Determining the Effects of Light on the Fruit Peel Quality of Photosensitive and Nonphotosensitive Eggplant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. Determination of Anthocyanin Content
2.3. RNA Extraction and Library Construction
2.4. Sequence Assembly and Gene Annotation
2.5. Identification and Annotation of Differentially Expressed Genes (DEGs)
2.6. Statistical Analysis of the Data
3. Results
3.1. Anthocyanin Content in Photosensitive Eggplant and Nonphotosensitive Eggplant
3.2. Screening of Differentially Expressed Genes (DEGs) between Photosensitive Eggplant and Nonphotosensitive Eggplant
3.3. Gene Ontology (GO) Analysis of DEGs
3.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis of DEGs
3.5. Screening and Functional Identification of Different Genes in Each Group
3.5.1. Expression Pattern Analysis of Color Synthesis-Related Genes
3.5.2. Expression Pattern Analysis of Genes Related to Fruit Texture
3.5.3. Expression Pattern Analysis of Genes Related to Hormone Synthesis
3.5.4. Expression Pattern Analysis of Genes Related to Synthesizing Flavor and Aromatic Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daunay, M.-C.; Janick, J. History and iconography of eggplant. Chron. Hortic. 2007, 47, 16–22. [Google Scholar]
- Li, L.; He, Y.; Ge, H.; Liu, Y.; Chen, H. Functional characterization of smmyb86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Sci. 2021, 302, 110696. [Google Scholar] [CrossRef] [PubMed]
- Bliss, R.M.; Elstein, D. Scientists get under eggplant’s skin. Agric. Res. 2004, 52, 16–19. [Google Scholar]
- Quamruzzaman, A. The first gm crop in bangladesh–bt eggplant. Eur. J. Agric. Food Sci. 2021, 3, 45–55. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; Vetrano, F.; Moncada, A.; Miceli, A.; De Pasquale, C.; D’Anna, F.; Giurgiulescu, L. Effects of polyethylene and biodegradable starch-based mulching films on eggplant production in a mediterranean area. Carpathian J. Food Sci. Technol. 2018, 10, 81–89. [Google Scholar]
- Khalid, H.; Aminuzzaman, F.; Amit, K.; Faria, A.; Mitu, A.; Chowdhury, M.; Shammi, J.; Khan, M. Evaluation of the combined application of Purpureocillium lilacinum plsau-1 and Glomus sp. against Meloidogyne incognita: Implications for arsenic phytotoxicity on eggplant. Eur. J. Plant Pathol. 2021, 159, 139–152. [Google Scholar] [CrossRef]
- Papolu, P.K.; Dutta, T.K.; Tyagi, N.; Urwin, P.E.; Lilley, C.J.; Rao, U. Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode. Meloidogyne incognita. Front. Plant Sci. 2016, 7, 1122. [Google Scholar]
- Alam, I.; Salimullah, M. Genetic engineering of eggplant (Solanum melongena L.): Progress, controversy and potential. Horticulturae 2021, 7, 78. [Google Scholar] [CrossRef]
- Naeem, M.Y.; Ugur, S. Nutritional content and health benefits of eggplant. Turk. J. Agric. Food Sci. Technol. 2019, 7, 31–36. [Google Scholar]
- Abbas, W.; Ashraf, M.; Akram, N.A. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci. Hortic. 2010, 125, 188–195. [Google Scholar] [CrossRef]
- Gajewski, M.; Katarzyna, K.; Bajer, M. The influence of postharvest storage on quality characteristics of fruit of eggplant cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 200–205. [Google Scholar]
- Bai, C.; Wu, C.; Ma, L.; Fu, A.; Zheng, Y.; Han, J.; Li, C.; Yuan, S.; Zheng, S.; Gao, L. Transcriptomics and metabolomics analyses provide insights into postharvest ripening and senescence of tomato fruit under low temperature. Hortic. Plant J. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Ntagkas, N.; Siebenkäs, A.; Mäenpää, M.; Matsubara, S.; Pons, T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol. 2019, 223, 1073–1105. [Google Scholar] [CrossRef] [PubMed]
- Molas, M.L.; Kiss, J.Z. Phototropism and gravitropism in plants. Adv. Bot. Res. 2009, 49, 1–34. [Google Scholar]
- Schmoll, M. Regulation of plant cell wall degradation by light in trichoderma. Fungal Biol. Biotechnol. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Kubicek, C.P.; Schmoll, M. Dehydrogenase grd1 represents a novel component of the cellulase regulon in trichoderma reesei (Hypocrea jecorina). Appl. Environ. Microbiol. 2011, 77, 4553–4563. [Google Scholar] [CrossRef] [PubMed]
- Giongo, L.; Poncetta, P.; Loretti, P.; Costa, F. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharvest Biol. Technol. 2013, 76, 34–39. [Google Scholar] [CrossRef]
- Pombo, M.A.; Dotto, M.C.; Martínez, G.A.; Civello, P.M. Uv-c irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biol. Technol. 2009, 51, 141–148. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, X.; Wang, J.; Zou, J.; Nie, W.-F. Decreased low-light regulates plant morphogenesis through the manipulation of hormone biosynthesis in Solanum lycopersicum. Environ. Exp. Bot. 2021, 185, 104409. [Google Scholar] [CrossRef]
- Li, T.; Ohsugi, R.; Yamagishi, T.; Sasaki, H. Effects of weak light on rice sucrose content and sucrose degradation enzyme activities at grain-filling stage. Acta Agron. Sin. 2006, 32, 943. [Google Scholar]
- Meng, R.; Zhang, J.; An, L.; Zhang, B.; Jiang, X.; Yang, Y.; Zhao, Z. Expression profiling of several gene families involved in anthocyanin biosynthesis in apple (Malus domestica borkh.) skin during fruit development. J. Plant Growth Regul. 2016, 35, 449–464. [Google Scholar] [CrossRef]
- Braga, P.C.; Scalzo, R.L.; Dal Sasso, M.; Lattuada, N.; Greco, V.; Fibiani, M. Characterization and antioxidant activity of semi-purified extracts and pure delphinidin-glycosides from eggplant peel (Solanum melongena L.). J. Funct. Foods 2016, 20, 411–421. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Z. Nat. C 2006, 61, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Goto-Yamamoto, N.; Hashizume, K.; Esaka, M. Expression of multi-copy flavonoid pathway genes coincides with anthocyanin, flavonol and flavan-3-ol accumulation of grapevine. Vitis 2008, 47, 135–140. [Google Scholar]
- Chouhan, S.; Sharma, K.; Zha, J.; Guleria, S.; Koffas, M.A. Recent advances in the recombinant biosynthesis of polyphenols. Front. Microbiol. 2017, 8, 2259. [Google Scholar] [CrossRef]
- Shi, S.; Gao, Y.; Zhang, X.; Sun, J.; Zhao, L.; Wang, Y. Progress on plant genes involved in biosynthetic pathway of anthocyanins. Bull. Bot. Res. 2011, 31, 633–640. [Google Scholar]
- Mori, K.; Saito, H.; Goto-Yamamoto, N.; Kitayama, M.; Kobayashi, S.; Sugaya, S.; Gemma, H.; Hashizume, K. Effects of abscisic acid treatment and night temperatures on anthocyanin composition in pinot noir grapes. Vitis-Geilweilerhof 2005, 44, 161. [Google Scholar]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar]
- Jiang, M.; Liu, Y.; Ren, L.; Lian, H.; Chen, H. Molecular cloning and characterization of anthocyanin biosynthesis genes in eggplant (Solanum melongena L.). Acta Physiol. Plant. 2016, 38, 163. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, H.; Li, D.; Yu, B.; Hui, Q.; Yan, S.; Huang, Z.; Cui, X.; Cao, B. Identification of candidate hy5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant Cell Physiol. 2019, 60, 643–656. [Google Scholar] [CrossRef]
- Börnke, F.; Rocksch, T. Thigmomorphogenesis—Control of plant growth by mechanical stimulation. Sci. Hortic. 2018, 234, 344–353. [Google Scholar] [CrossRef]
- Yin, X.; Wang, Q.; Chen, Q.; Xiang, N.; Yang, Y.; Yang, Y. Genome-wide identification and functional analysis of the calcineurin b-like protein and calcineurin b-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. Rapa). Front. Plant Sci. 2017, 8, 1191. [Google Scholar] [CrossRef] [PubMed]
- Stiles, E.A.; Cech, N.B.; Dee, S.M.; Lacey, E.P. Temperature-sensitive anthocyanin production in flowers of plantago lanceolata. Physiol. Plant. 2007, 129, 756–765. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Zhou, L.; Liu, Y.; Chen, H. Comparative transcription analysis of photosensitive and nonphotosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genom. 2019, 20, 678. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Skvortsova, M.Y.; Loubéry, S.; Ulm, R. Cop1 is required for uv-b–induced nuclear accumulation of the uvr8 photoreceptor. Proc. Natl. Acad. Sci. USA 2016, 113, E4415–E4422. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gao, Y.; Qu, L.; Chen, Z.; Li, J.; Zhao, H.; Deng, X.W. Genomic evidence for cop1 as a repressor of light-regulated gene expression and development in arabidopsis. Plant Cell 2002, 14, 2383–2398. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.S.; Yang, J.Y.; Ishikawa, M.; Bolle, C.; Ballesteros, M.L.; Chua, N.H. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 2003, 423, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Kim, H.J.; Ryu, J.S.; Choi, H.; Jeong, S.; Shin, J.; Choi, G.; Nam, H.G. Cry1 inhibits cop1-mediated degradation of bit1, a myb transcription factor, to activate blue light-dependent gene expression in arabidopsis. Plant J. 2008, 55, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.; Schrader, A.; Kokkelink, L.; Falke, C.; Welter, B.; Iniesto, E.; Rubio, V.; Uhrig, J.F.; Hülskamp, M.; Hoecker, U. Light and the e3 ubiquitin ligase cop 1/spa control the protein stability of the myb transcription factors pap 1 and pap 2 involved in anthocyanin accumulation in arabidopsis. Plant J. 2013, 74, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Al-Subhi, A.; Al-Saady, N.; Khan, A.; Deadman, M. First report of a group 16srii phytoplasma associated with witches’-broom of eggplant in oman. Plant Dis. 2011, 95, 360. [Google Scholar] [CrossRef] [PubMed]
- Nasiraei, J.R.; Ansari, H.; Esmaeili, K.; Alizadeh, A. Effect of irrigation timing on the eggplant performance under drip irrigation. Crop Res. 2018, 53, 81–87. [Google Scholar] [CrossRef]
- Umeda, T.; Miyazaki, H.; Yamamoto, A.; Yatomi, M.; Yamaguchi, M.; Matsuzoe, N. Relation of Anthocyanin in Skin of Eggplant Fruits to Light Environment. Shokubutsu Kankyo Kogaku 2006, 18, 193–199. [Google Scholar] [CrossRef]
- Honda, T.; Zushi, K.; Matsuzoe, N. Inheritance of anthocyanin pigment and photosensitivity in eggplant (Solanum melongena L.) fruit. Environ. Control Biol. 2012, 50, 75–80. [Google Scholar] [CrossRef]
- Bai, C.; Fang, M.; Zhai, B.; Ma, L.; Fu, A.; Gao, L.; Kou, X.; Meng, D.; Wang, Q.; Zheng, S. Regulations of m6a methylation on tomato fruit chilling injury. Hortic. Plant J. 2021, 7, 434–442. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Li, T.; Yun, Z.; Duan, X.; Jiang, Y. Fibroin treatment inhibits chilling injury of banana fruit via energy regulation. Sci. Hortic. 2019, 248, 8–13. [Google Scholar] [CrossRef]
- Barchi, L.; Pietrella, M.; Venturini, L.; Minio, A.; Toppino, L.; Acquadro, A.; Andolfo, G.; Aprea, G.; Avanzato, C.; Bassolino, L. A chromosome-anchored eggplant genome sequence reveals key events in solanaceae evolution. Sci. Rep. 2019, 9, 11769. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T. Kegg for linking genomes to life and the environment. Nucleic Acids Res. 2007, 36, D480–D484. [Google Scholar] [CrossRef]
- Lv, L.L.; Feng, X.F.; Li, W.; Li, K. High temperature reduces peel color in eggplant (Solanum melongena) as revealed by rna-seq analysis. Genome 2019, 62, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, Q.; Li, L.; Grierson, D.; Yuan, S.; Zheng, S.; Wang, Y.; Wang, B.; Bai, C.; Fu, A. Uv-c irradiation delays the physiological changes of bell pepper fruit during storage. Postharvest Biol. Technol. 2021, 180, 111506. [Google Scholar] [CrossRef]
- Wei, J.; Ma, F.; Shi, S.; Qi, X.; Zhu, X.; Yuan, J. Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol. Technol. 2010, 56, 147–154. [Google Scholar] [CrossRef]
- Paccanaro, M.C.; Sella, L.; Castiglioni, C.; Giacomello, F.; Martínez-Rocha, A.L.; D’Ovidio, R.; Schäfer, W.; Favaron, F. Synergistic effect of different plant cell wall–degrading enzymes is important for virulence of fusarium graminearum. Mol. Plant-Microbe Interact. 2017, 30, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cao, S.; Fang, X.; Mu, H.; Yang, H.; Wang, X.; Xu, Q.; Gao, H. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 2015, 188, 44–48. [Google Scholar] [CrossRef]
- Santner, A.; Calderon-Villalobos, L.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, C.; Zheng, L.; Wang, L.; Chen, Y.; Whelan, J.; Shou, H. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in oryza sativa. J. Exp. Bot. 2011, 62, 667–674. [Google Scholar] [CrossRef]
- Cheng, W.-H.; Endo, A.; Zhou, L.; Penney, J.; Chen, H.-C.; Arroyo, A.; Leon, P.; Nambara, E.; Asami, T.; Seo, M. A unique short-chain dehydrogenase/reductase in arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 2002, 14, 2723–2743. [Google Scholar] [CrossRef]
- Martin, R.C.; Mok, M.C.; Mok, D.W. A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Pphaseolus vulgaris. Plant Physiol. 1999, 120, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Klee, H.J.; Giovannoni, J.J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 2011, 45, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Osorio, S.; Scossa, F.; Fernie, A. Molecular regulation of fruit ripening. Front. Plant Sci. 2013, 4, 198. [Google Scholar] [CrossRef]
- Marshall, V.M.; Cole, W.M. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. J. Dairy Res. 1983, 50, 375–379. [Google Scholar] [CrossRef]
- Wang, P.; Yang, J.; Li, Z.-Y.; Zhu, J.-J.; Gao, Q.-H.; Ni, D.-A.; Duan, K. Genome-wide identification and expression analysis revealed cinnamyl alcohol dehydrogenase genes correlated with fruit-firmness in strawberry. J. Berry Res. 2021, 11, 447–464. [Google Scholar] [CrossRef]
- Kambiranda, D.; Basha, S.M.; Singh, R.K.; He, H.; Calvin, K.; Mercer, R. In depth proteome analysis of ripening muscadine grape berry cv. Carlos reveals proteins associated with flavor and aroma compounds. J. Proteome Res. 2016, 15, 2910–2923. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Bo, Y.; Teng, Y.; Su, J.; Shu, Q.; Cheng, Z.; Zeng, L. Effects of fruit bagging on coloring and related physiology, and qualities of red chinese sand pears during fruit maturation. Sci. Hortic. 2009, 121, 149–158. [Google Scholar] [CrossRef]
- Ju, Z. Fruit bagging, a useful method for studying anthocyanin synthesis and gene expression in apples. Sci. Hortic. 1998, 77, 155–164. [Google Scholar] [CrossRef]
- Sharma, R.R.; Reddy, S.; Jhalegar, M. Pre-harvest fruit bagging: A useful approach for plant protection and improved post-harvest fruit quality—A review. J. Hortic. Sci. Biotechnol. 2014, 89, 101–113. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Wang, J.; Li, P.; Zhao, C.; Chen, Y.; Bi, Y. Phytochrome-interacting factors pif4 and pif5 negatively regulate anthocyanin biosynthesis under red light in arabidopsis seedlings. Plant Sci. 2015, 238, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.H.; Chattopadhyay, S.; Wei, N.; Oyama, T.; Okada, K.; Batschauer, A.; Deng, X.W. Molecular interaction between cop1 and hy5 defines a regulatory switch for light control of arabidopsis development. Mol. Cell 1998, 1, 213–222. [Google Scholar] [CrossRef]
- Tai, D.; Tian, J.; Zhang, J.; Song, T.; Yao, Y. A Malus Crabapple Chalcone Synthase Gene, McCHS, Regulates Red Petal Color and Flavonoid Biosynthesis. PLoS ONE 2014, 9, e110570. [Google Scholar] [CrossRef]
- Wang, H.; Fan, W.; Hong, L.; Yang, J.; Huang, J.; Peng, Z.; Sunghun, P. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS ONE 2013, 8, e78484. [Google Scholar] [CrossRef]
- Huyskens-Keil, S.; Eichholz-Dündar, I.; Hassenberg, K.; Herppich, W. Impact of light quality (white, red, blue light and uv-c irradiation) on changes in anthocyanin content and dynamics of pal and pod activities in apical and basal spear sections of white asparagus after harvest. Postharvest Biol. Technol. 2020, 161, 111069. [Google Scholar] [CrossRef]
- Meng, X.; Yin, B.; Feng, H.-L.; Zhang, S.; Liang, X.-Q.; Meng, Q.-W. Overexpression of r2r3-myb gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. Biol. Plant. 2014, 58, 121–130. [Google Scholar] [CrossRef]
- Guo, Z.F. A review: Molecular regulation of stomatal development related to environmental factors and hormones in plants. Appl. Ecol. Environ. Res. 2019, 17, 12091–12109. [Google Scholar] [CrossRef]
- Datta, S.; Johansson, H.; Hettiarachchi, C.; Irigoyen, M.L.; Desai, M.; Rubio, V.; Holm, M. Lzf1/salt tolerance homolog3, an arabidopsis b-box protein involved in light-dependent development and gene expression, undergoes cop1-mediated ubiquitination. Plant Cell Online 2008, 20, 2324–2338. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Mao, K.; Zhao, C.; Zhao, X.Y.; Zhang, H.L.; Hao, S. Mdcop1 ubiquitin e3 ligases interact with mdmyb1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol. 2012, 160, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Noriko, N.; Masako, F.M.; Kiyoshi, M.; Kenichi, S.; Yoshikazu, T. Rnai suppression of the anthocyanidin synthase gene in torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol. 2006, 23, 13–17. [Google Scholar]
- Gao, Y.; Guo, Y.; Su, Z.; Yu, Y.; Zhu, Z.; Gao, P.; Wang, X. Transcriptome analysis of genes related to fruit texture in watermelon. Sci. Hortic. 2020, 262, 109075. [Google Scholar] [CrossRef]
- Tucker, G.; Yin, X.; Zhang, A.; Wang, M.; Zhu, Q.; Liu, X.; Xie, X.; Chen, K.; Grierson, D. Ethylene and fruit softening. Food Qual. Saf. 2017, 1, 253–267. [Google Scholar] [CrossRef]
- Bu, J.; Yu, Y.; Aisikaer, G.; Ying, T. Postharvest uv-c irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biol. Technol. 2013, 86, 337–345. [Google Scholar] [CrossRef]
- Barka, E.A.; Kalantari, S.; Makhlouf, J.; Arul, J. Impact of uv-c irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. J. Agric. Food Chem. 2000, 48, 667–671. [Google Scholar] [CrossRef]
- Hanifah, A.; Maharijaya, A.; Putri, S.P.; Laviña, W.A. Untargeted metabolomics analysis of eggplant (Solanum melongena L.) fruit and its correlation to fruit morphologies. Metabolites 2018, 8, 49. [Google Scholar] [CrossRef]
- Rademacher, W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Aizat, W.M.; Able, J.A.; Stangoulis, J.C.; Able, A.J. Characterisation of ethylene pathway components in non-climacteric capsicum. BMC Plant Biol. 2013, 13, 191. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Pirrello, J.; Chervin, C.; Roustan, J.-P.; Bouzayen, M. Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiol. 2015, 169, 2380–2390. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, H.Y.; Yoon, G.M. The regulation of acc synthase protein turnover: A rapid route for modulating plant development and stress responses. Curr. Opin. Plant Biol. 2021, 63, 102046. [Google Scholar] [CrossRef]
- Frébort, I.; Kowalska, M.; Hluska, T.; Frébortová, J.; Galuszka, P. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 2011, 62, 2431–2452. [Google Scholar] [CrossRef]
Group Name | Photosensitive Eggplant Peel | Nonphotosensitive Eggplant Peel |
---|---|---|
CK1-1 | 20.0 mg/kg FW | 67.3 mg/kg FW |
CK1-2 | 22.1 mg/kg FW | 47.4 mg/kg FW |
CK1-3 | 19.1 mg/kg FW | 79.1 mg/kg FW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, Z.; Zuo, J.; Wang, Q.; Fu, A.; Zheng, Y.; Ge, Y.; Qian, Z.; Cui, Y. Determining the Effects of Light on the Fruit Peel Quality of Photosensitive and Nonphotosensitive Eggplant. Plants 2022, 11, 2095. https://doi.org/10.3390/plants11162095
Sang Z, Zuo J, Wang Q, Fu A, Zheng Y, Ge Y, Qian Z, Cui Y. Determining the Effects of Light on the Fruit Peel Quality of Photosensitive and Nonphotosensitive Eggplant. Plants. 2022; 11(16):2095. https://doi.org/10.3390/plants11162095
Chicago/Turabian StyleSang, Zhaoze, Jinhua Zuo, Qing Wang, Anzhen Fu, Yanyan Zheng, Yonghong Ge, Zongwei Qian, and Yanling Cui. 2022. "Determining the Effects of Light on the Fruit Peel Quality of Photosensitive and Nonphotosensitive Eggplant" Plants 11, no. 16: 2095. https://doi.org/10.3390/plants11162095
APA StyleSang, Z., Zuo, J., Wang, Q., Fu, A., Zheng, Y., Ge, Y., Qian, Z., & Cui, Y. (2022). Determining the Effects of Light on the Fruit Peel Quality of Photosensitive and Nonphotosensitive Eggplant. Plants, 11(16), 2095. https://doi.org/10.3390/plants11162095