.96 | −1.05 | 3,6 |
Species | Parts | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | PBD (mmol TE/g) | MCA (mg EDTAE/g) |
---|---|---|---|---|---|---|---|
Eminium intortum | Leaves | 32.20 ± 1.26 a | 52.10 ± 0.83 a | 88.27 ± 1.49 a | 33.13 ± 0.68 a | 0.96 ± 0.01 b | 63.43 ± 0.70 a |
Flowers | 27.87 ± 0.75 b | 40.44 ± 1.20 c | 55.29 ± 1.78 c | 24.67 ± 1.22 b | 1.38 ± 0.08 a | 36.05 ± 1.22 b | |
Tubers | 26.90 ± 1.61 b | 46.80 ± 0.86 b | 71.51 ± 1.93 b | 32.58 ± 4.02 a | 1.48 ± 0.15 a | 39.15 ± 2.79 b | |
Eminium spiculatum | Leaves | 26.58 ± 1.00 b | 54.34 ± 0.53 a | 86.27 ± 2.74 a | 29.90 ± 0.75 b | 1.08 ± 0.03 b | 61.55 ± 3.97 a |
Flowers | 20.73 ± 1.51 c | 48.45 ± 1.96 b | 70.06 ± 3.03 b | 30.92 ± 0.21 b | 1.23 ± 0.05 a | 30.92 ± 0.48 c | |
Tubers | 33.67 ± 1.26 a | 51.86 ± 2.14 ab | 75.43 ± 4.47 b | 41.33 ± 1.25 a | 1.02 ± 0.07 b | 53.00 ± 1.88 b |
Species | Parts | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|
Eminium intortum | Leaves | 1.27 ± 0.09 c | na | 35.37 ± 0.74 c | 0.30 ± 0.01 b | 0.35 ± 0.02 c |
Flowers | 2.25 ± 0.07 b | 0.67 ± 0.08 b | 40.66 ± 0.61 b | 0.31 ± 0.01 a | na | |
Tubers | 2.64 ± 0.01 a | 2.01 ± 0.07 a | 48.13 ± 0.24 a | 0.26 ± 0.01 c | na | |
Eminium spiculatum | Leaves | 2.64 ± 0.10 b | 1.11 ± 0.20 b | 42.58 ± 1.28 b | 0.27 ± 0.01 a | 0.99 ± 0.02 a |
Flowers | 2.72 ± 0.03 a | 1.89 ± 0.07 a | 37.74 ± 1.94 c | 0.24 ± 0.01 b | 0.89 ± 0.01 b | |
Tubers | 2.66 ± 0.05 a | 1.69 ± 0.13 a | 50.73 ± 2.29 a | 0.24 ± 0.01 b | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babacan, E.Y.; Zheleva-Dimitrova, D.; Gevrenova, R.; Bouyahya, A.; Balos, M.M.; Cakilcioglu, U.; Sinan, K.I.; Zengin, G. Orbitrap Mass Spectrometry-Based Profiling of Secondary Metabolites in Two Unexplored Eminium Species and Bioactivity Potential. Plants 2023, 12, 2252. https://doi.org/10.3390/plants12122252
Babacan EY, Zheleva-Dimitrova D, Gevrenova R, Bouyahya A, Balos MM, Cakilcioglu U, Sinan KI, Zengin G. Orbitrap Mass Spectrometry-Based Profiling of Secondary Metabolites in Two Unexplored Eminium Species and Bioactivity Potential. Plants. 2023; 12(12):2252. https://doi.org/10.3390/plants12122252
Chicago/Turabian StyleBabacan, Ebru Yuce, Dimitrina Zheleva-Dimitrova, Reneta Gevrenova, Abdelhakim Bouyahya, Mehmet Maruf Balos, Ugur Cakilcioglu, Kouadio Ibrahime Sinan, and Gokhan Zengin. 2023. "Orbitrap Mass Spectrometry-Based Profiling of Secondary Metabolites in Two Unexplored Eminium Species and Bioactivity Potential" Plants 12, no. 12: 2252. https://doi.org/10.3390/plants12122252
APA StyleBabacan, E. Y., Zheleva-Dimitrova, D., Gevrenova, R., Bouyahya, A., Balos, M. M., Cakilcioglu, U., Sinan, K. I., & Zengin, G. (2023). Orbitrap Mass Spectrometry-Based Profiling of Secondary Metabolites in Two Unexplored Eminium Species and Bioactivity Potential. Plants, 12(12), 2252. https://doi.org/10.3390/plants12122252