Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran
Abstract
:1. Introduction
2. Results
2.1. Two-Choice Oviposition Preference Tests
2.2. No-Choice Oviposition Tests
2.3. Abaxial vs. Adaxial Oviposition Preference
2.4. Larval Survival Experiments
3. Discussion
4. Materials and Methods
4.1. Plant Growth, Glucosinolate Content, and P. rapae Culture
4.2. Two-Choice Oviposition Preference Tests
4.3. No-Choice Oviposition Tests
4.4. Abaxial vs. Adaxial Oviposition Preference
4.5. Larval Survival Experiments
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoonhoven, L.M.; Van Loon, J.J.; Dicke, M. Insect-Plant Biology; Schoonhoven, L.M., Ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef]
- Mithen, R.; Bennett, R.; Marquez, J. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 2010, 71, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Bones, A.; Rossiter, J. The glucosinolate-myrosinase system, its organisation and biochemistry. Physiol. Plant. 1996, 97, 194–208. [Google Scholar] [CrossRef]
- Hopkins, R.J.; van Dam, N.M.; van Loon, J.J.A. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 2009, 54, 57–83. [Google Scholar] [CrossRef]
- Agerbirk, N.; Olsen, C.E.; Poulsen, E.; Jacobsen, N.; Hansen, P.R. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation. Insect Biochem. Mol. Biol. 2010, 40, 126–137. [Google Scholar] [CrossRef]
- Jeschke, V.; Gershenzon, J.; Vassão, D.G. Chapter Eight—Insect detoxification of glucosinolates and their hydrolysis products. In Advances in Botanical Research; Kopriva, S., Ed.; Glucosinolates; Academic Press: Cambridge, MA, USA, 2016; Volume 80, pp. 199–245. [Google Scholar]
- Wittstock, U.; Agerbirk, N.; Stauber, E.J.; Olsen, C.E.; Hippler, M.; Mitchell-Olds, T.; Gershenzon, J.; Vogel, H. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA 2004, 101, 4859–4864. [Google Scholar] [CrossRef]
- Müller, R.; de Vos, M.; Sun, J.; Sønderby, I.; Halkier, B.; Wittstock, U.; Jander, G. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol. 2010, 36, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Renwick, J.A.A.; Lopez, K. Experience-based food consumption by larvae of Pieris rapae: Addiction to glucosinolates? Entomol. Exp. Appl. 1999, 91, 51–58. [Google Scholar] [CrossRef]
- van Loon, J.J.A.; Wang, C.Z.; Nielsen, J.K.; Gols, R.; Qiu, Y.T. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. Entomol. Exp. Appl. 2002, 104, 27–34. [Google Scholar] [CrossRef]
- Yang, J.; Guo, H.; Jiang, N.-J.; Tang, R.; Li, G.-C.; Huang, L.-Q.; van Loon, J.J.A.; Wang, C.-Z. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genet. 2021, 17, e1009527. [Google Scholar] [CrossRef]
- Giamoustaris, A.; Mithen, R. The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 1995, 126, 347–363. [Google Scholar]
- Kos, M.; Houshyani, B.; Wietsma, R.; Kabouw, P.; Vet, L.E.M.; van Loon, J.J.A.; Dicke, M. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry 2012, 77, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Santolamazza-Carbone, S.; Sotelo, T.; Velasco, P.; Cartea, M.E. Antibiotic properties of the glucosinolates of Brassica oleracea var. acephala similarly affect generalist and specialist larvae of two lepidopteran pests. J. Pest Sci. 2016, 89, 195–206. [Google Scholar]
- Agrawal, A.A.; Kurashige, N.S. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol. 2003, 29, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Gols, R.; Wagenaar, R.; Bukovinszky, T.; Dam, N.M.V.; Dicke, M.; Bullock, J.M.; Harvey, J.A. Genetic variation in defense chemistry in wild cabbage affects herbivores and their endoparasitoids. Ecology 2008, 89, 1616–1626. [Google Scholar] [CrossRef]
- Newton, E.; Bullock, J.; Hodgson, D. Temporal consistency in herbivore responses to glucosinolate polymorphism in populations of wild cabbage (Brassica oleracea). Oecologia 2010, 164, 689–699. [Google Scholar] [CrossRef]
- Newton, E.; Bullock, J.; Hodgson, D. Glucosinolate polymorphism in wild cabbage (Brassica oleracea) influences the structure of herbivore communities. Oecologia 2009, 160, 63–76. [Google Scholar] [CrossRef]
- Poelman, E.H.; Van Loon, J.J.A.; Van Dam, N.M.; Vet, L.E.M.; Dicke, M. Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomol. Exp. Appl. 2008, 127, 218–228. [Google Scholar] [CrossRef]
- van Leur, H.; Vet, L.E.M.; van der Puten, W.H.; van Dam, N.M. Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J. Chem. Ecol. 2008, 34, 121–131. [Google Scholar] [CrossRef]
- Renwick, J.A.A.; Radke, C.D.; Sachdev-Gupta, K.; Städler, E. Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 1992, 3, 33–38. [Google Scholar] [CrossRef]
- Renwick, J.A.A.; Chew, F.S. Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 1994, 39, 377–400. [Google Scholar] [CrossRef]
- Sun, J.; Sønderby, I.; Halkier, B.; Jander, G.; de Vos, M. Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J. Chem. Ecol. 2009, 35, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Verschaffelt, E. The cause determining the selection of food in some herbivorous insects. Proc. Acad. Sci. Amst. 1911, 13, 536–542. [Google Scholar]
- Städler, E.; Renwick, J.A.A.; Radke, C.D.; Sachdev-Gupta, K. Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol. Entomol. 1995, 20, 175–187. [Google Scholar] [CrossRef]
- Traynier, R.M.M.; Truscott, R.J.W. Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J. Chem. Ecol. 1991, 17, 1371–1380. [Google Scholar] [CrossRef]
- De Vos, M.; Kriksunov, K.L.; Jander, G. Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae. Plant Physiol. 2008, 146, 916–926. [Google Scholar] [CrossRef]
- Coolen, S.; van Dijen, M.; Van Pelt, J.A.; Van Loon, J.J.A.; Pieterse, C.M.J.; Van Wees, S.C.M. Genome-wide association study reveals WRKY42 as novel player in oviposition preference of Pieris butterflies. J. Exp. Bot. 2023, 74, 1690–1704. [Google Scholar] [CrossRef]
- Poelman, E.H.; van Dam, N.; van Loon, J.J.A.; Vet, L.E.M.; Dicke, M. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology 2009, 90, 1863–1877. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R.; Márquez, B.P.; Petitpierre, E. Can flowering Barbarea spp. (Brassicaceae) be used simultaneously as a trap crop and in conservation biological control? J. Pest Sci. 2017, 90, 623–633. [Google Scholar] [CrossRef]
- Bonnemaison, L. Insect pests of crucifers and their control. Annu. Rev. Entomol. 1965, 10, 233–256. [Google Scholar] [CrossRef]
- Cartea, M.E.; Padilla, G.; Vilar, M.; Velasco, P. Incidence of the major Brassica pests in northwestern Spain. J. Econ. Entomol. 2009, 102, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Luther, G.C.; Valenzuela, H.R.; Defrank, J. Impact of cruciferous trap crops on lepidopteran pests of cabbage in Hawaii. J. Econ. Entomol. 1996, 25, 39–47. [Google Scholar] [CrossRef]
- Shelton, A.M.; Andaloro, J.T.; Barnards, J. Effects of cabbage looper, imported cabbageworm, and diamondback moth on fresh market and processing cabbage. J. Econ. Entomol. 1982, 75, 742–745. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R.; Gershenzon, J.; Heckel, D.G. Plant glucosinolate content increases susceptibility to diamondback moth (Lepidoptera: Plutellidae) regardless of its diet. J. Pest Sci. 2020, 93, 491–506. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R.; Heckel, D.G. Intraspecific and interstage similarities in host-plant preference in the diamondback moth (Lepidoptera: Plutellidae). Horticulturae 2023, 9, 39. [Google Scholar] [CrossRef]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef]
- Renwick, J.A.A.; Radke, C.D. Sensory cues in host selection for Oviposition by the cabbage butterfly, Pieris rapae. J. Insect Physiol. 1988, 34, 251–257. [Google Scholar] [CrossRef]
- Walker, K.S.; Bray, J.L.; Lehman, M.E.; Lentz-Ronning, A.J. Effects of host plant phenolic acids and nutrient status on oviposition and feeding of the cabbage white butterfly, Pieris rapae. Bios 2014, 85, 95–101. [Google Scholar] [CrossRef]
- Hern, A.; EdwardsJones, G.; McKinlay, R.G. A review of the pre-oviposition behaviour of the small cabbage white butterfly, Pieris rapae (Lepidoptera: Pieridae). Ann. Appl. Biol. 1996, 128, 349–371. [Google Scholar] [CrossRef]
- Hovanitz, W.; Chang, V.C.S. Adult oviposition responses in Pieris rapae. J. Res. Lepid. 1964, 3, 159–172. [Google Scholar] [CrossRef]
- Jaumann, S.; Snell-Rood, E.C. Adult nutritional stress decreases oviposition choosiness and fecundity in female butterflies. Behav. Ecol. 2019, 30, 852–863. [Google Scholar] [CrossRef]
- Jaumann, S.; Snell-Rood, E.C. Trade-offs between fecundity and choosiness in ovipositing butterflies. Anim. Behav. 2017, 123, 433–440. [Google Scholar] [CrossRef]
- Myers, J.H. Effect of physiological condition of the host plant on the ovipositional choice of the cabbage white butterfly, Pieris rapae. J. Anim. Ecol. 1985, 54, 193–204. [Google Scholar] [CrossRef]
- Sato, Y.; Yano, S.; Takabayashi, J.; Ohsaki, N. Pieris rapae (Ledidoptera: Pieridae) females avoid oviposition on Rorippa indica plants infested by conspecific larvae. Appl. Entomol. Zool. 1999, 34, 333–337. [Google Scholar] [CrossRef]
- Shiojiri, K.; Sabelis, M.; Takabayashi, J. Oviposition preference of cabbage white butterflies in the framework of costs and benefits of interspecific herbivore associations. R. Soc. Open Sci. 2015, 2, 150524. [Google Scholar] [CrossRef]
- Jones, R.E. Movement patterns and egg distribution in cabbage butterflies. J. Anim. Ecol. 1977, 46, 195–212. [Google Scholar] [CrossRef]
- Root, R.B.; Kareiva, P.M. The search for resources by cabbage butterflies (Pieris rapae): Ecological consequences and adaptive significance of markovian movements in a patchy environment. Ecology 1984, 65, 147–165. [Google Scholar] [CrossRef]
- Ikeura, H.; Kobayashi, F.; Hayata, Y. How do Pieris rapae search for Brassicaceae host plants? Biochem. Syst. Ecol. 2010, 38, 1199–1203. [Google Scholar] [CrossRef]
- Tsuji, J.; Coe, L. Effects of foliage color on the landing response of Pieris rapae (Lepidoptera: Pieridae). Environ. Entomol. 2014, 43, 989–994. [Google Scholar] [CrossRef]
- Hasenbank, M.; Hartley, S. Weaker resource diffusion effect at coarser spatial scales observed for egg distribution of cabbage white butterflies. Oecologia 2015, 177, 423–430. [Google Scholar] [CrossRef]
- Lund, M.; Brainard, D.C.; Szendrei, Z. Cue hierarchy for host plant selection in Pieris rapae. Entomol. Exp. Appl. 2019, 167, 330–340. [Google Scholar] [CrossRef]
- Jones, R.E.; Ives, P.M. The adaptiveness of searching and host selection behaviour in Pieris rapae (L.). Aust. J. Ecol. 1979, 4, 75–86. [Google Scholar] [CrossRef]
- Sachdev-Gupta, K.; Radke, C.D.; Renwick, J.A.A. Antifeedant activity of cucurbitacins from Iberis amara against larvae of Pieris rapae. Phytochemistry 1993, 33, 1385–1388. [Google Scholar] [CrossRef]
- Sachdev-Gupta, K.; Radke, C.; Renwick, J.A.A.; Dimock, M.B. Cardenolides from Erysimum cheiranthoides: Feeding deterrents to Pieris rapae larvae. J. Chem. Ecol. 1993, 19, 1355–1369. [Google Scholar] [CrossRef]
- Huang, X.P.; Renwick, J.A.A. Chemical and experiential basis for rejection of Tropaeolum majus by Pieris rapae larvae. J. Chem. Ecol. 1995, 21, 1601–1617. [Google Scholar] [CrossRef] [PubMed]
- Agerbirk, N.; Olsen, C.E.; Bibby, B.M.; Frandsen, H.O.; Brown, L.D.; Nielsen, J.K.; Renwick, J.A.A. A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J. Chem. Ecol. 2003, 29, 1417–1433. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.B.; Grafius, E. The potential of using Barbarea vulgaris in insecticide-resistant diamondback moth management. Resist. Pest Manag. Newsl. 1994, 6, 7–8. [Google Scholar]
- Maski, D.; Durairaj, D. Effects of charging voltage, application speed, target height, and orientation upon charged spray deposition on leaf abaxial and adaxial surfaces. Crop Prot. 2010, 29, 134–141. [Google Scholar] [CrossRef]
- Tagawa, J.; Matsushita, A.; Watanabe, T. Leaf surface preference in the cabbage worm, Pieris rapae crucivora, and parasitism by the gregarious parasitoid Cotesia glomerata. Entomol. Exp. Appl. 2008, 129, 37–43. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zalucki, M.P.; Furlong, M.J. Diamondback moth egg susceptibility to rainfall: Effects of host plant and oviposition behavior. Entomol. Exp. Appl. 2019, 167, 701–712. [Google Scholar] [CrossRef]
- Friberg, M.; Posledovich, D.; Wiklund, C. Decoupling of female host plant preference and offspring performance in relative specialist and generalist butterflies. Oecologia 2015, 178, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-J.; Lu, Y.; Zalucki, M.; Liu, S.-S. Relationship between adult oviposition preference and larval performance of the diamondback moth, Plutella xylostella. J. Pest Sci. 2012, 85, 247–252. [Google Scholar] [CrossRef]
- Gripenberg, S.; Mayhew, P.J.; Parnell, M.; Roslin, T. A Meta-analysis of preference-performance relationships in phytophagous insects. Ecol. Lett. 2010, 13, 383–393. [Google Scholar] [CrossRef]
- Ratzka, A.; Vogel, H.; Kliebenstein, D.J.; Mitchell-Olds, T.; Kroymann, J. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 2002, 99, 11223–11228. [Google Scholar] [CrossRef]
- van Loon, J.J.A.; Blaakmeer, A.; Griepink, F.C.; van Beek, T.A.; Schoonhoven, L.M.; de Groot, A. Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae). Chemoecology 1992, 3, 39–44. [Google Scholar] [CrossRef]
- Schweizer, F.; Fernández-Calvo, P.; Zander, M.; Diez-Diaz, M.; Fonseca, S.; Glauser, G.; Lewsey, M.G.; Ecker, J.R.; Solano, R.; Reymond, P. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 2013, 25, 3117–3132. [Google Scholar] [CrossRef]
- Okamura, Y.; Dort, H.; Reichelt, M.; Tunström, K.; Wheat, C.W.; Vogel, H. Testing hypotheses of a coevolutionary key innovation reveals a complex suite of traits involved in defusing the mustard oil bomb. Proc. Natl. Acad. Sci. USA 2022, 119, e2208447119. [Google Scholar] [CrossRef]
- Santolamazza-Carbone, S.; Velasco, P.; Soengas, P.; Cartea, M.E. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala. Oecologia 2014, 174, 893–907. [Google Scholar] [CrossRef]
- Gols, R.; van Dam, N.M.; Reichelt, M.; Gershenzon, J.; Raaijmakers, C.E.; Bullock, J.M.; Harvey, J.A. Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology 2018, 28, 77–89. [Google Scholar] [CrossRef]
- Mewis, I.; Tokuhisa, J.G.; Schultz, J.C.; Appel, H.M.; Ulrichs, C.; Gershenzon, J. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 2006, 67, 2450–2462. [Google Scholar] [CrossRef] [PubMed]
- Badenes-Pérez, F.R.; Cartea, M.E. Glucosinolate induction and resistance to the cabbage moth, Mamestra brassicae, differs among kale genotypes with high and low content of sinigrin and glucobrassicin. Plants 2021, 10, 1951. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, V.; Zalucki, J.M.; Raguschke, B.; Gershenzon, J.; Heckel, D.G.; Zalucki, M.P.; Vassão, D.G. So much for glucosinolates: A generalist does survive and develop on Brassicas, but at what cost? Plants 2021, 10, 962. [Google Scholar] [CrossRef]
- Jeschke, V.; Kearney, E.E.; Schramm, K.; Kunert, G.; Shekhov, A.; Gershenzon, J.; Vassão, D.G. How glucosinolates affect generalist lepidopteran larvae: Growth, development and glucosinolate metabolism. Front. Plant Sci. 2017, 8, 1995. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R. Trap crops and insectary plants in the order Brassicales. Ann. Entomol. Soc. Am. 2019, 112, 318–329. [Google Scholar] [CrossRef]
- Badenes-Pérez, F.R.; Shelton, A.M.; Nault, B.A. Using yellow rocket as a trap crop for diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 2005, 98, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Sekine, T.; Kanao, K.; Inawashiro, S.; Hori, M. Insect pest management by intercropping with leafy daikon (Raphanus sativus) in cabbage fields. Arthropod-Plant Interact. 2021, 15, 669–681. [Google Scholar] [CrossRef]
- Harvey, J.; Witjes, L.; Benkirane, M.; Duyts, H.; Wagenaar, R. Nutritional suitability and ecological relevance of Arabidopsis thaliana and Brassica oleracea as foodplants for the cabbage butterfly, Pieris rapae. Plant Ecol. 2007, 189, 117–126. [Google Scholar] [CrossRef]
- Harvey, J.; Biere, A.; Fortuna, T.; Vet, L.; Engelkes, T.; Morriën, E.; Gols, R.; Verhoeven, K.; Vogel, H.; Macel, M.; et al. Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biol. Invasions 2010, 12, 3045–3059. [Google Scholar] [CrossRef]
- Hovanitz, W.; Chang, C.S. The effect of various food plants on survival and growth rate of Pieris. J. Res. Lepid. 1962, 1, 21–42. [Google Scholar] [CrossRef]
- Okamura, Y.; Sawada, Y.; Hirai, M.Y.; Murakami, M. Effects of different secondary metabolite profiles in plant defense syndromes on specialist and generalist herbivores. Entomol. Sci. 2016, 19, 97–103. [Google Scholar] [CrossRef]
OPI, % Eggs on Plant Species Tested Compared to A. thaliana, Test Statistic, and p-Value | ||
---|---|---|
P. rapae | P. xylostella | |
A. argenteum | 0.01 ± 0.00, 0.56 ± 0.40, z = 2.42, p = 0.008 * | 0.08 ± 0.02, 7.25 ± 1.38, z = 2.11, p = 0.018 * |
A. caucasica | 0.04 ± 0.03, 3.70 ± 2.62, z = 2.27, p = 0.012 * | 0.43 ± 0.05, 29.79 ± 2.52, z = 0.99, p = 0.161 |
B. vulgaris | 0.61 ± 0.13, 36.04 ± 5.75, z = 0.68, p = 0.247 | 2.70 ± 0.99, 69.51 ± 6.49, z = 0.96, p = 0.169 |
B. oleracea | 0.19 ± 0.02, 15.89 ± 1.35, z = 1.67, p = 0.047 * | 0.24 ± 0.06, 18.74 ± 3.68, z = 1.53, p = 0.063 |
B. orientalis | 1.04 ± 0.04, 50.90 ± 0.87, z = 0.04, p = 0.483 | 0.18 ± 0.10, 13.99 ± 7.06, z = 1.76, p = 0.039 * |
C. bursa-pastoris | 0.02 ± 0.01, 1.48 ± 1.05, z = 2.38, p = 0.009 * | 0.03 ± 0.03, 3.19 ± 2.90, z = 2.29, p = 0.011 * |
C. pratensis | 0.26 ± 0.03, 20.41 ± 1.65, z = 1.45, p = 0.074 | 0.71 ± 0.16, 40.48 ± 6.21, z = 0.47, p = 0.320 |
C. papaya | 0.02 ± 0.01, 1.85 ± 1.31, z = 2.36, p = 0.009 * | 0.05 ± 0.05, 4.08 ± 4.08, z = 2.25, p = 0.012 * |
C. spinosa | 0.39 ± 0.27, 18.32 ± 12.39, z = 1.55, p = 0.060 | 0.09 ± 0.05, 7.70 ± 4.60, z = 2.07, p = 0.019 * |
E. cheiri | 0.03 ± 0.01, 3.24 ± 1.22, z = 2.29, p = 0.011 * | 0.22 ± 0.18, 14.90 ± 11.00, z = 1.72, p = 0.043 * |
I. amara | 0.07 ± 0.03, 6.48 ± 2.36, z = 2.13, p = 0.017 * | 0.72 ± 0.46, 34.02 ± 15.28, z = 0.78, p = 0.217 |
L. douglasii | 0 ± 0, 0 ± 0, z = 2.45, p = 0.007 * | 3.84 ± 0.86, 77.64 ± 4.73, z = 1.35, p = 0.088 |
M. oleífera | 0 ± 0, 0 ± 0, z = 2.45, p = 0.007 * | 0 ± 0, 0 ± 0, z = 2.45, p = 0.007 * |
P. sativum | 0.01 ± 0.01, 1.03 ± 0.73, z = 2.40, p = 0.008 * | 0 ± 0, 0 ± 0, z = 2.45, p = 0.007 * |
R. odorata | 0.46 ± 0.03, 31.42 ± 1.45, z = 0.91, p = 0.181 | 0.36 ± 0.30, 20.37 ± 15.58, z = 1.45, p = 0.073 |
T. majus | 0 ± 0, 0 ± 0, z = 2.45, p = 0.007 * | 0.04 ± 0.04, 6.06 ± 6.06, z = 2.15, p = 0.016 * |
B | Standard Error | Wald Chi Square | p | |
---|---|---|---|---|
OPI | ||||
Intercept | 3.79 | 0.04 | 9242.44 | ≤0.001 |
P. rapae | −0.82 | 0.06 | 199.04 | ≤0.001 |
P. xylostella | 0 | |||
IN | 0.18 | 0.01 | 321.29 | ≤0.001 |
TO | ||||
Intercept | 5.00 | 0.03 | 37,794.14 | ≤0.001 |
P. rapae | −0.648 | 0.02 | 805.56 | ≤0.001 |
P. xylostella | 0 | |||
HA | −0.23 | 0.07 | 12.23 | ≤0.001 |
GCI | 0.67 | 0.03 | 445.03 | ≤0.001 |
AO | 0.03 | 0.00 | 1606.37 | ≤0.001 |
LS | ||||
Intercept | 0.21 | 0.26 | 0.65 | 0.420 |
P. rapae | −0.28 | 0.23 | 1.52 | 0.217 |
P. xylostella | 0 | |||
IN | 0.12 | 0.05 | 6.38 | 0.012 |
GCI | 0.47 | 0.17 | 7.84 | 0.005 |
Number of Eggs (Mean ± SE) | |||
---|---|---|---|
P. rapae | P. xylostella | Test Statistic and p-Value | |
A. argenteum | 0.33 ± 0.33 | 91.00 ± 23.69 | TS = 3.00, p ≤ 0.001 |
A. caucasica | 5.33 ±2.03 | 63.00 ± 11.27 | F = 25.36, p = 0.007 |
B. vulgaris | 25.33 ± 6.69 | 44.67 ± 10.68 | F = 2.35, p = 0.200 |
B. oleracea | 69.67 ± 2.91 | 34.33 ± 6.39 | F = 25.36, p = 0.007 |
B. orientalis | 16.33 ± 6.94 | 22.67 ± 7.17 | F = 0.40, p = 0.560 |
C. bursa-pastoris | 0.33 ± 0.33 | 15.33 ± 2.91 | TS = 3.00, p ≤ 0.001 |
C. pratensis | 65.00 ± 50.74 | 45.67 ± 3.53 | F = 0.14, p = 0.723 |
C. papaya | 0 ± 0 | 5.67 ± 5.67 | TS = 1.00, p ≤ 0.001 |
C. spinosa | 77.67 ± 6.64 | 55.33 ± 8.41 | F = 4.34, p = 0.106 |
E. cheiri | 0.33 ± 0.33 | 58.67 ± 2.33 | TS = 3.00, p ≤ 0.001 |
I. amara | 2.67 ± 2.19 | 37.33 ± 8.21 | F = 16.64, p = 0.015 |
L. douglasii | 0 ± 0 | 60.33 ± 6.77 | TS = 1.00, p ≤ 0.001 |
M. oleifera | 0 ± 0 | 4.33 ± 2.19 | TS = 1.00, p ≤ 0.001 |
P. sativum | 0 ± 0 | 1.00 ± 1.00 | TS = 1.00, p ≤ 0.001 |
R. odorata | 12.33 ± 1.45 | 3.00 ± 3.00 | TS = 3.00, p ≤ 0.001 |
T. majus | 17.00 ± 16.34 | 16.33 ± 14.38 | TS = 6.00, p = 0.857 |
% Abaxial Oviposition as Mean ± SE, n, Test Statistic, and p-Value | ||
---|---|---|
P. rapae | P. xylostella | |
A. argenteum | n/a | 4.87 ± 2.23, n = 6; z = 3.12, p ≤ 0.001 * |
A. thaliana | 13.50 ± 2.02, n = 48; z = 7.15, p ≤ 0.001 * | 53.41 ± 1.66, n = 96; z = 0.94, p = 0.172 |
A. caucasica | 58.89 ± 21.63, n = 4; z = 0.50, p = 0.307 | 60.83 ± 4.67, n = 6; z = 0.76, p = 0.223 |
B. vulgaris | 31.16 ± 4.19, n = 6; z = 1.30, p = 0.096 | 50.38 ± 11.71, n = 6; z = 0.00, p = 0.500 |
B. oleracea | 69.33 ± 7.78, n = 6; z = 1.34, p = 0.090 | 32.90 ± 11.86, n = 6; z = 1.18, p = 0.119 |
B. orientalis | 52.69 ± 8.47, n = 6; z = 0.19, p = 0.426 | 44.50 ± 9.38, n = 6; z = 0.42, p = 0.339 |
C. bursa-pastoris | n/a | 40.71 ± 16.36, n = 5; z = 0.57, p = 0.285 |
C. pratensis | 40.20 ± 14.57, n = 6; z = 0.68, p = 0.249 | 47.50 ± 4.61, n = 6; z = 0.14, p = 0.445 |
C. papaya | n/a | n/a |
C. spinosa | 26.15 ± 6.98, n = 5; z = 1.51, p = 0.066 | 33.46 ± 6.85, n = 5; z = 1.08, p = 0.141 |
E. cheiri | 66.67 ± 30.33, n = 3; z = 0.82, p = 0.207 | 69.29 ± 2.96, n = 6; z = 1.20, p = 0.115 |
I. amara | 15.48 ± 8.99, n = 4; z = 1.95, p = 0.025 * | 22.12 ± 4.74, n = 6; z = 1.94, p = 0.020 * |
L. douglasii | n/a | 24.15 ± 1.33, n = 6; z = 1.80, p = 0.036 * |
M. oleifera | n/a | n/a |
P. sativum | n/a | n/a |
R. odorata | 68.90 ± 9.63, n = 6; z = 1.31, p = 0.095 | 48.33 ± 25.87, n = 3; z = 0.10, p = 0.461 |
T. majus | n/a | 75.93 ± 14.46, n = 3; z = 1.27, p = 0.100 |
Survival of Larvae (%) per Plant | |||
---|---|---|---|
P. rapae | P. xylostella | Test Statistic and p-Value | |
A. argenteum | 0 ± 0 | 20.0 ± 8.2 | z = 0.82, p = 0.205 |
A. thaliana | 53.3 ± 6.7 | 46.7 ± 17.6 | z = 0.71, p = 0.239 |
A. caucasica | 0 ± 0 | 25.0 ± 18.9 | z = 0.94, p = 0.175 |
B. vulgaris | 26.7 ± 6.7 | 0 ± 0 | z = 0.96, p = 0.168 |
B. oleracea | 93.3 ± 6.7 | 33.3 ± 6.7 | z = 1.52, p = 0.064 |
B. orientalis | 0 ± 0 | 13.3 ± 6.7 | z = 0.65, p = 0.256 |
C. bursa-pastoris | 0 ± 0 | 20.0 ± 11.5 | z = 0.82, p = 0.207 |
C. pratensis | 93.3 ± 6.7 | 66.7 ± 6.7 | z = 0.82, p = 0.207 |
C. papaya | 0 ± 0 | 0 ± 0 | z = 0.0, p = 0.5 |
C. spinosa | 0 ± 0 | 6.7 ± 6.7 | z = 0.45, p = 0.325 |
E. cheiri | 0 ± 0 | 50.0 ± 12.9 | z = 1.45, p = 0.074 |
I. amara | 0 ± 0 | 40.0 ± 14.1 | z = 1.25, p = 0.106 |
L. douglasii | 0 ± 0 | 66.7 ± 6.7 | z = 1.73, p = 0.042 |
M. oleifera | 0 ± 0 | 10.0 ± 10.0 | z = 0.56, p = 0.287 |
P. sativum | 0 ± 0 | 0 ± 0 | z = 0.0, p = 0.5 |
R. odorata | 80.0 ± 20.0 | 20.0 ± 20.0 | z = 1.58, p = 0.057 |
T. majus | 0 ± 0 | 24.0 ± 14.7 | z = 0.92, p = 0.179 |
Family | Subfamily | Species | Common Name |
---|---|---|---|
Brassicaceae | Alysseae | Alyssum argenteum All. | Yellow tuft |
Brassicaceae | Arabideae | Arabis caucasica Willd. | Mountain rock cress |
Brassicaceae | Brassiceae | Brassica oleracea var. capitata L. | Cabbage |
Brassicaceae | Camelineae | Arabidopsis thaliana (L.) Heynh. | Thale cress |
Brassicaceae | Camelineae | Capsella bursa-pastoris (L.) Medik. | Shepherd’s purse |
Brassicaceae | Camelineae | Erysimum cheiri (L.) Crantz | Wallflower |
Brassicaceae | Cardamineae | Barbarea vulgaris R.Br. | Wintercress |
Brassicaceae | Cardamineae | Cardamine pratensis L. | Cuckoo flower |
Brassicaceae | Euclidieae | Bunias orientalis L. | Turkish rocket |
Brassicaceae | Iberideae | Iberis amara L. | Bitter candytuft |
Caricaceae | - | Carica papaya L. | Papaya |
Cleomaceae | - | Cleome spinosa L. | Spider flower |
Fabaceae | - | Pisum sativum L. | Pea |
Limnanthaceae | - | Limnanthes douglasii R. Br. | Douglas’ meadowfoam |
Moringaceae | - | Moringa oleifera Lam. | Drumstick tree |
Resedaceae | - | Reseda odorata L. | Common mignonette |
Tropaeolaceae | - | Tropaeolum majus L. | Garden nasturtium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badenes-Pérez, F.R. Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran. Plants 2023, 12, 2148. https://doi.org/10.3390/plants12112148
Badenes-Pérez FR. Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran. Plants. 2023; 12(11):2148. https://doi.org/10.3390/plants12112148
Chicago/Turabian StyleBadenes-Pérez, Francisco Rubén. 2023. "Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran" Plants 12, no. 11: 2148. https://doi.org/10.3390/plants12112148
APA StyleBadenes-Pérez, F. R. (2023). Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran. Plants, 12(11), 2148. https://doi.org/10.3390/plants12112148