Laws Governing Nitrogen Loss and Its Numerical Simulation in the Sloping Farmland of the Miyun Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Soil
2.2. Test Devices and Materials
2.3. Experimental Design
2.4. Data Acquisition and Analysis
2.5. Numerical Simulation
2.5.1. Theoretical Model
Model of Simulating N Loss through SF
Model of Simulating N Loss through SSF
2.5.2. Verification and Evaluation of the Model
3. Results
3.1. Characteristics of TN Loss through SF
3.2. Characteristics of TN Loss through SSF
3.3. Comparison of TN Loss between SF and SSF
3.4. TN Loss Loading of SF and SSF
3.5. Numerical Simulation of SF and SSF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef]
- Clark, E.H. Soil Erosion: Offsite Environmental Effects. In Soil Loss: Processes, Policies, and Prospects; Harlin, J.M., Bernardi, G.M., Eds.; Westview: New York, NY, USA, 1987; pp. 59–89. [Google Scholar]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Chen, L.; Liu, D.; Song, L.; Cui, Y.; Xiao, S.; Fan, D. Characteristics of soil nitrogen loss under artificial rainfall in slope farmland of Xiangxi River basin J. J. Ecol. Rural. Environ. 2012, 6, 616–621. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, H.; Liu, J.; Yao, Y.; Wang, X.; Rong, G.; Zhao, X.; Shao, M.; Wei, X. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agric. Ecosyst. Environ. 2021, 307, 107232. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Xia, J.; Cai, C.; Wei, Z. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south china. Sci. Total Environ. 2018, 621, 54. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, J.; Wang, Z.; Wei, X.; Shao, M. Responses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfall. Sci. Total Environ. 2019, 709, 136150. [Google Scholar] [CrossRef]
- Wu, L.; Peng, M.; Qiao, S.; Ma, X.Y. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. Environ. Sci. Pollut. Res. 2018, 25, 3480–3487. [Google Scholar] [CrossRef]
- Shen, H.; Zheng, F.; Wen, L.; Han, Y.; Hu, W. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Q.; Li, C.; Yuan, Y.; Zhao, L. Simulate the impact of rainfall intensity and underground fissures on nutrient loss of slope farmland in karst areas. J. Agric. Eng. 2017, 2, 131–140. [Google Scholar]
- Wang, L.; Wang, L.; Wang, Q. The process of soil nitrogen and phosphorus loss and migration in slope farmland with different slopes. J. Soil Water Conserv. 2015, 2, 69–75. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, B.; Gao, G. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef]
- Zhou, L.; Hao, L.; Sun, Z. Characteristics of nitrogen and phosphorus loss from surface runoff and soil flow of different land types in Hunhe River Basin, Liaoning Province. J. Ecol. Environ. 2011, 20, 737–742. [Google Scholar]
- Wang, G.; Li, Z.; Tian, Y.; Qu, J.; Xu, J.; Liu, Z. Effects of rainfall intensity and land use on nitrogen and phosphorus loss in mountainous areas of southwest Henan. People’s Yangtze River 2016, 47, 5. [Google Scholar] [CrossRef]
- Lv, T.; Liao, M.; Ye, Z. Study on characteristics of runoff nitrogen loss under different land use patterns in Hexi Reservoir catchment area of Changxing County. J. Agric. Environ. Sci. 2017, 36, 9. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Xie, J.; Wei, D.; Li, Y.; Wang, J.; Xu, T.; Yang, Z.; Jin, L. Effects of Different Hedgerow Patterns on the SoilPhysicochemical Properties, Erodibility, and Fractal Characteristics of Slope Farmland in the Miyun Reservoir Area. Plants 2022, 11, 2537. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, G.; Liu, Y.; Zhang, P.; Chai, J. Effects of vegetation types on runoff, sediment and nitrogen and phosphorus loss on loess slope. J. Agric. Eng. 2016, 32, 195–201. [Google Scholar] [CrossRef]
- Choi, K.-S.; Lee, S.G.; Jang, R.-J. Vegetative filter strip (Vfs) applications for runoff and pollution management in the saemangeum area of Korea. Irrig. Drain. 2016, 65, 168–174. [Google Scholar] [CrossRef]
- Chen, X.; Cao, Z.; Yu, R.; Zhang, L.; Chen, H.; Cai, Y.; Feng, Y. Comparison of sediment concentration measurement methods in collecting bucket of slope runoff plot. J. Agric. Eng. 2020, 21, 130–136. [Google Scholar] [CrossRef]
- Li, K.; Cheng, J.; Qi, S. Characteristics of slope erosion and non-point source pollution in different ecological revetment forms in Yongding River basin (Beijing section). Sci. Soil Water Conserv. China 2022, 1, 74–83. [Google Scholar] [CrossRef]
- Wang, L.; Suo, L.; Wei, D.; Ding, J.; Zheng, Y.; Su, L.; An, Z. Ecological resistance and control characteristics of non-point source pollution of slope farmland under different plant allocation modes. Water Soil Conserv. Res. 2021, 28, 29–34. [Google Scholar] [CrossRef]
- Feng, X.; Zheng, Z.; Li, T. Characteristics of surface runoff and nitrogen loss in maize season of slope farmland in purple soil area. J. Soil Water Conserv. 2017, 1, 43–48+54. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Wu, J.; An, Z.; Suo, L.; Ding, J.; Li, S.; Wei, D.; Jin, L. Effects of the Rainfall Intensity andSlope Gradient on Soil Erosion andNitrogen Loss on the Sloping Fields of Miyun Reservoir. Plants 2023, 12, 423. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Vogt, R.D.; Lu, X.; Yang, X.; Lü, C.; Mohr, C.W.; Zhu, L. Land use as an explanatory factor for potential phosphorus loss risk, assessed by P indices and their governing parameters. Environ. Sci. Process. Impacts 2015, 17, 1443–1454. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Alewell, C. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef]
- Fiener, P.; Auerswald, K.; Van Oost, K. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments—A review. Earth-Sci. Rev. 2011, 106, 92–104. [Google Scholar] [CrossRef]
- Auerswald, K.; Fiener, P.; Martin, W.; Elhaus, D. Use and misuse of the K factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. Catena 2014, 118, 220–225. [Google Scholar] [CrossRef]
- Nekhay, O.; Arriaza, M.; Boerboom, L. Evaluation of soil erosion risk using Analytic Network Process and GIS: A case study from Spanish mountain olive plantations. J. Environ. Manag. 2009, 90, 3091–3104. [Google Scholar] [CrossRef]
- Ahuja, L.R. Release of a soluble chemical from soil to runof. J. Trans. ASAE 1982, 25, 948–953. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. Analysis on the feature of effective mixing depth model for soil solute transporting with surface runoff on loess slope. J. Shuili Xuebao 2010, 41, 671–676. [Google Scholar]
- Tonitto, C.; Li, C.; Seidel, R.; Drinkwater, L. Application of the DNDC model to the Rodale Institute Farming Systems Trial: Challenges for the validation of drainage and nitrate leaching in agroecosystem models. Nutr. Cycl. Agroecosyst. 2010, 87, 483–494. [Google Scholar] [CrossRef]
- Ahuja, L.R. Characterization and Modeling of Chemical Transfer to Runoff; Springer: New York, NY, USA, 1986. [Google Scholar]
- Mohammed, D.; Kohl, R.A. Infiltration response to kinetic energy. Trans. ASAE 1987, 30, 108–111. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Q.; Wu, L.; Zhao, G.; Liu, Y.; Zhang, P. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment. Sci. Total Environ. 2016, 557, 590–600. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Q.; Liu, Y.; Zhang, P.; Wu, L. A comparison of mathematical models for chemical transfer from soil to surface runoff with the impact of rain. Catena 2016, 137, 191–202. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.K.; Zhu, B.; Wang, D.J.; Wang, X.T.; Wang, Y.Q.; Ren, Y. Experimental study on rainfall infiltration in sloping farmland of purple soil. Trans. CSAE 2008, 24, 39–43. [Google Scholar]
- Pei, X.; Yu, K.W.; Bin, F. Interflow occurrence characters and their analysis on slope cropland with purple soil. Bull. Soil Water Conserv. 2006, 26, 14–18. [Google Scholar]
- Peterson, E.W.; Davis, R.K.; Brahana, J.V.; Orndorff, H.A. Movement of nitrate through regolith covered karst terrane, northwest Arkansas. J. Hydrol. 2002, 256, 35–47. [Google Scholar] [CrossRef]
- Zakari, S.; Liu, H.; Li, Y.X.; He, X.; Tong, L. Transport and sorption behavior of individual phthalate esters in sandy aquifer: Column experiments. Environ. Sci. Pollut. Res. 2016, 23, 15749–15756. [Google Scholar] [CrossRef]
- Yu, G.J.; Huang, J.S.; Gao, Z.Y. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model. J. Hydraul. Eng. 2013, 44, 826–834. [Google Scholar]
- Huo, H.; Wang, T.; Wei, S. Characteristics of nitrogen loss from hillslope croplands of purple soil in the Three Gorges Reservoir Area and impacts of slope gradients. J. Southwest Univ. Nat. Sci. Ed. 2013, 35, 112–117. [Google Scholar] [CrossRef]
- Veizaga, E.A.; Rodríguez, L.; Ocampo, C.J. Water and chloride transport in a fine-textured soil in a feedlot pen. J. Contam. Hydrol. 2015, 182, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Lei, A.; Lei, J.; Ye, M.; Zhao, J. Effects of hydrological processes on nitrogen loss in purple soil. Agric. Water Manag. 2007, 89, 89–97. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, Z.; Zhang, P.; Xu, J.; Lin, Q. Migration and loss of nitrate nitrogen in purple soil slope farmland and its numerical simulation. J. Agric. Eng. 2018, 19, 147–154. [Google Scholar] [CrossRef]
Parameters | ρs/ (g·cm−3) | s/ (cm3·cm−3) | k/ (cm3·g−1) | DL/ cm | Dw/ (cm2·min−1) | r/ (cm3·cm−3) |
---|---|---|---|---|---|---|
Surface | 1.16 | 0.424 | 0.77 | - | - | - |
Subsurface | 1.16 | 0.424 | 0.77 | 1.19 | 0.03 | 0.0348 |
Rainfall Intensity/(mm·h−1) | Slope Gradient/(°) | Mean Concentration ± Standard Deviation/(mg·L−1) | Mean Load ± Standard Deviation (kg/ha) | ||
---|---|---|---|---|---|
Surface Flow | Subsurface Flow | Surface Flow | Subsurface Flow | ||
30 | 5 | 0.195 ± 0.350b | 21.483 ± 1.100a | 0.016 ± 0.002b | 0.098 ± 0.002a |
10 | 0.159 ± 0.255b | 27.898 ± 3.055a | 0.014 ± 0.004b | 0.247 ± 0.011a | |
15 | 0.089 ± 0.200b | 56.868 ± 5.282a | 0.011 ± 0.005b | 0.359 ± 0.017a | |
40 | 5 | 0.454 ± 0.436b | 56.421 ± 4.478a | 0.041 ± 0.006b | 0.405 ± 0.077a |
10 | 0.255 ± 0.267b | 87.932 ± 1.586a | 0.025 ± 0.005b | 0.857 ± 0.004a | |
15 | 0.189 ± 0.157b | 137.715 ± 9.576a | 0.053 ± 0.071b | 1.452 ± 0.122a | |
50 | 5 | 1.221 ± 0.961b | 180.013 ± 14.808a | 0.067 ± 0.013b | 3.586 ± 0.093a |
10 | 2.487 ± 1.132b | 108.718 ± 4.322a | 0.083 ± 0.008b | 1.648 ± 0.022a | |
15 | 4.277 ± 1.442b | 124.464 ± 1.938a | 0.151 ± 0.013b | 1.950 ± 0.074a | |
60 | 5 | 1.738 ± 1.108b | 122.612 ± 2.594a | 0.092 ± 0.015b | 0.395 ± 0.040a |
10 | 2.394 ± 0.614b | 47.245 ± 3.381a | 0.101 ± 0.021b | 0.528 ± 0.035a | |
15 | 4.705 ± 1.520b | 48.417 ± 1.994a | 0.141 ± 0.018b | 0.667 ± 0.023a | |
70 | 5 | 4.236 ± 1.983b | 107.244 ± 4.978a | 0.356 ± 0.014b | 1.017 ± 0.012a |
10 | 5.536 ± 2.145b | 79.586 ± 1.619a | 0.459 ± 0.032b | 0.884 ± 0.030a | |
15 | 9.395 ± 2.884b | 63.044 ± 2.207a | 0.455 ± 0.027b | 0.739 ± 0.059a | |
80 | 5 | 3.134 ± 0.926b | 110.316 ± 2.946a | 0.263 ± 0.044b | 1.163 ± 0.138a |
10 | 4.817 ± 1.742b | 55.251 ± 3.036a | 0.327 ± 0.022b | 0.586 ± 0.002a | |
15 | 7.894 ± 1.910b | 65.977 ± 2.847a | 0.458 ± 0.044b | 1.118 ± 0.057a |
Rainfall Intensity /(mm·h−1) | Slope Gradient /(°) | Surface | Subsurface | ||||
---|---|---|---|---|---|---|---|
MAE | RMSE | NSE | MAE | RMSE | NSE | ||
30 | 5 | 0.07 | 0.18 | 0.73 | 24.84 | 34.08 | −0.13 |
10 | 0.06 | 0.12 | 0.75 | 16.33 | 30.84 | 0.57 | |
15 | 0.02 | 0.05 | 0.95 | 23.90 | 31.26 | 0.68 | |
40 | 5 | 0.18 | 0.31 | 0.45 | 31.35 | 45.98 | 0.32 |
10 | 0.11 | 0.17 | 0.57 | 36.63 | 57.50 | 0.55 | |
15 | 0.17 | 0.24 | −1.52 | 65.44 | 95.01 | 0.36 | |
50 | 5 | 0.71 | 0.96 | 0.24 | 110.15 | 136.61 | 0.45 |
10 | 0.70 | 0.80 | 0.45 | 32.14 | 40.39 | 0.79 | |
15 | 1.00 | 1.16 | 0.29 | 52.30 | 78.53 | 0.16 | |
60 | 5 | 0.01 | 0.78 | 0.46 | 57.27 | 74.11 | 0.40 |
10 | 0.92 | 1.08 | −1.34 | 61.27 | 72.38 | −1.20 | |
15 | 0.80 | 0.96 | 0.56 | 42.38 | 57.38 | −0.67 | |
70 | 5 | 1.06 | 1.24 | 0.57 | 65.97 | 81.48 | 0.27 |
10 | 1.14 | 1.48 | 0.48 | 44.55 | 51.98 | 0.30 | |
15 | 1.74 | 2.17 | −0.31 | 42.76 | 50.05 | −0.52 | |
80 | 5 | 2.06 | 2.73 | −0.68 | 26.93 | 36.89 | 0.72 |
10 | 2.10 | 2.43 | −1.12 | 23.99 | 32.74 | 0.17 | |
15 | 1.42 | 1.57 | 0.27 | 28.88 | 41.33 | −0.28 | |
All treatments | 0.95 | 1.54 | 0.74 | 24.99 | 39.25 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jin, L.; Wu, J.; Shi, C.; Li, S.; Xie, J.; An, Z.; Suo, L.; Ding, J.; Wei, D.; et al. Laws Governing Nitrogen Loss and Its Numerical Simulation in the Sloping Farmland of the Miyun Reservoir. Plants 2023, 12, 2042. https://doi.org/10.3390/plants12102042
Li Y, Jin L, Wu J, Shi C, Li S, Xie J, An Z, Suo L, Ding J, Wei D, et al. Laws Governing Nitrogen Loss and Its Numerical Simulation in the Sloping Farmland of the Miyun Reservoir. Plants. 2023; 12(10):2042. https://doi.org/10.3390/plants12102042
Chicago/Turabian StyleLi, Yan, Liang Jin, Jiajun Wu, Chuanqi Shi, Shuo Li, Jianzhi Xie, Zhizhuang An, Linna Suo, Jianli Ding, Dan Wei, and et al. 2023. "Laws Governing Nitrogen Loss and Its Numerical Simulation in the Sloping Farmland of the Miyun Reservoir" Plants 12, no. 10: 2042. https://doi.org/10.3390/plants12102042