Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania
Abstract
:1. Introduction
2. Results
2.1. The Influence of Mineral and Organic Fertilizers on the Floristic Composition
2.2. Effects of Fertilization on Grassland Biodiversity (Number of Species)
2.3. Species with Indicative Value for the Intensity of Applied Management
2.4. The Influence of Organic Fertilizer Gradient over Agronomic Spectrum
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experimental Set-Up
4.3. Soil Profile Description—Morphological Description
4.4. Fertilizer Inputs Used
4.5. Floristic Studies
4.6. Statistical Methods Used
- S1 = total number of species in sample 1;
- S2 = total number of species in sample 2;
- S12 = number of species present in both samples;
- a = S12;
- b = S1 − S12;
- c = S2 − S12.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craioveanu, C.; Muntean, I.; Ruprecht, E.; Băncilă, R.-I.; Crișan, A.; Rákosy, L. Factors affecting butterfly and plant diversity in basiphilous dry grasslands of Transylvania, Romania. Community Ecol. 2021, 22, 295–308. [Google Scholar] [CrossRef]
- Vaida, I.; Păcurar, F.; Rotar, I.; Tomoș, L.; Stoian, V. Changes in diversity due to long-term management in a high natural value grassland. Plants 2021, 10, 739. [Google Scholar] [CrossRef]
- Păcurar, F.; Balazsi, A.; Rotar, I.; Vaida, I.; Reif, A.; Vidican, R.; Rușdea, E.; Stoian, V.; Sangeorzan, D. Technologies used for maintaining oligotrophic grasslands and their biodiversity in a mountain landscape. Romanian Biotechnol. Lett. 2020, 25, 1128–1135. [Google Scholar] [CrossRef]
- Păcurar, F.S.; Rotar, I.; Vaida, I.; Gaga, I.; Costantea, D. Ecological and agronomical value of Agrostis capillaris-Festuca rupicola grasslands. Romanian J. Grassl. Forage Crops 2020, 22, 55. [Google Scholar]
- Ruprecht, E.; Enyedi, M.Z.; Eckstein, R.L.; Donath, T.W. Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation. Biol. Conserv. 2010, 143, 449–456. [Google Scholar] [CrossRef]
- Dzwonko, Z. Wkład Bogumiła Pawłowskiego (1898–1971) w rozwój fitosocjologii. Fragm. Florist. Geobot. Pol. 2012, 19, 255–266. [Google Scholar]
- Poniatowski, D.; Stuhldreher, G.; Helbing, F.; Hamer, U.; Fartmann, T. Restoration of calcareous grasslands: The early successional stage promotes biodiversity. Ecol. Eng. 2020, 151, 105858. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, J.S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; et al. Novel Ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 2006, 15, 1–7. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Robinson, J.G.; Walston, J. From bottleneck to breakthrough: Urbanization and the future of biodiversity conservation. Bioscience 2018, 68, 412. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, M.I.; Mori, A.S.; Gonzalez, A.; Dee, L.E.; Loreau, M.; Avolio, M.; Byrnes, J.E.; Cheung, W.; Cowles, J.; Clark, A.T. Grand challenges in biodiversity–ecosystem functioning research in the era of science–policy platforms require explicit consideration of feedbacks. Proc. R. Soc. B 2021, 288, 20210783. [Google Scholar] [CrossRef]
- Rotar, I.; Vaida, I.; Păcurar, F. Species with indicative values for the management of the mountain grasslands. Rom. Agric. Res. Nardi Fundulea 2020, 37, 189–196. [Google Scholar]
- Păcurar, F.; Rotar, I.; Albert, R.; Vidican, R.; Stoian, V.; Gaertner, S.M.; Allen, R.B. Impact of climate on vegetation change in a mountain grassland-succession and fluctuation. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Zimkova, M.; Kirilov, A.; Rotar, I.; Stypinski, P. Production and quality of seminatural grassland in south-eastern and Central Europe. Permanent and temporary grassland: Plant, environment and economy. In Proceedings of the 14th Symposium of the European Grassland Federation, Ghent, Belgium, 3–5 September 2007; pp. 15–26. [Google Scholar]
- Korevaar, H.; Geerts, R.H.E.M. Productivity, Biodiversity and Nitrate in Groundwater of Multifunctional Grassland; British Grassland Society: Cirencester, UK, 2007; pp. 64–69. ISBN 9780905944364. [Google Scholar]
- Velado-Alonso, E.; Gómez-Sal, A.; Bernués, A.; Martín-Collado, D. Disentangling the multidimensional relationship between livestock breeds and ecosystem services. Animals 2021, 11, 2548. [Google Scholar] [CrossRef]
- Velado-Alonso, E.; Morales-Castilla, I.; Gómez-Sal, A. Recent Land use and management changes decouple the adaptation of livestock diversity to the environment. Sci. Rep. 2020, 10, 21035. [Google Scholar] [CrossRef]
- Păcurar, F.; Rotar, I.; Vaida, I.; Vidican, R.; Mălinaş, A. Indicator species of fertilization intensity in mountain grasslands. Grassl. Resour. Extensive Farming Syst. Marg. Lands Major Driv. Future Scenar. 2017, 22, 378. [Google Scholar]
- Ranta, M.; Rotar, I.; Vidican, R.; Mălinaș, A.; Ranta, O.; Lefter, N. Influence of the UAN fertilizer application on quantitative and qualitative changes in semi-natural grassland in Western Carpathians. Agronomy 2021, 11, 267. [Google Scholar] [CrossRef]
- Vescovo, L.; Roberto, Z.; Claudio, B.; Cescatti, A.; Gianelle, D. Use of Vegetation Indexes to Predict Biomass and LAI of Trentino Grasslands. In Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004. [Google Scholar]
- Milberg, P.; Bergman, K.-O.; Glimskär, A.; Nilsson, S.; Tälle, M. Site Factors are more important than management for indicator species in semi-natural grasslands in Southern Sweden. Plant Ecol. 2020, 221, 577–594. [Google Scholar] [CrossRef]
- Peck, R.; Olsen, C.; Devore, J.L. Introduction to Statistics and Data Analysis; Cengage Learning: Boston, MA, USA, 2015; ISBN 978-1-305-44596-3. [Google Scholar]
- Kose, M.; Melts, I.; Heinsoo, K. Medicinal plants in semi-natural grasslands: Impact of Management. Plants 2022, 11, 353. [Google Scholar] [CrossRef]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [Google Scholar] [CrossRef]
- Kuhn, T.; Domokos, P.; Kiss, R.; Ruprecht, E. Grassland management and land use history shape species composition and diversity in Transylvanian semi-natural grasslands. Appl. Veg. Sci. 2021, 24, e12585. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland Management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Marín, F.; Stern, M.; Bonnesoeur, V.; Ochoa-Tocachi, B.F.; Román-Dañobeytia, F.; Crespo, P. Progress in understanding the hydrology of high-elevation Andean grasslands under changing land use. Sci. Total Environ. 2022, 804, 150112. [Google Scholar] [CrossRef] [PubMed]
- Wittig, B.; Zacharias, D. An indicator species approach for result-orientated subsidies of ecological services in grasslands—A study in Northwestern Germany. Biol. Conserv. 2006, 133, 186–197. [Google Scholar] [CrossRef]
- Culman, S.W.; Young-Mathews, A.; Hollander, A.D.; Ferris, H.; Sánchez-Moreno, S.; O’Geen, A.T.; Jackson, L.E. Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landsc. Ecol. 2010, 25, 1333–1348. [Google Scholar] [CrossRef]
- Lillak, R.; Viiralt, R.; Linke, A.; Geherman, V. Integrating efficient grassland farming and biodiversity. In Proceedings of the 13th International Occasional Symposium of the European Grassland Federation, Tartu, Estonia, 29–31 August 2005. [Google Scholar]
- Peratoner, G.; Florian, C.; Figl, U.; Klotz, C.; Gottardi, S.; Kasal, A. Effects of intensive management on the biomass composition of mountain meadows under recurrent drought. In Proceedings of the 17th Symposium of the European Grassland Federation, Akureyri, Iceland, 23–26 June 2013; pp. 225–227. [Google Scholar]
- Broadbent, A.; Stevens, C.J.; Peltzer, D.A.; Ostle, N.J.; Orwin, K.H. Belowground competition drives invasive plant impact on native species regardless of nitrogen availability. Oecologia 2018, 186, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Rotar, I.; Cirebea, M.; Vidican, R.; Păcurar, F.; Mălinaş, A.; Ranta, O. Productivity of Festuca rubra L.–Agrostis capillaris L. Grasslands. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2015, 72, 519–521. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.-J.; Xiong, Y.-C.; Sun, J.; Xiong, W.-F.; Du, G.-Z. Differential benefits of multi- and single-household grassland management patterns in the Qinghai-Tibetan Plateau of China. Hum. Ecol. 2011, 39, 217–227. [Google Scholar] [CrossRef]
- Hejcman, M.; Szaková, J.; Schellberg, J.; Tlustoš, P. The Rengen Grassland Experiment: Relationship between soil and biomass chemical properties, amount of elements applied, and Their Uptake. Plant Soil 2010, 333, 163–179. [Google Scholar] [CrossRef]
- Gaisler, J.; Pavlů, L.; Nwaogu, C.; Pavlů, K.; Hejcman, M.; Pavlů, V.V. Long-Term effects of mulching, traditional cutting and no management on plant species composition of improved upland grassland in the Czech Republic. Grass Forage Sci. 2019, 74, 463–475. [Google Scholar] [CrossRef]
- Michler, B.; Rotar, I.; Pacurar, F.; Stoie, A. Arnica montana, an endangered species and a traditional medicinal plant: The biodiversity and productivity of its typical grasslands habitats. Grassl. Sci. Eur. 2005, 10, 336–339. [Google Scholar]
- Honsova, D.; Kocourkova, D.; Mrkvicka, J.; Svobodova, M.; Hakl, J. Effect of mowing and mulching frequency on underground phytomass of floodplain meadow. Sci. Agric. Bohem. Czech Repub. 2007, 38, 64–68. [Google Scholar]
- Păcurar, F.; Rotar, I.; Bogdan, A.; Vidican, R. The Effect of mineral fertilization upon the floristical composition of the Mountain Grasslands. Bull. UASVM Agric. 2012, 69, 1. [Google Scholar]
- Huijsmans, J.F.M.; Hol, J.M.G.; Hendriks, M.M.W.B. Effect of application technique, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to grassland. NJAS-Wagening. J. Life Sci. 2001, 49, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Pacurar, F.; Rotar, I. Maintaining biodiversity and increasing the production of dry matter on mountain meadows. land use systems in grassland dominated regions. Grassl. Sci. Eur. 2004, 9, 216–218. [Google Scholar]
- Păcurar, F.; Rotar, I. Maintaining biodiversity and increasing the production of dry matter on. In Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004; Volume 20, p. 216. [Google Scholar]
- Barbara, M.; Rotar, I.; Pacurar, F. Biodiversity and conservation of medicinal plants: A case study in the Apuseni Mountains in Romania. Bull. Univ. Agric. Sci. Vet. Med. 2006, 62, 86–87. [Google Scholar] [CrossRef]
- Gaujour, E.; Amiaud, B.; Mignolet, C.; Plantureux, S. Factors and processes affecting plant biodiversity in permanent grasslands. A Review. Agron. Sustain. Dev. 2012, 32, 133–160. [Google Scholar] [CrossRef] [Green Version]
- Klaus, V.H.; Whittingham, M.J.; Báldi, A.; Eggers, S.; Francksen, R.M.; Hiron, M.; Lellei-Kovács, E.; Rhymer, C.M.; Buchmann, N. Do biodiversity-ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands? Biol. Conserv. 2020, 245, 108552. [Google Scholar] [CrossRef]
- Plantureux, S.; Peeters, A.; McCracken, D. Biodiversity in intensive grasslands: Effect of management, improvement and challenges. Agron. Res. 2005, 3, 153–164. [Google Scholar]
- Pötsch, E.; Krautzer, B. The use of semi-natural grassland as donor sites for the restoration of High Nature Value Areas. In Proceedings of the 15th European Grassland Federation Symposium, Brno, Czech Republic, 7–9 September 2009; Agricultural Research and Education Centre, Raumberg-Gumpenstein: Irdning, Austria, 2009. [Google Scholar]
- Partzsch, M.; Faulhaber, M.; Meier, T. The effect of the dominant grass Festuca rupicola on the establishment of rare forbs in semi-dry grasslands. Folia Geobot. 2018, 53, 103–113. [Google Scholar] [CrossRef]
- Gh, T.; Rotar, I.; Vidican, R.; Pleșa, A.; Vaida, I.; Iuga, V. Biodiversity of Transylvania plain influence by slurry fertilization after 2 years. Romanian J. Grassl. Forage Crops 2018, 17, 63. [Google Scholar]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Stoian, V.; Vidican, R. Mycorrhizal patterns in the roots of dominant Festuca rubra in a High-Natural-Value Grassland. Plants 2021, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Hector, A.; Schmid, B.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; Finn, J.A.; Freitas, H.; Giller, P.S.; Good, J.; et al. Plant diversity and productivity experiments in European Grasslands. Science 1999, 286, 1123–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Păcurar, F.S.; Rotar, I.; Vaida, I. The effects of wild boar disturbances on the agronomical value of semi-natural grasslands. Romanian J. Grassl. Forage Crops 2019, 20, 27. [Google Scholar]
- Ioana, V.; Rotar, I.; Vidican, R. The influence of mineral fertilization on Festuca rubra grassland. Rom. J. Grassl. Forage Crops 2017, 15. [Google Scholar]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Botter, M.; Zeeman, M.; Burlando, P.; Fatichi, S. Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: Insights from a Mechanistic Model. Biogeosciences 2021, 18, 1917–1939. [Google Scholar] [CrossRef]
- Cirebea, M.; Rotar, I.; Vidican, R.; Pleșa, A.; Morea, A.; Ranta, O. Impact of Organo-Mineral Fertilization upon Phytocoenosis and Feed Quality of the Grasslands in the Region of Transylvania; Romanian Agricultural Research: Nardi Fundulea, Romania, 2020; Print ISSN 1222‒4227/Online ISSN 2067‒5720. [Google Scholar]
- Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Păcurar, F.S.; Abbas, O.; Dardenne, P.; Baeten, V.; Pfister, J.; Fernández Pierna, J.A. Discrimination of grassland species and their classification in botanical families by laboratory scale NIR Hyperspectral Imaging: Preliminary Results. Talanta 2013, 116, 149–154. [Google Scholar] [CrossRef]
- Vântu, V.; Samuil, C.; Rotar, I.; Moisuc, A.; Razec, I. Influence of the management on the phytocoenotic biodiversity of some Romanian representative grassland types. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Hloucalova, P.; Monika, N.; Pavel, H.; Jiri, S.; Pavel, K. Effect of fertilization on grassland quality. In Proceedings of the International Ph.D. Students Conference on MendelNet 2015, Brno, Czech Republic, 11–12 November 2015; pp. 122–125. [Google Scholar]
- Sutcliffe, L.M.E.; Batary, P.; Becker, T.; Orci, K.M.; Leuschner, C. Both local and landscape factors determine plant and orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodivers. Conserv. 2015, 24, 229–245. [Google Scholar] [CrossRef]
- Loos, J.; Gallersdoerfer, J.; Hartel, T.; Dolek, M.; Sutcliffe, L. Limited effectiveness of EU Policies to conserve an endangered species in High Nature Value farmland in Romania. Ecol. Soc. 2021, 26, 3. [Google Scholar] [CrossRef]
- Loos, J.; Turtureanu, P.D.; von Wehrden, H.; Hanspach, J.; Dorresteijn, M.; Frink, J.P.; Fischer, J. Plant diversity in a changing agricultural landscape mosaic in Southern Transylvania (Romania). Agric. Ecosyst. Environ. 2015, 199, 350–357. [Google Scholar] [CrossRef]
- Jitea, M.I.; Mihai, V.C.; Arion, F.H.; Muresan, I.C.; Dumitras, D.E. Innovation gaps and barriers in alternative innovative solutions for sustainable High Nature Value Grasslands. Evidence from Romania. Agriculture 2021, 11, 235. [Google Scholar] [CrossRef]
- Turda Latitude Longitude. Available online: https://latitudelongitude.org/ro/turda/ (accessed on 10 March 2022).
- Europe-NUTS3|Create a Custom Map. Available online: https://mapchart.net/europe-nuts3.html (accessed on 10 March 2022).
- Păcurar, F.; Rotar, I. Metode de Studiu Şi Interpretare a Vegetaţiei Pajiştilor; Risoprint: Cluj Napoca, Romania, 2014. [Google Scholar]
- Marușca, T.; Taulescu, E.; Memedemin, D. Preliminary study of agrosilvopastoral systems from Romania. Rom. J. Grassl. Forage Crops 2020, 22. [Google Scholar]
- Ghețe, A.B.; Haș, V.; Vidican, R.; Copândean, A.; Ranta, O.; Moldovan, C.M.; Crișan, I.; Duda, M.M. Influence of Detasseling methods on seed yield of some parent inbred lines of Turda maize hybrids. Agronomy 2020, 10, 729. [Google Scholar] [CrossRef]
- Ghețe, A.B.; Haș, V.; Copândean, A.; Vidican, R.; Suciu, L.; Vârban, D.I.; Duda, M.M. Influence of plant densities on seed production in some parental inbred lines of Turda maize hybrids. Res. J. Agric. Sci. 2021, 38, 163–171. [Google Scholar]
- Cristea, V.; Gafta, D.; Pedrotti, F. Phytosociology; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2004; Volume 164. [Google Scholar]
- Tremp, P. Verknüpfung von Lehre und Forschung: Eine universitäre Tradition als didaktische Herausforderung. Beitr. Zur Lehrerbildung 2005, 23, 339–348. [Google Scholar]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data. Bull. Ecol. Soc. Am. 2006, 87, 193. [Google Scholar] [CrossRef] [Green Version]
- Software. Available online: https://www.wildblueberrymedia.net/software (accessed on 10 March 2022).
- González-Oreja, J. Aplicación de análisis multivariantes al estudio de las relaciones entre las aves y sus hábitats: Un ejemplo con paseriformes montanos no forestales. Ardeola Rev. Ibérica Ornitol. Ardeola 2003, 50, 45–56. [Google Scholar]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 2006, 62, 361–371. [Google Scholar] [CrossRef]
Experimental Factors | Axis 1 | Axis 2 | ||
---|---|---|---|---|
r | Significance | r | Significance | |
V1 (control) | 0.390 | - | 0.499 | * |
V2 10 t ha−1 manure | 0.262 | ns | 0.379 | ns |
V3 10 t/ha−1 manure + N50 P25 K25 | 0.572 | ** | −0.738 | *** |
V4 N50 P25 K25 | −0.265 | ns | 0.242 | ns |
V5 N100 P50K50 | −0.476 | * | −0.140 | ns |
V6 10 t ha−1 manure + N100 P50 K50 | −0.446 | * | −0.224 | ns |
Axis importance | 78.8% | 11.9% |
Species | Axis 1 | Axis 2 | ||||||
---|---|---|---|---|---|---|---|---|
r | r−sq | tau | Signif. | r | r−sq | tau | Signif. | |
Achillea millefolium L. | −0.662 | 0.439 | −0.550 | *** | 0.342 | 0.117 | 0.161 | ns |
Agrimonia eupatoria L. | 0.561 | 0.315 | 0.325 | ** | −0.758 | 0.575 | −0.520 | *** |
Agropyron intermedium (Host) P. Beauv. | 0.390 | 0.152 | 0.317 | * | 0.499 | 0.249 | 0.472 | ** |
Agrostis capillaris L. | −0.432 | 0.186 | −0.301 | * | −0.478 | 0.229 | −0.478 | ** |
Allium angulosum L. | 0.390 | 0.152 | 0.317 | * | 0.499 | 0.249 | 0.472 | * |
Arrhenatherum elatius L. | 0.426 | 0.182 | 0.475 | * | −0.459 | 0.211 | −0.490 | ** |
Brachypodium pinnatum (L.) P. Beauv. | 0.099 | 0.010 | 0.113 | ns | 0.586 | 0.343 | 0.486 | ** |
Bromus inermis Leyss. | −0.514 | 0.264 | −0.414 | ** | −0.158 | 0.025 | −0.190 | ns |
Bromus secalinus L. | 0.572 | 0.327 | 0.482 | ** | −0.738 | 0.544 | −0.522 | *** |
Bromus squarrosus L. | 0.562 | 0.316 | 0.428 | ** | −0.014 | 0.000 | 0.079 | ns |
Bupleurum falcatum L. | 0.390 | 0.152 | 0.317 | * | 0.499 | 0.249 | 0.472 | * |
Carex humilis L. | 0.570 | 0.325 | 0.631 | ** | −0.510 | 0.260 | −0.089 | ** |
Carthamus lanatus L. | 0.390 | 0.152 | 0.317 | ns | 0.499 | 0.249 | 0.472 | * |
Centaurea stoebe L. | 0.319 | 0.102 | 0.323 | ns | 0.330 | 0.109 | 0.460 | ns |
Cerastium holosteoides Fr. | 0.516 | 0.266 | 0.374 | ** | 0.694 | 0.482 | 0.642 | *** |
Cichorium intybus L. | 0.199 | 0.039 | 0.191 | ns | 0.102 | 0.010 | 0.060 | ns |
Convolvulus arvensis L. | −0.251 | 0.063 | −0.053 | ns | −0.177 | 0.031 | −0.196 | ns |
Coronilla varia L. | 0.021 | 0.000 | −0.023 | ns | 0.476 | 0.226 | 0.523 | * |
Dactylis glomerata L. s. str. | −0.595 | 0.354 | −0.462 | ** | −0.434 | 0.188 | −0.521 | ** |
Elymus elongatus L. | −0.408 | 0.167 | −0.393 | * | −0.276 | 0.076 | −0.526 | ns |
Elymus repens (L.) Gould s. str. | 0.322 | 0.104 | 0.340 | ns | 0.108 | 0.012 | 0.211 | ns |
Eryngium campestre L. | 0.395 | 0.156 | 0.463 | * | −0.074 | 0.005 | −0.118 | ns |
Euphorbia cyparissias L. | −0.422 | 0.179 | −0.449 | * | 0.114 | 0.013 | −0.002 | ns |
Festuca arundinacea Schreb. | 0.572 | 0.327 | 0.482 | ** | −0.738 | 0.544 | −0.522 | *** |
Festuca pratensis Huds. s. l. | −0.260 | 0.068 | −0.310 | ns | −0.551 | 0.303 | −0.597 | ** |
Festuca rupicola Heuff. | −0.967 | 0.936 | −0.842 | *** | −0.178 | 0.032 | −0.273 | ns |
Festuca valesiaca Schleich. ex. Gaudin s. l. | 0.336 | 0.113 | 0.317 | * | 0.250 | 0.063 | 0.194 | ns |
Fragaria viridis L. | −0.227 | 0.051 | 0.124 | ns | −0.047 | 0.002 | 0.108 | ns |
Galium verum L. s. str. | −0.150 | 0.022 | 0.106 | ns | −0.073 | 0.005 | 0.067 | ns |
Linum catharticum L. | 0.446 | 0.199 | 0.367 | * | 0.224 | 0.050 | 0.243 | ns |
Lolium perenne L. | −0.700 | 0.490 | −0.581 | *** | −0.276 | 0.076 | −0.408 | ns |
Lotus corniculatus L. | −0.283 | 0.080 | −0.296 | ns | 0.252 | 0.063 | 0.181 | ns |
Medicago lupulina L. | −0.364 | 0.132 | −0.339 | * | 0.404 | 0.163 | 0.286 | * |
Medicago sativa L. s. l. | 0.177 | 0.031 | −0.235 | ns | −0.664 | 0.441 | −0.698 | *** |
Nigella arvensis L. | 0.390 | 0.152 | 0.317 | * | 0.499 | 0.249 | 0.472 | * |
Onobrychis viciifolia Scop. | 0.579 | 0.335 | 0.539 | ** | −0.708 | 0.501 | −0.182 | *** |
Plantago lanceolata L. | −0.032 | 0.001 | 0.097 | ns | 0.023 | 0.001 | 0.064 | ns |
Plantago media L. | −0.616 | 0.379 | −0.465 | *** | 0.066 | 0.004 | −0.037 | ns |
Poa angustifolia L. | 0.516 | 0.266 | 0.374 | ** | 0.694 | 0.482 | 0.642 | *** |
Poa pratensis L. s. str. | −0.506 | 0.256 | −0.418 | ** | −0.200 | 0.040 | −0.417 | ns |
Salvia pratensis L. | 0.585 | 0.342 | 0.636 | ** | −0.449 | 0.202 | −0.074 | ns |
Scabiosa ochroleuca L. | 0.390 | 0.152 | 0.317 | * | 0.499 | 0.249 | 0.472 | * |
Trifolium pratense L. | −0.163 | 0.027 | −0.283 | ns | −0.003 | 0.000 | −0.247 | ns |
Trifolium repens L. | 0.234 | 0.055 | 0.094 | ns | −0.160 | 0.026 | −0.203 | ns |
Vicia cracca L. s. str. | 0.659 | 0.435 | 0.505 | *** | −0.283 | 0.080 | −0.143 | ns |
Viola tricolor L. | 0.440 | 0.193 | 0.480 | * | −0.195 | 0.038 | −0.136 | ns |
Species | Variant | INDVAL | Mean | Std. Dev. | Signif |
---|---|---|---|---|---|
Achillea millefolium L. | 6 | 28.8 | 20.7 | 1.61 | 0.0002 |
Agrimonia eupatoria L. | 3 | 57.1 | 24.8 | 3.37 | 0.0002 |
Agropyron intermedium (Host) P. Beauv. | 1 | 100.0 | 10.1 | 4.32 | 0.0002 |
Agrostis capillaris L. | 6 | 41.1 | 22.7 | 2.44 | 0.0002 |
Allium angulosum L. | 1 | 100.0 | 10.1 | 4.32 | 0.0002 |
Arrhenatherum elatius L. | 3 | 100.0 | 11.3 | 5.07 | 0.0002 |
Brachypodium pinnatum (L.) P. Beauv. | 1 | 50.0 | 13.3 | 3.91 | 0.0002 |
Bromus inermis Leyss. | 5 | 100.0 | 10.1 | 4.30 | 0.0002 |
Bromus secalinus L. | 3 | 100.0 | 10.0 | 4.24 | 0.0002 |
Bromus squarrosus L. | 1 | 25.0 | 17.5 | 2.76 | 0.0330 |
Bupleurum falcatum L. | 1 | 100.0 | 10.1 | 4.32 | 0.0002 |
Carex humilis L. | 3 | 82.9 | 14.8 | 4.96 | 0.0002 |
Carthamus lanatus L. | 1 | 100.0 | 10.1 | 4.32 | 0.0002 |
Centaurea stoebe L. | 1 | 100.0 | 11.5 | 5.09 | 0.0002 |
Cerastium holosteoides Fr. | 1 | 50.0 | 13.3 | 4.01 | 0.0002 |
Convolvulus arvensis L. | 5 | 43.8 | 19.6 | 3.88 | 0.0002 |
Coronilla varia L. | 2 | 38.9 | 19.8 | 4.02 | 0.0006 |
Dactylis glomerata L. s. str. | 6 | 47.9 | 21.2 | 3.04 | 0.0002 |
Elymus elongatus L. | 6 | 49.0 | 20.6 | 4.41 | 0.0002 |
Elymus repens (L.) Gould s. str. | 2 | 30.0 | 21.3 | 3.35 | 0.0278 |
Eryngium campestre L. | 2 | 60.0 | 14.9 | 5.09 | 0.0002 |
Euphorbia cyparissias L. | 5 | 34.1 | 23.2 | 2.66 | 0.0006 |
Festuca arundinacea Schreb. | 3 | 100.0 | 10.0 | 4.24 | 0.0002 |
Festuca pratensis Huds. s. l. | 5 | 33.7 | 19.2 | 3.65 | 0.0020 |
Festuca rupicola Heuff. | 5 | 24.4 | 18.9 | 0.92 | 0.0002 |
Festuca valesiaca Schleich. ex. Gaudin s. l. | 1 | 46.8 | 25.3 | 3.61 | 0.0002 |
Fragaria viridis L. | 5 | 42.9 | 21.3 | 3.21 | 0.0002 |
Galium verum L. s. str. | 5 | 41.0 | 22.4 | 3.75 | 0.0004 |
Lolium perenne L. | 6 | 44.3 | 21.9 | 3.38 | 0.0002 |
Lotus corniculatus L. | 6 | 25.3 | 21.1 | 1.76 | 0.0250 |
Medicago sativa L. s. l. | 3 | 50.7 | 20.9 | 4.51 | 0.0002 |
Nigella arvensis L. | 1 | 100.0 | 10.1 | 4.32 | 0.0002 |
Onobrychis viciifolia Scop. | 3 | 68.3 | 23.9 | 4.40 | 0.0002 |
Plantago lanceolata L. | 5 | 29.4 | 20.6 | 2.77 | 0.0054 |
Poa angustifolia L. | 1 | 50.0 | 13.3 | 4.01 | 0.0002 |
Poa pratensis L. s. str | 4 | 34.0 | 19.5 | 3.79 | 0.0016 |
Salvia pratensis L. | 3 | 75.0 | 14.6 | 4.70 | 0.0002 |
Scabiosa ochroleuca L. | 1 | 100.0 | 10.1 | 4.32 | 0.0002 |
Tragopogon dubius Scop. | 1 | 33.3 | 15.7 | 3.56 | 0.0012 |
Trifolium pratense L. | 6 | 37.4 | 22.2 | 3.61 | 0.0018 |
Trifolium repens L. | 2 | 29.2 | 20.7 | 2.86 | 0.0092 |
Vicia cracca L. s. str. | 2 | 50.0 | 13.3 | 4.02 | 0.0002 |
Viola tricolor L | 3 | 54.5 | 14.8 | 4.95 | 0.0002 |
Temperature Average Air (°C) | Annual Average | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |
Annual temperature | 11.2 | 11.4 | 10.5 | 9.9 |
Average for the last 60 years | 9.1 | 9.1 | 9.1 | 9.1 |
Deviation | +2.1 | +2.3 | +1.4 | +0.8 |
Characterization | warm | warm | warm | warm |
Rainfall (mm) | Annual Amount | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |
Annual amount | 540.7 | 606.0 | 606.0 | 530.0 |
Average for the last 60 years | 531.0 | 531.0 | 531.0 | 531.0 |
Deviation | +9.7 | +75.0 | +75.0 | −1.0 |
Characterization | normal | rainy | rainy | normal |
Horizons | Amp | Am/Ck | Ck1 | Ck2 |
---|---|---|---|---|
Deep (cm) | 0–28 | 28–52 | 52–86 | 86–120 |
Texture | ||||
Coarse sand (2.0–0.2 mm) % | 0.73 | 0.72 | 0.63 | 0.34 |
Fine sand (0.2–0.02 mm) | 14.90 | 19.98 | 17.92 | 16.27 |
Dust I (0.02–0.05 mm) % | 9.15 | 8.78 | 8.94 | 9.87 |
Dust II (0.05–0.002 mm) % | 19.15 | 14.56 | 20.64 | 24.14 |
Clay (<0.002 mm) % | 56.07 | 55.96 | 51.87 | 49.38 |
Texture | SIC | SIC | SIC | SIC |
Physical analysis | ||||
Coarse fragments (skeleton) % | - | - | - | - |
Bulk density g/cm3 | 1.13 | - | 1.41 | - |
Total porosity % | 58 | - | 48 | - |
Physical analysis | ||||
pH | 7.87 | 7.91 | 8.19 | 8.20 |
Interpretation | Slightly alkaline | Slightly alkaline | Slightly alkaline | Slightly alkaline |
Carbonates % | 0.7 | 8.4 | 24.0 | 32.6 |
Humus % | 3.49 | 2.89 | - | - |
N total % | 0.207 | 0.148 | - | - |
P mobile (ppm) | 65 | 20 | - | - |
K mobile (ppm) | 400 | 332 | - | - |
Index | Presence–Absence Based on a, b, c | Presence–Absence Based on S1, S2, S12 | Abundance Based (See Definitions Below) |
---|---|---|---|
Sorensen | |||
Jaccard |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaga, I.; Pacurar, F.; Vaida, I.; Plesa, A.; Rotar, I. Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants 2022, 11, 1975. https://doi.org/10.3390/plants11151975
Gaga I, Pacurar F, Vaida I, Plesa A, Rotar I. Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants. 2022; 11(15):1975. https://doi.org/10.3390/plants11151975
Chicago/Turabian StyleGaga, Ioan, Florin Pacurar, Ioana Vaida, Anca Plesa, and Ioan Rotar. 2022. "Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania" Plants 11, no. 15: 1975. https://doi.org/10.3390/plants11151975
APA StyleGaga, I., Pacurar, F., Vaida, I., Plesa, A., & Rotar, I. (2022). Responses of Diversity and Productivity to Organo-Mineral Fertilizer Inputs in a High-Natural-Value Grassland, Transylvanian Plain, Romania. Plants, 11(15), 1975. https://doi.org/10.3390/plants11151975