A Review of Factors Affecting Ganoderma Basal Stem Rot Disease Progress in Oil Palm
Abstract
:1. Introduction
2. Disease Progress
2.1. Plant Disease Triangle
2.2. The Assessment of Disease Progress in Plants
3. Factors Affecting the Ganoderma BSR Disease Progress in Oil Palm
3.1. Pathogenic Factors
3.2. Host Factors
3.3. Environmental Factors and Other Relevant Factors (Human and Management Practices)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shahbandeh, M. Palm Oil: Global Production Volume 2012/13–2020/21. 2021. Available online: https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/ (accessed on 4 December 2021).
- Danylo, O.; Pirker, J.; Lemoine, G.; Ceccherini, G.; See, L.; McCallum, I.; Hadi; Kraxner, F.; Achard, F.; Fritz, S. A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Sci. Data 2021, 8, 4–11. [Google Scholar] [CrossRef]
- Shevade, V.S.; Loboda, T.V. Oil palm plantations in Peninsular Malaysia: Determinants and constraints on expansion. PLoS ONE 2019, 14, e0210628. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M. Ganoderma disease of oil palm—A white rot perspective necessary for integrated control. Crop Prot. 2007, 26, 1369–1376. [Google Scholar] [CrossRef]
- Rees, R.W.; Flood, J.; Hasan, Y.; Potter, U.; Cooper, R.M. Basal stem rot of oil palm (Elaeis guineensis); Mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol. 2009, 58, 982–989. [Google Scholar] [CrossRef]
- Hushiarian, R.; Yusof, N.A.; Dutse, S.W. Detection and control of Ganoderma boninense: Strategies and perspectives. SpringerPlus 2013, 2, 555. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.; Nur Rashyeda, R.; Mohd Hefni, R.; Sundram, S.; Norman, K. Standard Operating Procedures (SOP) For Managing Ganoderma Disease. In Oil Palm; Malaysian Palm Oil Board: Kajang, Selangor, Malaysian, 2016. [Google Scholar]
- Turner, P. Oil Palm Diseases and Disorders. Brittonia 1982, 34, 364. [Google Scholar]
- Roslan, A.; Idris, A.S. Economic Impact of Ganoderma Incidence on Malaysian Oil Palm Plantation—A Case Study in Johor. Oil Palm Ind. Econ. J. 2012, 12, 24–30. [Google Scholar]
- Mohd Shukri, I.; Idris, A.S.; Mohd Hefni, R.; Izzuddin, M.A.; Norman, K.; Khairuman, H.; Zulkifli, A.M. Surveillance of Ganoderma Disease in Oil Palm Planted by Participants of The Smallholders Replanting Incentive Scheme in Malaysia. J. Oil Palm Res. 2020, 32, 237–244. [Google Scholar]
- Nelson, E.B. The Disease Triangle and the Disease Cycle. Turf Glass Trends ISSN 1076-7207. 1994, pp. 8–9. Available online: https://www.apsnet.org/edcenter/foreducators/TeachingNotes/Pages/DiseaseTriangle.aspx (accessed on 30 November 2021).
- Francl, L.J. The Disease Triangle: A plant pathological paradigm revisited (Reviewed). In The Plant Health Instructor; National Agricultural Library: Beltsville, MD, USA, 2007. [Google Scholar] [CrossRef]
- Keane, P.; Kerr, A. Factors Affecting Disease Development. Postharvest Dis. Fruits Veg. 2001, 287, 33–53. [Google Scholar]
- Islam, W. Plant Disease Epidemiology: Disease Triangle and Forecasting Mechanisms in Highlights. Hosts Viruses 2018, 5, 7–11. [Google Scholar]
- Scholthof, K.B. The disease triangle: Pathogens, the environment and society. Nat. Rev. Microbiol. 2007, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. The Disease Triangle: Sherrie Smith University of Arkansas Cooperative Extension (UACES). 2021, pp. 1–84. Available online: https://www.uaex.uada.edu/counties/miller/Disease%20triangle.pdf (accessed on 30 November 2021).
- Xu, X. Modelling and interpreting disease progress in time. In The Epidemiology of Plant Diseases; Springer: Dordrecht, The Netherlands, 2006; pp. 215–238. [Google Scholar]
- Chang, A.L.; Chong, K.P.; Ho, C.M. Comparing nonlinear models in describing disease progress curve of cocoa black pod. In AIP Conference Proceedings; AIP Publishing: Woodbury, NY, USA, 2018. [Google Scholar]
- Assis, K.; Chong, K.P.; Idris, A.S.; Hoong, H.W.; Ho, C.M. Regression analysis for yield loss of oil palm due to Ganoderma disease. In Proceedings of the 7th International Conference on Research and Education in Mathematics: Empowering Mathematical Sciences through Research and Education—ICREM7 2015, Serdang, Selangor, Malaysian, 25–27 August 2015; pp. 262–267. [Google Scholar]
- Paterson, R.R.M. Ganoderma boninense disease deduced from simulation modelling with large data sets of future Malaysian oil palm climate. Phytoparasitica 2019, 47, 255–262. [Google Scholar] [CrossRef]
- Ariffin, D.; Idris, A.S.; Singh, G. Status of Ganoderma in oil palm. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 49–68. [Google Scholar]
- Paterson, R.R.M.; Sariah, M.; Lima, N. How will climate change affect oil palm fungal diseases? Crop Prot. 2013, 46, 113–120. [Google Scholar] [CrossRef]
- Jeger, M. Analysis of Disease Progress as a Basis for Evaluating Disease Management Practices. Annu. Rev. Phytopathol. 2004, 42, 61–82. [Google Scholar] [CrossRef]
- Agrios, G. Plant Pathology, 5th ed.; Elsevier-Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Pokhrel, A. Role of Individual Components of Disease Triangle in Disease Development: A Review. J. Plant Pathol. Microbiol. 2021, 12, 573. [Google Scholar]
- Gorea, E.; Godwin, I.; Mudge, A. Ganoderma infection of oil palm—A persistent problem in Papua New Guinea and Solomon Islands. Australas. Plant Pathol. 2020, 49, 69–77. [Google Scholar] [CrossRef]
- Malaysian Palm Oil Board. SawitSecure 2.0: Ganoderma. 2022. Available online: http://sawitsecure.mpob.gov.my/ganoderma-basal-stem-rot/foliar-symptoms-on-young-palm/ (accessed on 22 August 2022).
- Wong, L.C.; Bong, C.F.J.; Idris, A.S. Ganoderma Species Associated with Basal Stem Rot Disease of Oil Palm. Am. J. Appl. Sci. 2012, 9, 879–885. [Google Scholar] [CrossRef]
- Miller, R.N.G.; Holderness, M.; Bridge, P.D.; Chung, G.F.; Zakaria, M.H. Genetic diversity of Ganoderma in oil palm plantings. Plant Pathol. 1999, 48, 595–603. [Google Scholar] [CrossRef]
- Pilloti, C.A.; Sanderson, F.R.; Aitken, E.A.B. Genetic structure of a population of Ganoderma boninense on oil palm. Plant Pathol. 2003, 52, 455–463. [Google Scholar] [CrossRef]
- Zakaria, L.; Kulaveraasingham, H.; Tan, S.G.; Abdullah, F.; Ho, Y.W. Random amplified polymorphic DNA (RAPD) and Random amplified microsatellite (RAMS) of Ganoderma from infected oil palm and coconut stumps in Malaysia. Asian Pacific J. Mol. Biol. Biotechnol. 2005, 13, 23–34. [Google Scholar]
- Pilotti, C.A.; Gorea, E.A.; Bonneau, L. Basidiospores as sources of inoculum in the spread of Ganoderma boninense in oil palm plantations in Papua New Guinea. Plant Pathol. 2018, 67, 1841–1849. [Google Scholar] [CrossRef]
- Wong, W.C.; Tung, H.J.; Fadhilah, M.N.; Midot, F.; Lau, S.Y.L.; Melling, L.; Astari, S.; Hadziabdic, Đ.; Trigiano, R.N.; Goh, K.J.; et al. Genetic diversity and gene flow amongst admixed populations of Ganoderma boninense, causal agent of basal stem rot in African oil palm (Elaeis guineensis Jacq.) in Sarawak (Malaysia), Peninsular Malaysia, and Sumatra (Indonesia). Mycologia 2021, 113, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Y.; Turner, P.D. The comparative importance of different oil palm tissues as infection sources for basal stem rot in replantings. Planter 1998, 74, 119–135. [Google Scholar]
- Mcdonald, B.A.; Linde, C. Pathogen Population Genetics, Evolutionary Potential and Durable Resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef]
- Genty, P.; De Chenon, R.; Mariau, D. Infestation of the aerial roots of oil palms by caterpillars of the genus Sufetula (Lepidoptera: Pyralidae). Oleagineux 1976, 31, 365–370. [Google Scholar]
- Ho, Y.W.; Nawawi, A. Isolation, Growth and Sporophore Development of Ganoderma boninense from Oil Palm in Malaysia. Pertanika 1986, 9, 69–73. [Google Scholar]
- Chong, K.P.; Dayou, J.; Alexander, A. Pathogenic Nature of Ganoderma boninense and Basal Stem Rot Disease. In Detection and Control of Ganoderma boninense in Oil Palm Crop; Springer: Berlin/Heidelberg, Germany, 2017; pp. 5–12. [Google Scholar]
- Rees, R.W.; Flood, J.; Hasan, Y.; Wills, M.A.; Cooper, R.M. Ganoderma boninense basidiospores in oil palm plantations: Evaluation of their possible role in stem rots of Elaeis guineensis. Plant Pathol. 2012, 61, 567–578. [Google Scholar] [CrossRef]
- Assis, K.; Chong, K.P.; Idris, A.S.; Ho, C.M. Distribution of infected oil palms with Ganoderma basal stems root disease. J. Sci. Res. Dev. 2015, 2, 49–55. [Google Scholar]
- Azahar, T.M.; Jawahir, C.M.; Mazliham, S.; Boursier, P. Temporal Analysis of Basal Stem Rot Disease in Oil Palm Plantations: An Analysis on Peat Soil. Int. J. Eng. Technol. Ijet-Ijens 2011, 11, 96–101. [Google Scholar]
- Azahar, T.M.; Idris, A.S.; Abu Hassan, D.; Norazlin, I. Assessment of Basal Stem Rot Disease Distribution in Palm Oil Plantation Using Geographical Information System. J. Sci. Technol. 2014, 6, 81–92. [Google Scholar]
- Abdulkhair, W.M.; Alghuthaymi, M.A. Plant Pathogens. In Plant Growth; Rigobelo, E.C., Ed.; IntechOpen: London, UK, 2016; Available online: https://www.intechopen.com/chapters/52387 (accessed on 3 March 2022).
- Whalen, M. Host defence in a developmental context. Mol. Plant Pathol. 2005, 6, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.S.; Kushairi, A.; Ismail, S.; Ariffin, D. Selection for Partial Resistance in Oil Palm Progenies to Ganoderma Basal Stem Rot. J. Oil Palm Res. 2004, 16, 12–18. [Google Scholar]
- Breton, F.; Rahmaningsih, M.; Lubis, Z.; Syahputra, I.; Setiawati, U.; Flori, A.; Nelson, S.; Durand-Gasselin, T.; de Franqueville, H. Early screening test: A routine work to evaluate resistance/susceptibility level of oil palm progenies to basal stem rot disease. In Agriculture, biotechnology & sustainability, Proceedings of International Palm Oil Congress; MPOB: Kuala Lumpur, Malaysia, 2009; pp. 549–561. [Google Scholar]
- Rival, A.; Jaligot, E. Oil palm biotechnologies are definitely out of infancy. Oil Seed Fats Crops Lipids 2010, 17, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Ariffin, D.; Idris, A.S.; Kushairi, A.; Watt, T.A.; Swinburne, T.R. Screening of oil palm for resistance to Ganoderma. In Colloquium on Advances in Oil Palm Research; Palm Oil Research Institute of Malaysia (PORIM): Bangi, Selangor, Malaysian, 1999; pp. 12–17. [Google Scholar]
- Chong, K.P.; Markus, A.; Rossall, S. The Susceptibility of Different Varieties of Oil Palm Seedlings to Ganoderma boninense Infection. Pak. J. Bot. 2012, 44, 2001–2004. [Google Scholar]
- Sharma, M.; Tan, Y.P. Performance of the Elaeis oleifera x Elaeis guineensis (OGp) and their back-crosses. In Proceedings of the 1989 PORIM International Palm Oil Development Conference—Agriculture Conference, Kuala Lumpur, Malaysia, 5–9 September 1990; p. 588. [Google Scholar]
- Sanderson, F.; Pilotti, C. Ganoderma basal stem rot: An enigma, or just time to rethink an old problem? Planter 1997, 73, 489–493. [Google Scholar]
- Rakib, M.R.M.; Bong, C.F.J.; Khairulmazmi, A.; Idris, A.S. Genetic and morphological diversity of Ganoderma species isolated from infected oil palms (Elaeis guineensis). Int. J. Agric. Biol. 2014, 16, 691–699. [Google Scholar]
- Turner, P. The incidence of Ganoderma disease of oil palms in Malaya and its relation to previous crop. Ann. Appl. Biol. 1965, 55, 417–423. [Google Scholar] [CrossRef]
- Rao, V.; Lim, C.; Chia, C.; Teo, K. Studies on Ganoderma spread and control. Planter 2003, 79, 367–383. [Google Scholar]
- Merciere, M.; Boulord, R.; Carasco-Lacombe, C.; Klopp, C.; Lee, Y.P.; Tan, J.S.; Alwee, S.S.S.; Zaremski, A.; De Franqueville, H.; Breton, F.; et al. About Ganoderma boninense in oil palm plantations of Sumatra and peninsular Malaysia: Ancient population expansion, extensive gene flow and large scale dispersion ability. Fungal Biol. 2017, 121, 529–540. [Google Scholar] [CrossRef]
- Shamala, S.; Chris, D.; Sioban, O. Basal stem rot in Indonesia: Biology, economic importance, epidemiology, detection and control. In Proceedings of the International Workshop on Awareness Detection, and Control of Oil Palm Devastating Diseases, Kuala Lumpur, Malaysia, 6 November 2009; p. 180. [Google Scholar]
- Idris, A.S.; Mior, M.H.A.Z.; Wahid, O.; Khusairi, A. Geostatistics for Monitoring Ganoderma Outbreak in Oil Palm Plantations; MPOB Information Series No.532; Malaysian Palm Oil Board: Bangi, Selangor, Malaysian, 2010.
- Supriyanto; Purwanto; Poromarto, S.H.; Supyani. The relationship of some characteristics of peat with oil palm basal stem rot (BSR) caused by Ganoderma in peatlands. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Yogyakarta, Indonesia, 2020; pp. 1–7. [Google Scholar]
- Khairudin, H.; Tey, C.C. An overview of the current status of Ganoderma basal stem rot and its management in a large plantation group in Malaysia. Planter 2008, 84, 469–480. [Google Scholar]
- Breton, F.; Hasan, Y.; Hariadi, S.; Lubis, Z.; de Franqueville, H. Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. J. Oil Palm Res. 2006, 24–36. [Google Scholar]
- Kok, S.M.; Goh, Y.K.; Tung, H.J.; Goh, K.J.; Goh, Y.K.; Wong, W.C. In vitro growth of Ganoderma boninense isolates on novel palm extract medium and virulence on oil palm (Elaeis guineensis) seedlings. Malays. J. Microbiol. 2013, 9, 33–42. [Google Scholar]
- Goh, Y.K.; Ng, F.W.; Kok, S.M.; Goh, Y.K.; Goh, K.J. Aggresiveness of Ganoderma boninense isolates on the vegeatitive growth of oil palm (Elaeis guineensis) seedlings at different ages. Malays. Appl. Biol. 2014, 43, 9–16. [Google Scholar]
- Kang, W.S.; Yun, S.C.; Park, E.W. Nonlinear regression analysis to determine infection models of Colletotrichum acutatum causing anthracnose of chili pepper using logistic equation. Plant Pathol. J. 2010, 26, 17–24. [Google Scholar] [CrossRef]
- Laila, N.; Umi Kalsom, Y.; Tan, S.G.; Ahmad, I. Ecological status of Ganoderma and basal stem rot disease of oil palms (Elaeis guineensis Jacq.). Aust. J. Crop Sci. 2013, 7, 1723–1727. [Google Scholar]
- Rolph, H.; Wijesekara, R.; Lardner, R.; Abdullah, F.; Kirk, P.; Holderness, M.; Bridge, P.D.; Flood, J. Molecular variation in Ganoderma from oil palm, coconut and betelnut. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P., Holderness, M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 205–221. [Google Scholar]
- Flood, J.; Hasan, Y.; Turner, P.; O’Grady, E. The Spread of Ganoderma from Infective Sources in the Field and Its Implications for Management of the Disease in Oil Palm; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Navaratnam, S.J. Basal stem rot of oil palm on ex-coconut states. Planter 1964, 40, 256–259. [Google Scholar]
- Khairudin, H. Basal Stem Rot of Oil Palm: Incidence, Etiology and Control Selangor; Universiti Pertanian Malaysia: Kuala Lumpur, Malaysia, 1990. [Google Scholar]
- Rao, A.K. Basal stem rot (Ganoderma) in oil palm smallholdings—IADP Johore Barat experience. In Proceedings of the Ganoderma Workshop; Palm Oil Research Institute of Malaysia: Bangi, Selangor, Malaysian, 1990; p. 113. [Google Scholar]
- Benjamin, M.; Chee, K.H. Basal stem rot of oil palm—A serious problem on inland soils. MAPPS Newslet 1995, 19, 3. [Google Scholar]
- Ariffin, D.; Idris, A.S.; Lim, T. Current Status and Research. In Proceedings of the 1989 PORIM International Palm Oil Development; Palm Oil Research Institute of Malaysia (PORIM): Bangi, Malaysia, 1989; pp. 249–297. [Google Scholar]
- Parthiban, K.; Vanitah, R.; Jusoff, K.; Nordiana, A.A.; Anuar, A.R.; Wahid, O.; Hamdan, A. GIS mapping of basal stem rot disease in relation to soil series among oil palm smallholders. Am. J. Agric. Biol. Sci. 2016, 11, 2–12. [Google Scholar] [CrossRef]
- Rakib, M.R.M.; Bong, C.F.J.; Khairulmazmi, A.; Idris, A.S. Occurrence and spatial distribution of Ganoderma species causing upper and basal stem rot in oil palm. J. Food Agric. Environ. 2014, 12, 360–364. [Google Scholar]
- Paterson, R.R.M. Ganoderma boninense Disease of Oil Palm to Significantly Reduce Production After 2050 in Sumatra if Projected Climate Change Occurs. Microorganisms 2019, 7, 24. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, Y.; Wu, S.H.; Vlasak, J.; Li, D.W.; Li, M.J.; Dai, Y.C. Global diversity of the Ganodermalucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 2015, 121, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. Climate change affecting oil palm agronomy, and oil palm cultivation increasingclimate change, require amelioration. Ecol. Evol. 2017, 8, 452–461. [Google Scholar] [CrossRef] [PubMed]
- ChengTuck, H.; Khairuddin, H. Usefulness of soil mounding treatments in prolonging productivity of prime-aged Ganoderma infected palms. Planter 1997, 73, 239–244. [Google Scholar]
- Chung, G.F. Management of Ganoderma Diseases in Oil Palm Plantations. Planter 2011, 87, 325–339. [Google Scholar]
- Marshall, R.; Hunt, R.; Pilotti, C. Low cost control for basal stem rot-a Poliamba initiative. Planter 2004, 80, 173–176. [Google Scholar]
- Cooper, R.M.; Flood, J.; Rees, R. Ganoderma boninense in oil palm plantations: Current thinking on epidemiology, resistance and pathology. Planter 2011, 87, 515–526. [Google Scholar]
- Singh, G. Ganoderma—The scourge of oil palms in the coastal areas. Planter 1991, 67, 233–248. [Google Scholar]
- George, S.T.; Chung, G.F.; Zakaria, K. Updated results (1990–1995) on trunk injection of fungicides for the control of Ganoderma basal stem rot. In PORIM International Palm Oil Congress (Agriculture); Palm Oil Research Institute of Malaysia (PORIM): Bangi, Malaysia, 1996; pp. 508–515. [Google Scholar]
- Chung, W.C.; Huang, J.W.; Huang, H.C. Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinesis) caused by Rhizoctonia solani. Biol. Control. 2005, 32, 287–294. [Google Scholar] [CrossRef]
- Pepeljnjak, S.; Penovski, S.; Jalsenjak, D. Influence of microencapsulated propolis extract on Bacillus subtilis strain IP-5832. Pharmazic 1998, 43, 728–732. [Google Scholar]
- Takka, S.; Acarturk, F. Calcium alginate microparticles for oral administration I: Effect of sodium alginate type on drug release and drug entrapment efficiency. J. Microencapsul. 1999, 16, 275–290. [Google Scholar] [CrossRef]
- Van Lenteren, J.C.; Bolckmans, K.; Kohl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Bjorkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Singh, A.; Singh, V.K.; Dwivedy, A.K.; Deepika; Tiwari, S.; Dwivedi, A.; Dubey, N.K. Biological Control of Plant Diseases: Opportunities and Limitations. In Plant Microbiome Paradigm; Springer International Publishing: Cham, Switzerland, 2020; pp. 121–146. [Google Scholar]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; Van Leteran, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef]
- Macfadyen, S.; Hardie, D.C.; Fagan, L.; Stefanova, K.; Perry, K.D.; De Graff, H.E.; Holloway, J.; Spafford, H.; Umina, P.A. Reducing Insecticide Use in Broad-Acre Grains Production: An Australian Study. PLoS ONE 2014, 9, e89119. [Google Scholar] [CrossRef] [PubMed]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Norman, K.; Idris, A.S.; Mohd Mazmira, M.M. Prospects in Sustainable Control of Oil Palm Pests and Diseases Through the Enhancement of Ecosystem Services—The Way Forward. J. Oil Palm Res. 2019, 31, 381–393. [Google Scholar]
- Omelna, B.G.; Jennifer, A.N.; Chong, K.P. The potential of chitosan in suppressing Ganoderma boninense infection in oil-palm seedlings. J. Sustain. Sci. Manag. 2012, 7, 186–192. [Google Scholar]
- Farhatun, N.M.; Mohd Zobir, H.; Nor Azah, Y.; Sharida, F. Chitosan-Based Agronanofungicides as a Sustainable Alternative in the Basal Stem Rot Disease Management. J. Agric. Food Chem. 2020, 68, 4305–4314. [Google Scholar]
- He, D.C.; He, M.H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Virdiana, I.; Hasan, Y.; Aditya, R.; Flood, J. Testing The Effects of Oil Palm Replanting Practices (Windrowing, Fallowing and Poisoning) on Incidence of Ganoderma. Jpn. J. Rehabil. Med. 2020, 57, 571–573. [Google Scholar]
- Sergieieva, K. Oil Palm Plantation: Cultivation and Management. 2021. Available online: https://eos.com/blog/oil-palm-plantation/ (accessed on 1 September 2022).
- Kuok Ho, D.T.; Qahtani, H. Sustainability of oil palm plantations in Malaysia. Environ. Dev. Sustain. 2020, 22, 4999–5023. [Google Scholar]
- Henson, I.E. Oil palm—Can it substitute the tropical rainforest? Planter 2003, 79, 437–450. [Google Scholar]
- Germer, J.; Sauerborn, J. Estimation of the impact of oil palm plantation establishment on green-house gas balance. Environ. Dev. Sustain. 2008, 10, 697–716. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Leveque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2005, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.P.; Alexander, A.; Dayou, J. Detection and Control of Ganoderma boninense in Oil Palm Crop. SpringerBriefs Agric. 2017, 20, 47–48. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jazuli, N.A.; Kamu, A.; Chong, K.P.; Gabda, D.; Hassan, A.; Abu Seman, I.; Ho, C.M. A Review of Factors Affecting Ganoderma Basal Stem Rot Disease Progress in Oil Palm. Plants 2022, 11, 2462. https://doi.org/10.3390/plants11192462
Jazuli NA, Kamu A, Chong KP, Gabda D, Hassan A, Abu Seman I, Ho CM. A Review of Factors Affecting Ganoderma Basal Stem Rot Disease Progress in Oil Palm. Plants. 2022; 11(19):2462. https://doi.org/10.3390/plants11192462
Chicago/Turabian StyleJazuli, Nur Aliyah, Assis Kamu, Khim Phin Chong, Darmesah Gabda, Affendy Hassan, Idris Abu Seman, and Chong Mun Ho. 2022. "A Review of Factors Affecting Ganoderma Basal Stem Rot Disease Progress in Oil Palm" Plants 11, no. 19: 2462. https://doi.org/10.3390/plants11192462
APA StyleJazuli, N. A., Kamu, A., Chong, K. P., Gabda, D., Hassan, A., Abu Seman, I., & Ho, C. M. (2022). A Review of Factors Affecting Ganoderma Basal Stem Rot Disease Progress in Oil Palm. Plants, 11(19), 2462. https://doi.org/10.3390/plants11192462