QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize
Abstract
:1. Introduction
2. Results
2.1. Descriptive Statistics and Linkage Map
2.2. Single Environment QTL Analysis
2.3. QTL × Environment Interaction Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Design
4.3. Phenotypic Evaluation
4.4. Statistical Analysis
- Yij is the transformed IND rate or IND;
- μ is the overall mean;
- Ei is the random effect of the ith environment;
- Gjis the random effect of the jth F2:3 families;
- εij is the residual error.
- σ2g—the variance component for genotypes,
- σ2r—the variance component for the residual;
- e—the number of environments.
4.5. Genotyping
4.6. GBS Correction
4.7. Linkage Map Construction
4.8. QTL Mapping and Analysis for Inducibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallauer, A.R.; Carena, M.J.; De Miranda Filho, J.B. Quantitative Genetics in Maize Breeding; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Chang, M.T.; Coe, E.H. Doubled haploids. In Molecular Genetic Approaches to Maize Improvement; Kriz, A.L., Larkins, B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 63, pp. 127–142. [Google Scholar] [CrossRef]
- Geiger, H.H. Doubled haploids. In Handbook of Maize, Genetics and Genomics; Bennetzen, J.L., Hake, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 641–657. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Ren, J.; Mei, M.; Frei, U.K.; Trampe, B.; Lübberstedt, T. Maize doubled haploids. In Plant Breeding Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; Volume 40, pp. 123–166. [Google Scholar] [CrossRef]
- Chaikam, V.; Molenaar, W.; Melchinger, A.E.; Boddupalli, P.M. Doubled haploid technology for line development in maize: Technical advances and prospects. Theor. Appl. Genet. 2019, 132, 3227–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uliana Trentin, H.; Frei, U.K.; Lübberstedt, T. Breeding maize maternal haploid inducers. Plants 2020, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Kebede, A.Z.; Dhillon, B.S.; Schipprack, W.; Araus, J.L.; Bänziger, M.; Semagn, K.; Alvarado, G.; Melchinger, A.E. Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica 2011, 180, 219–226. [Google Scholar] [CrossRef]
- Prigge, V.; Sánchez, C.; Dhillon, B.S.; Schipprack, W.; Araus, J.L.; Bänziger, M.; Melchinger, A.E. Doubled haploids in tropical maize. I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop. Sci. 2011, 51, 1498–1506. [Google Scholar] [CrossRef]
- De La Fuente, G.N.; Frei, U.K.; Trampe, B.; Nettleton, D.; Zhang, W.; Lübberstedt, T. A diallel analysis of a maize donor population response to in vivo maternal haploid induction I: Inducibility. Crop Sci. 2018, 58, 1830–1837. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Li, H.; Ren, J.; Chen, S. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 2014, 196, 413–421. [Google Scholar] [CrossRef]
- Barret, P.; Brinkmann, M.; Beckert, M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor. Appl. Genet. 2008, 117, 581–594. [Google Scholar] [CrossRef]
- Prigge, V.; Xu, X.X.; Li, L.; Babu, R.; Chen, S.J.; Atlin, G.N.; Melchinger, A.E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Xu, X.; Miao, J.; Li, L.; Zhang, D.; Mi, X.; Liu, C.; Tian, X.; Melchinger, A.E.; Chen, S. Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor. Appl. Genet. 2013, 126, 1713–1720. [Google Scholar] [CrossRef]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 2017, 542, 105–109. [Google Scholar] [CrossRef]
- Gilles, L.M.; Khaled, A.; Laffaire, J.; Chaignon, S.; Gendrot, G.; Laplaige, J.; Bergès, H.; Beydon, G.; Bayle, V.; Barret, P.; et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017, 36, 707–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eder, J.; Chalyk, S. In vivo haploid induction in maize. Theor. Appl. Genet. 2002, 104, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Röber, F.K.; Gordillo, G.A.; Geiger, H.H. In vivo haploid induction in maize: Performance of new inducers and significance for doubled haploid lines in hybrid breeding. Maydica 2005, 50, 275–283. [Google Scholar]
- Baye, T.M.; Abebe, T.; Wilke, R.A. Genotype-environment interactions and their translational implications. Pers. Med. 2011, 8, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J.; Song, T.M. Identification haploid with high oil xenia effect in maize. Acta Agron. Sin. 2003, 29, 587–590. [Google Scholar]
- Boote, B.W.; Freppon, D.J.; De La Fuente, G.N.; Lübberstedt, T.; Nikolau, B.J.; Smith, E.A. Haploid differentiation in maize kernels based on fluorescence imaging. Plant Breed. 2016, 135, 439–445. [Google Scholar] [CrossRef]
- Trampe, B.; Dos Santos, I.G.; Frei, U.K.; Ren, J.; Chen, S.; Lübberstedt, T. QTL mapping of spontaneous haploid genome doubling using genotyping-by-sequencing in maize (Zea mays L.). Theor. Appl. Genet. 2020, 133, 2131–2140. [Google Scholar] [CrossRef]
- Chalyk, S.T.; Baumann, A.; Daniel, G.; Eder, J. Aneuploidy as a possible cause of haploid-induction in maize. Maize Genet. Coop. News Lett. 2003, 77, 29–30. [Google Scholar]
- Rotarenco, V.; Eder, J. Possible effects of heterofertilization on the induction of maternal haploids in maize. Maize Genet. Coop. News Lett. 2003, 77, 30. [Google Scholar]
- Li, L.; Xu, X.W.; Jin, W.W.; Chen, S.J. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 2009, 230, 367–376. [Google Scholar] [CrossRef]
- Knott, S.A.; Haley, C.S.; Thompson, R. Methods of segregation analysis for animal breeding data: A comparison of power. Heredity 1992, 68, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.; Curnow, R.N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 1992, 85, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Tilquin, P.; Coppieters, W.; Elsen, J.M.; Lantier, F.; Moreno, C.; Baret, P.V. Statistical powers of QTL mapping methods applied to bacteria counts. Genet. Res. 2001, 78, 303–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruglyak, L.; Lander, E.S. Complete multipoint sib pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 1995, 57, 439–454. [Google Scholar]
- Zhao, F.; Xu, S. Genotype by environment interaction of quantitative traits: A case study in barley. G3 Genes Genomes Genet. 2012, 2, 779–788. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS Version 9.4; SAS Institute: Cary, NC, USA, 2013. [Google Scholar]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.J.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A high capacity genotyping by sequencing analysis platform. PLoS ONE 2014, 9, e90346. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Miao, D.; Margolis, C.A.; Gao, W.; Voss, M.H.; Li, W.; Martini, D.J.; Norton, C.; Bossé, D.; Wankowicz, S.M.; Cullen, D.; et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 2018, 359, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop. J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
AM1 | AM2 | AM3 | Average | |
---|---|---|---|---|
Mean | 8.04 | 7.47 | 9.31 | 8.26 |
Min | 0.80 | 0.75 | 0.63 | 0.73 |
Max | 18.01 | 16.61 | 23.76 | 19.46 |
SD | 2.91 | 2.85 | 3.74 | 3.27 |
CV | 36.15 | 38.08 | 40.17 | 39.64 |
Heritability | - | - | - | 0.49 |
Source | DF # | SS | MS | F-Value | Pr > F |
---|---|---|---|---|---|
Location | 2 | 0.0445 | 0.0222 | 33.09 | <0.0001 |
Families | 246 | 0.4169 | 0.0017 | 2.52 | <0.0001 |
Residuals | 492 | 0.3306 | 0.0007 | ||
Total | 740 | 0.7920 |
Percentage Data (%) | |||||||
---|---|---|---|---|---|---|---|
Env 1 | QTL | Chr 2 | Pos 3 | Marker Interval | LOD | PVE 4 | Add 5 |
AM1 | qIND5 | 5 | 106 | S5.163229787–S5.163889760 | 5.11 | 9.1 | 0.01 |
AM2 | qIND2a | 2 | 180 | S2.213848716–S2.213842789 | 4.83 | 9.5 | −0.01 |
qIND4a | 4 | 119 | S4.173795662–S4.174915619 | 4.11 | 8.1 | −0.01 | |
AM3 | qIND4b | 4 | 97 | S4.158130766–S4.158136040 | 6.21 | 10.7 | −0.02 |
Angular-Transformed Data | |||||||
AM1 | qIND5 | 5 | 106 | S5.163229787–S5.163889760 | 4.95 | 8.82 | 8.82 |
AM2 | qIND2a | 2 | 202 | S2.222648035–S2.222649363 | 5.19 | 8.03 | 8.03 |
AM3 | qIND4b | 4 | 97 | S4.158130766–S4.158136040 | 5.48 | 9.54 | 9.54 |
Percentage Data (%) | ||||||||
---|---|---|---|---|---|---|---|---|
QTL | Chr 1 | Pos 2 | Marker Interval | LOD | PVE 3 | PVE (A) 4 | PVE (A × E) 5 | Add 6 |
qIND2a | 2 | 180 | S2.213848716–S2.213842789 | 7.51 | 6.24 | 5.74 | 0.50 | −0.007 |
qIND4b | 4 | 97 | S4.158130766–S4.158136040 | 6.83 | 9.91 | 3.55 | 6.37 | −0.005 |
qIND5 | 5 | 105 | S5.160081320–S5.163229787 | 7.23 | 6.50 | 5.78 | 0.72 | 0.004 |
qIND8 | 4 | 27 | S8.7675588–S8.7748928 | 6.57 | 5.97 | 1.90 | 4.07 | 0.003 |
Angular-Transformed Data | ||||||||
qIND5 | 5 | 105 | S5.160081320–S5.163229787 | 8.01 | 6.48 | 6.06 | 0.42 | 0.009 |
qIND8 | 8 | 27 | S8.7675588–S8.7748928 | 6.12 | 5.11 | 1.65 | 3.46 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trampe, B.; Batîru, G.; Pereira da Silva, A.; Frei, U.K.; Lübberstedt, T. QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize. Plants 2022, 11, 878. https://doi.org/10.3390/plants11070878
Trampe B, Batîru G, Pereira da Silva A, Frei UK, Lübberstedt T. QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize. Plants. 2022; 11(7):878. https://doi.org/10.3390/plants11070878
Chicago/Turabian StyleTrampe, Benjamin, Grigorii Batîru, Arthur Pereira da Silva, Ursula Karoline Frei, and Thomas Lübberstedt. 2022. "QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize" Plants 11, no. 7: 878. https://doi.org/10.3390/plants11070878
APA StyleTrampe, B., Batîru, G., Pereira da Silva, A., Frei, U. K., & Lübberstedt, T. (2022). QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize. Plants, 11(7), 878. https://doi.org/10.3390/plants11070878