Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro?
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Light Treatment
- White fluorescent lamp (FL);
- 100% blue (B);
- 70% blue and 30% red (B7R3);
- 50% blue and 50% red (B5R5);
- 30% blue and 70% red (B3R7);
- 100% red (R).
4.3. Measurements
4.4. Determination of the Triterpenoid Content
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780128017753. [Google Scholar]
- Dueck, T.; van Ieperen, W.; Taulavuori, K. Light Perception, Signalling and Plant Responses to Spectral Quality and Photoperiod in Natural and Horticultural Environments. Environ. Exp. Bot. 2016, 121, 1–3. [Google Scholar] [CrossRef]
- Lee, M.J.; Son, K.H.; Oh, M.M. Increase in Biomass and Bioactive Compounds in Lettuce under Various Ratios of Red to Far-Red LED Light Supplemented with Blue LED Light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Dłużniewska, J.; Klimek-Kopyra, A.; Czech, T.; Dobrowolski, J.W.; Dacewicz, E. The Use of Coherent Laser Stimulation of Seeds and a Fungal Inoculum to Increase the Productivity and Health of Soybean Plants. Agronomy 2021, 11, 1923. [Google Scholar] [CrossRef]
- Jung, W.S.; Chung, I.M.; Hwang, M.H.; Kim, S.H.; Yu, C.Y.; Ghimire, B.K. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021, 26, 1477. [Google Scholar] [CrossRef] [PubMed]
- Viršile, A.; Brazaityte, A.; Sirtautas, R.; Duchovskis, P. Light Spectral Effects on Phenolic Compounds in Perilla frutescens Leaves as Related to the Leaf Age, Color and Duration of Exposure. Acta Hortic. 2017, 1170, 981–988. [Google Scholar] [CrossRef]
- Hasan, M.M.; Bashir, T.; Ghosh, R.; Lee, S.K.; Bae, H. An Overview of LEDs’ Effects on the Production of Bioactive Compounds and Crop Quality. Molecules 2017, 22, 1420. [Google Scholar] [CrossRef] [PubMed]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under Artificial Light: The Shift in Primary and Secondary Metabolism. Philos. Trans. R. Soc. B 2014, 369, 20130243. [Google Scholar] [CrossRef]
- McCree, K.J. The Action Spectrum, Absorptance and Quantum Yield of Photosynthesis in Crop Plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Rabinowitch, E.I. ; Govindjee The Role of Chlorophyll in Photosynthesis. Sci. Am. 1965, 213, 74–83. [Google Scholar] [CrossRef]
- Hu, J.; Dai, X.; Sun, G. Morphological and Physiological Responses of Morus alba Seedlings under Different Light Qualities. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 382–392. [Google Scholar] [CrossRef]
- Kong, Y.; Nemali, K. Blue and Far-Red Light Affect Area and Number of Individual Leaves to Influence Vegetative Growth and Pigment Synthesis in Lettuce. Front. Plant Sci. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Van Iersel, M.W. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Front. Plant Sci. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, Z.; He, S.; Shi, L.; Song, Y.; Lou, X.; He, D. LED-Supplied Red and Blue Light Alters the Growth, Antioxidant Status, and Photochemical Potential of in Vitro-Grown Gerbera jamesonii Plantlets. Hortic. Sci. Technol. 2019, 37, 473–489. [Google Scholar] [CrossRef]
- Miao, Y.-x.; Wang, X.-z.; Gao, L.-h.; Chen, Q.-y.; Qu, M. Blue Light Is More Essential than Red Light for Maintaining the Activities of Photosystem II and I and Photosynthetic Electron Transport Capacity in Cucumber Leaves. J. Integr. Agric. 2016, 15, 87–100. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis sativus Grown under Different Combinations of Red and Blue Light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Ouzounis, T.; Fretté, X.; Ottosen, C.O.; Rosenqvist, E. Spectral Effects of LEDs on Chlorophyll Fluorescence and Pigmentation in Phalaenopsis “Vivien” and “Purple star”. Physiol. Plant. 2015, 154, 314–327. [Google Scholar] [CrossRef]
- Cioć, M.; Szewczyk, A.; Żupnik, M.; Kalisz, A.; Pawłowska, B. LED Lighting Affects Plant Growth, Morphogenesis and Phytochemical Contents of Myrtus communis L. in Vitro. Plant Cell. Tissue Organ. Cult. 2018, 132, 433–447. [Google Scholar] [CrossRef]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Luna-Sánchez, I.J. Light Quality Affects Growth and Development of in Vitro Plantlet of Vanilla planifolia Jacks. S. Afr. J. Bot. 2017, 109, 288–293. [Google Scholar] [CrossRef]
- Lewis, W.H. Oldenlandia corymbosa (Rubiaceae). Grana Palynol. 1964, 5, 330–341. [Google Scholar] [CrossRef]
- Gupta, R.K.; Singh, R.K.; Swain, S.R.; Hussain, T.; Rao, C.V. Anti-Hepatotoxic Potential of Hedyotis corymbosa against D-Galactosamine-Induced Hepatopathy in Experimental Rodents. Asian Pac. J. Trop. Biomed. 2012, 2, 1542–1547. [Google Scholar] [CrossRef]
- Andriyani, R.; Risdian, C.; Udin, Z. Cytotoxicity Assay From Fractions of Hedyotis corymbosa Extract Against Breast Cancer Cell Line T47D. Indones. J. Cancer Chemoprevention 2011, 2, 182–186. [Google Scholar] [CrossRef][Green Version]
- Sultana, T.; Rashid, M.A.; Ali, M.A.; Mahmood, S.F. Hepatoprotective and Antibacterial Activity of Ursolic Acid Extracted from Hedyotis corymbosa (L.). Bangladesh J. Sci. Ind. Res. 2010, 45, 27–34. [Google Scholar] [CrossRef]
- Furtado, N.A.J.C.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic Triterpene Bioavailability: An Overview of in Vitro and in Vivo Studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef] [PubMed]
- Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019, 24, 2751. [Google Scholar] [CrossRef] [PubMed]
- Laszczyk, M.N. Pentacyclic Triterpenes of the Lupane, Oleanane and Ursane Group as Tools in Cancer Therapy. Planta Med. 2009, 75, 1549–1560. [Google Scholar] [CrossRef]
- Le, A.T.; Phan, N.H.; Do, T.K. Effect of Blue Light on the Photosynthesis and Flavonoid Accumulation in Leaves of Hedyotis corymbosa (L.) Lam. Plant Sci. Today 2021, 8, 955–962. [Google Scholar] [CrossRef]
- Le, A.T.; Yu, J.K.; Han, G.D.; Do, T.K.; Chung, Y.S. Potential Use of Colored LED Lights to Increase the Production of Bioactive Metabolites Hedyotis corymbosa (L.) Lam. Plants 2022, 11, 225. [Google Scholar] [CrossRef]
- Le, A.T.; Hoang, T.T.T.; Phan, N.H. Development of Shoots of Hedyotis corymbosa (L.) Lam. in Vitro Culture. Sci. Technol. Dev. J. 2015, 5, 75–84. [Google Scholar] [CrossRef]
- Zheng, L.; Van Labeke, M.C. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants. Front. Plant Sci. 2017, 8, 917. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Q.; Qu, M.; Gao, L.; Hou, L. Blue Light Alleviates ‘Red Light Syndrome’ by Regulating Chloroplast Ultrastructure, Photosynthetic Traits and Nutrient Accumulation in Cucumber Plants. Sci. Hortic. 2019, 257, 108680. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Yang, M. Effects of Composite LED Light on Root Growth and Antioxidant Capacity of Cunninghamia lanceolata Tissue Culture Seedlings. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, L.; Wu, S.; Liu, L.; Huang, M.; Lin, S.; Ding, G. Effects of LED Light on Acacia melanoxylon Bud Proliferation in Vitro and Root Growth Ex Vitro. Open Life Sci. 2019, 14, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tan, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.; Blonquist, J.M.; Bugbee, B. In Situ Measurement of Leaf Chlorophyll Concentration: Analysis of the Optical/Absolute Relationship. Plant Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Blankenship, R.E. Expanding the Solar Spectrum Used by Photosynthesis. Trends Plant Sci. 2011, 16, 427–431. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Yokono, M.; Akimoto, S.; Tanaka, R.; Tanaka, A. Deregulated Chlorophyll b Synthesis Reduces the Energy Transfer Rate between Photosynthetic Pigments and Induces Photodamage in Arabidopsis thaliana. Plant Cell Physiol. 2010, 51, 1055–1065. [Google Scholar] [CrossRef]
- Bukhov, N.G. Dynamic Light Regulation of Photosynthesis (a Review). Russ. J. Plant Physiol. 2004, 51, 742–753. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently Asked Questions about in Vivo Chlorophyll Fluorescence: Practical Issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Wu, X.-S.; Chang, X.-P.; Li, R.-Z.; Jing, R.-L. Chlorophyll Content and Chlorophyll Fluorescence Kinetics Parameters of Flag Leaf and Their Gray Relational Grade with Yield in Wheat. Acta Agron. Sin. 2010, 36, 217–227. [Google Scholar] [CrossRef]
- Rochaix, J.D. Regulation of Photosynthetic Electron Transport. Biochim. Biophys. Acta—Bioenerg. 2011, 1807, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ma, H.; Gong, Y.; Xiao, J.; Jiang, L.; Zhan, Y.; Li, C.; Ren, C.; Yang, Y. Effect of MeJA and Light on the Accumulation of Betulin and Oleanolic Acid in the Saplings of White Birch (Betula platyphylla Suk.). Am. J. Plant Sci. 2013, 4, 7–15. [Google Scholar] [CrossRef]
- Aminfar, Z.; Rabiei, B.; Tohidfar, M.; Mirjalili, M.H. Identification of Key Genes Involved in the Biosynthesis of Triterpenic Acids in the Mint Family. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nawae, W.; Yoocha, T.; Narong, N.; Paemanee, A.; Ketngamkum, Y.; Romyanon, K.; Toojinda, T.; Tangphatsornruang, S.; Pootakham, W. Transcriptome Sequencing Revealed the Influence of Blue Light on the Expression Levels of Light-Stress Response Genes in Centella asiatica. PLoS ONE 2021, 16, e0260468. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Henselová, M.; Regecová, M.; Sováková, A. Isolation of Chloroplasts in the Karwinskia Species and Determination of Their Photochemical Activity under in Vitro Conditions. Plant Soil Environ. 2004, 50, 149–156. [Google Scholar] [CrossRef]
- Li, J.; Zu, Y.G.; Fu, Y.J.; Yang, Y.C.; Li, S.M.; Li, Z.N.; Wink, M. Optimization of Microwave-Assisted Extraction of Triterpene Saponins from Defatted Residue of Yellow Horn (Xanthoceras sorbifolia Bunge.) Kernel and Evaluation of Its Antioxidant Activity. Innov. Food Sci. Emerg. Technol. 2010, 11, 637–643. [Google Scholar] [CrossRef]
- Cai, C.; Ma, J.; Han, C.; Jin, Y.; Zhao, G.; He, X. Extraction and Antioxidant Activity of Total Triterpenoids in the Mycelium of a Medicinal Fungus, Sanghuangporus sanghuang. Sci. Rep. 2019, 9, 7418. [Google Scholar] [CrossRef]
Light Source | Fv/Fm | Y(II) | Y(NPQ) | Y(NO) | qP | qN | ETR (μmol Electron·m−2·s−1) |
---|---|---|---|---|---|---|---|
FL | 0.749 a | 0.666 a | 0. 037 a | 0.312 b | 0.801 bc | 0.311 a | 12.179 ab |
B | 0.753 a | 0.623 a | 0.075 a | 0.302 b | 0.875 ab | 0.273 a | 13.259 a |
B7R3 | 0.739 ab | 0.663 a | 0.043 a | 0.289 b | 0.957 a | 0.154 a | 14.159 a |
B5R5 | 0.737 ab | 0.662 a | 0.028 a | 0.309 b | 0.924 ab | 0.147 a | 13.902 a |
B3R7 | 0.681 b | 0.510 b | 0.074 a | 0.360 a | 0.768 bc | 0.271 a | 9.849 b |
R | 0.694 b | 0.420 b | 0.095 a | 0.396 a | 0.734 c | 0.267 a | 8.978 b |
Light Source | SPAD Value | Hill Reaction Activity (nmol DCIP.Million of Chloroplast−1·min−1) |
---|---|---|
FL | 26.2 a | 0.087 a |
B | 23.9 b | 0.085 ab |
R | 19.7 c | 0.076 b |
Light Source | Total Triterpenoid (mg UAE/g DW) |
---|---|
FL | 27.03 a |
B | 26.33 a |
R | 18.41 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, A.T.; Choi, I.-L.; Han, G.-D.; Kang, H.-M.; Jung, D.H.; Park, W.-P.; Yildiz, M.; Do, T.K.; Chung, Y.S. Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro? Plants 2023, 12, 93. https://doi.org/10.3390/plants12010093
Le AT, Choi I-L, Han G-D, Kang H-M, Jung DH, Park W-P, Yildiz M, Do TK, Chung YS. Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro? Plants. 2023; 12(1):93. https://doi.org/10.3390/plants12010093
Chicago/Turabian StyleLe, Anh Tuan, In-Lee Choi, Gyung-Deok Han, Ho-Min Kang, Dae Ho Jung, Won-Pyo Park, Mehtap Yildiz, Thuong Kiet Do, and Yong Suk Chung. 2023. "Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro?" Plants 12, no. 1: 93. https://doi.org/10.3390/plants12010093
APA StyleLe, A. T., Choi, I.-L., Han, G.-D., Kang, H.-M., Jung, D. H., Park, W.-P., Yildiz, M., Do, T. K., & Chung, Y. S. (2023). Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro? Plants, 12(1), 93. https://doi.org/10.3390/plants12010093