Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Mulching Treatments on Effective Accumulated Temperature and Maize Developmental Progress
2.2. Effects of Different Treatments on Spring Maize Yield
2.3. Fitting the Logistic Equation to the DMA Curves
2.4. Effect of Different Treatments on the Dynamic Process of DMA
2.5. Effect of Different Treatments on the Dynamic Characteristics of DMA
2.6. The Relationship between the Final DMA(a) and the Dynamic Characteristics of DMA
3. Discussion
3.1. Accumulated Temperature under Plastic Film and Model Application
3.2. Dry Matter Accumulation Dynamics
4. Conclusions
5. Materials and Methods
5.1. Site Description
5.2. Experimental Design and Field Management
5.3. Measurements and Computations
5.3.1. Temperature
5.3.2. Maize Phenology
5.3.3. Dry Matter Accumulation (DMA)
5.3.4. Yield and Yield Components
5.4. Compensation Effect of Soil Accumulated Temperature on Air Accumulated Temperature
5.5. Brief Introduction of the Logistic Equation
5.6. Evaluation of Relative Water Uptake (RWU) Dependence on Plant Density
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.Z.; Zhang, J.; Zhang-Ming, G.E.; Xing, L.W.; Han, S.Q.; Shen, C.; Kong, F.T. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar] [CrossRef]
- Song, Z.W.; Guo, J.R.; Zhang, Z.P.; Kou, T.J.; Deng, A.X.; Zheng, C.Y.; Ren, J.; Zhang, W.J. Impacts of planting systems on soil moisture, soil temperature and corn yield in rainfed area of northeast China. Eur. J. Agron. 2013, 50, 66–74. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. Statistics Yearbook in 2019; National Bureau of Statistics of China: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Cai, Q.; Zhang, L.Z.; Sun, Z.X.; Zheng, J.M.; Bai, W.; Zhang, Y.; Liu, Y.; Feng, L.S.; Feng, C.; Zhang, Z.; et al. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences 2017, 14, 3851–3858. [Google Scholar] [CrossRef] [Green Version]
- Bo, X.D.; Li, Y.F.; Li, J.S. Response of productivity and nitrogen efficiency to plastic-film mulching patterns for maize in sub-humid northeast China. Irrig. Sci. 2021, 39, 251–262. [Google Scholar] [CrossRef]
- Jia, Q.M.; Sun, L.F.; Mou, H.Y.; Ali, S.; Liu, D.H.; Zhang, Y.; Zhang, P.; Ren, X.L.; Jia, Z.K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric. Water Manag. 2018, 201, 287–298. [Google Scholar] [CrossRef]
- Sun, S.J.; Chen, Z.J.; Jiang, H.; Zhang, X.D.; Zhang, L.L.; Chi, D.C. Plastic mulch and plant density influencing soil water content and yield of rainfed maize in north-eastern China. Irrig. Drain. 2018, 68, 354–364. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Liu, Q.F.; Chen, Y.; Li, W.W.; Liu, Y.; Han, J.; Wen, X.X.; Liao, Y.C. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China. Sci. Rep. 2016, 6, 28150. [Google Scholar] [CrossRef] [Green Version]
- Bu, L.D.; Liu, J.L.; Zhu, L.; Luo, S.S.; Chen, X.P.; Li, S.Q.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crop. Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Zhou, L.M.; Li, F.M.; Jin, S.L.; Song, Y.J. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid loess plateau of China. Field Crop. Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Sun, S.J.; Chen, Z.J.; Jiang, H.; Zhang, L.L. Black film mulching and plant density influencing soil water temperature conditions and maize root growth. Vadose Zone J. 2018, 17, 180104. [Google Scholar] [CrossRef] [Green Version]
- Friedman, S.P. Evaluating the role of water availability in determining the yield–plant population density relationship. Soil Sci. Soc. Am. J. 2016, 80, 563–578. [Google Scholar] [CrossRef]
- Birth, C.P.D. A new generalized logistic sigmoid growth equation compared with the Richards growth equation. Ann. Bot. 1999, 83, 713–723. [Google Scholar]
- Sheehy, J.E.; Mitchel, P.L.; Allen, L.H.; Ferrer, A.B. Mathematical consequences of using various empirical expressions of crop yield as a function of temperature. Field Crop. Res. 2006, 98, 216–221. [Google Scholar] [CrossRef]
- Kiymaz, S.; Karadavut, U.; Ertek, A. A Comparison of Artificial Neural Networks and Some Nonlinear Models of Leaf Area Estimation of Sugar Beet at Different Nitrogen Levels. Turk. J. Agric. Nat. Sci. 2018, 5, 303–309. [Google Scholar]
- Karadavut, U.; Alta, C. Comparison of some mathmatical growth models for estimating of physiological growth characters of alfalfa (Medicago sativa L.). Bulg. J. Agric. Sci. 2021, 9, 11–15. [Google Scholar]
- Causton, D.R.; Venus, J.R. The Biometry of Plant Growth; Edward Arnold: London, UK, 1981. [Google Scholar]
- Sepaskhah, A.R.; Fahandezh-Saadi, S.; Zand-Parsa, S. Logistic model application for prediction of maize yield under water and nitrogen management. Agric. Water Manag. 2011, 99, 51–57. [Google Scholar] [CrossRef]
- Mahbod, M.; Sepaskhah, A.R.; Zand-Parsa, S. Estimation of yield and dry matter of winter wheat using Logistic model under different irrigation water regimes and nitrogen application rates. Arch. Agron. Soil Sci. 2014, 60, 1661–1676. [Google Scholar] [CrossRef]
- Zhang, D.S.; Sun, Z.X.; Feng, L.S.; Bai, W.; Yang, N.; Zhang, Z.; Du, G.J.; Feng, C.; Cai, Q.; Wang, Q.; et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crop. Res. 2020, 257, 107926. [Google Scholar] [CrossRef]
- Tarara, J.M. Microclimate modification with plastic mulch. HortScience 2000, 35, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Huang, F.Y.; Jia, Z.K.; Ren, X.L.; Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Till. Res. 2017, 166, 113–121. [Google Scholar] [CrossRef]
- Yan, D.C.; Zhu, Y.; Wang, S.H.; Cao, W.X. A quantitative know-ledge-based model for designing suitable growth dynamics in rice. Plant Prod. Sci. 2006, 9, 93–105. [Google Scholar] [CrossRef]
- Iannucci, A.; Terribile, M.R.; Martiniello, P. Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crop. Res. 2008, 106, 156–162. [Google Scholar] [CrossRef]
- Yang, N.; Sun, Z.X.; Zhang, L.Z.; Zheng, J.M.; Feng, L.S.; Li, K.Y.; Zhang, Z.; Feng, C. Simulation of water use process by film mulched cultivated maize based on improved AquaCrop model and its verification. Trans. Chin. Soc. Agric. Eng. 2015, 31, 122–132, (in Chinese with English abstract). [Google Scholar]
- Li, Z.X.; Liu, K.C.; Liu, C.X.; Zhang, X.Q.; Liu, X.; Zhang, H.; Liu, S.C.; Wang, Q.C.; Li, Q.Q. Aboveground dry matter and grain yield of summer maize under different varieties and densities in North China Plain. Maydica 2013, 58, 189–194. [Google Scholar]
- Moriri, S.; Owoeye, L.G.; Mariga, I.K. Influence of component crop densities and planting patterns on maize production in dry land maize/cowpea intercropping systems. Afr. J. Agric. Res. 2010, 5, 1200–1207. [Google Scholar]
- Dang, J.; Liang, W.L.; Wang, G.Y.; Shi, P.F.; Wu, D. A preliminary study of the effects of plastic film-mulched raised beds on soil temperature and crop performance of early-sown short-season spring maize (Zea mays L.) in the North China Plain. Crop J. 2016, 4, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, H.B.; Wan-Li, H.; Qin, X.H.; Xing-Wang, M.A.; Yan, C.R.; Wang, H.Y. The status and distribution characteristics of residual mulching film in Xinjiang, China. J. Integr. Agric. 2016, 15, 2639–2646. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.D.; Yin, Z.J. Crop Cultivation Science; Higher Education Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Zou, Y.F.; Saddique, Q.; Dong, W.J.; Zhao, Y.; Zhang, X.; Liu, J.C.; Ding, D.Y.; Feng, H.; Wendroth, O.; Saddique, K.H.M. Quantifying the compensatory effect of increased soil temperature under plastic film mulching on crop growing degree days in a wheat–maize rotation system. Field Crop. Res. 2021, 260, 107993. [Google Scholar] [CrossRef]
- Darroch, B.A.; Baker, R.J. Grain filling in three spring wheat genotypes: Statistical analysis. Crop Sci. 1990, 30, 525–529. [Google Scholar] [CrossRef]
Growth Stages | Mulching Treatments | Growth Time (d) | EAST (°C d) | EAAT (°C d) | EAST-NMTSM (°C d) |
---|---|---|---|---|---|
Sowing—Three-leaf stage | M0 | 21 a | 199.1 a | 182.4 a | |
M1 | 16 b | 172.1 b | 129.8 c | 143.8 b | |
M2 | 18 b | 180.0 b | 150.7 b | 162.0 a | |
Three-leaf—Jointing stage | M0 | 27 a | 470.2 b | 373.9 a | |
M1 | 26 a | 475.2 b | 354.1 b | 445.0 b | |
M2 | 27 a | 487.9 a | 365.5 ab | 469.7 a | |
Jointing—Tasseling stage | M0 | 24 a | 388.1 b | 403.9 a | |
M1 | 23 a | 385.2 b | 375.2 b | 366.8 b | |
M2 | 24 a | 396.5 a | 398.6 a | 384.5 a | |
Tasseling—Silking stage | M0 | 16 a | 251.5 b | 287.3 a | |
M1 | 15 a | 267.7 a | 272.0 b | 258.2 a | |
M2 | 15 a | 254.2 b | 270.7 b | 246.5 b | |
Silking—Maturity stage | M0 | 52 a | 783.8 a | 854.4 a | |
M1 | 50 a | 809.8 a | 850.5 a | 789.5 a | |
M2 | 52 a | 808.1 a | 857.9 a | 790.7 a | |
Total growth season | M0 | 140 a | 2092.7 b | 2101.8 a | |
M1 | 130 c | 2110.1 ab | 1981.5 c | 2003.3 b | |
M2 | 136 b | 2126.7 a | 2043.4 b | 2053.3 a |
Growth Stages | Mulching Treatments | Growth Time (d) | EAST (°C d) | EAAT (°C d) | EAST-NMTSM (°C d) |
---|---|---|---|---|---|
Sowing—Three-leaf stage | M0 | 20 a | 240.8 a | 202.5 a | |
M1 | 14 b | 183.7 c | 126.2 c | 163.1 b | |
M2 | 16 b | 207.7 b | 155.2 b | 189.1 a | |
Three-leaf—Jointing stage | M0 | 28 a | 462.7 b | 373.5 a | |
M1 | 27 a | 474.8 a | 336.9 b | 440.2 a | |
M2 | 27 a | 470.6 ab | 338.1 b | 443.9 a | |
Jointing—Tasseling stage | M0 | 23 a | 420.1 a | 427.1 a | |
M1 | 22 a | 421.3 a | 392.4 b | 397.6 a | |
M2 | 22 a | 417.9 a | 403.7 b | 403.2 a | |
Tasseling—Silking stage | M0 | 15 a | 265.2 b | 283.6 b | |
M1 | 14 a | 277.9 ab | 287.3 b | 267.2 b | |
M2 | 15 a | 283.6 a | 298.6 a | 279.1 a | |
Silking—Maturity stage | M0 | 56 a | 785.0 b | 859.0 b | |
M1 | 55 a | 834.4 a | 903.9 a | 815.1 a | |
M2 | 55 a | 826.1 a | 880.6 ab | 804.8 b | |
Total growth season | M0 | 142 a | 2173.6 b | 2145.5 a | |
M1 | 132 b | 2192.1 ab | 2046.6 b | 2083.2 b | |
M2 | 135 ab | 2205.8 a | 2076.1 b | 2120.1 a |
Source of Variation | Freedom Degrees | Year | Factor | Yield | Spike Length | Spike Diameter | Kernels per Ear | 100-Kernels Weight |
---|---|---|---|---|---|---|---|---|
Block | 2 | 2016 | Mulching | 6.134 * | 5.068 * | 0.221 | 10.695 ** | 7.732 ** |
Mulching | 2 | Plant density | 13.047 ** | 7.935 ** | 1.592 * | 8.854 ** | 16.126 ** | |
Error | 4 | Mulching × Plant density | 2.824 * | 3.572 * | 0.095 | 3.12 * | 6.680 ** | |
Plant density | 4 | 2017 | Mulching | 5.572 * | 4.489 * | 1.096 | 2.726 * | 9.925 ** |
Mulching × Plant density | 8 | Plant density | 11.694 ** | 7.187 ** | 4.270 ** | 5.744 ** | 11.463 ** | |
Error | 24 | Mulching × Plant density | 1.109 | 3.282 * | 0.849 | 0.571 | 0.932 | |
The sum | 44 |
Year | Treatments | Yield (kg ha−1) | Spike Length (cm) | Spike Diameter (cm) | Kernels per Ear | 100-Kernels Weight (g) |
---|---|---|---|---|---|---|
2016 | M0 | 12,286.4 b | 16.8 b | 49.7 a | 639.4 c | 34.3 c |
M1 | 12,855.7 a | 17.0 a | 49.8 a | 659.0 b | 36.5 b | |
M2 | 13,224.6 a | 17.1 a | 49.9 a | 672.6 a | 37.0 a | |
D1 | 11,148.7 d | 17.5 a | 50.5 a | 671.9 a | 37.2 a | |
D2 | 12,176.7 c | 17.2 ab | 49.7 ab | 675.8 a | 35.7 c | |
D3 | 13,042.5 b | 17.1 b | 49.8 ab | 661.2 b | 36.0 b | |
D4 | 13,964.0 a | 16.7 c | 49.7 ab | 650.6 c | 35.6 c | |
D5 | 13,612.5 a | 16.6 c | 49.2 b | 625.4 d | 35.2 d | |
2017 | M0 | 11,837.3 b | 16.2 b | 48.4 a | 583.3 b | 31.4 b |
M1 | 12,356.4 ab | 16.5 ab | 48.7 a | 603.6 ab | 32.8 ab | |
M2 | 12,816.9 a | 16.7 a | 48.9 a | 615.1 a | 34.3 a | |
D1 | 10,971.6 c | 17.2 a | 49.9 a | 636.4 a | 34.8 a | |
D2 | 11,454.8 c | 16.8 ab | 49.3 ab | 623.1 a | 33.7 ab | |
D3 | 12,556.4 b | 16.8 ab | 49.2 ab | 616.2 a | 33.5 ab | |
D4 | 13,434.9 a | 16.2 b | 48.4 b | 596.0 b | 32.0 b | |
D5 | 13,266.8 a | 15.6 c | 46.5 c | 561.6 c | 30.1 c |
Treatments | 2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
a (kg ha−1) | k (°C d)−1 | xc (°C d) | p | R2 | a (kg ha−1) | k (°C d)−1 | xc (°C d) | p | R2 | |
M0D1 | 26,557 | 0.0025 | 1354.9 | 0.006 | 0.97 | 18,978 | 0.0098 | 1185.9 | 0.013 | 0.96 |
M0D2 | 29,637 | 0.0022 | 1370.9 | 0.001 | 0.99 | 24,361 | 0.0071 | 1248.2 | 0.020 | 0.94 |
M0D3 | 30,453 | 0.0026 | 1223.3 | 0.001 | 0.99 | 28,389 | 0.0063 | 1297.9 | 0.019 | 0.94 |
M0D4 | 30,796 | 0.0028 | 1128.4 | 0.003 | 0.98 | 29,037 | 0.0054 | 1330.1 | 0.030 | 0.91 |
M0D5 | 34,542 | 0.0021 | 1390.7 | 0.006 | 0.97 | 27,744 | 0.0051 | 1328.6 | 0.037 | 0.89 |
M1D1 | 28,526 | 0.0020 | 1425.9 | 0.001 | 0.99 | 24,340 | 0.0060 | 1437.2 | 0.029 | 0.91 |
M1D2 | 31,079 | 0.0019 | 1495.8 | 0.001 | 0.99 | 28,920 | 0.0058 | 1480.9 | 0.021 | 0.94 |
M1D3 | 30,356 | 0.0019 | 1271.6 | 0.001 | 0.99 | 33,946 | 0.0064 | 1483.1 | 0.011 | 0.97 |
M1D4 | 32,744 | 0.0019 | 1287.8 | 0.002 | 0.98 | 28,767 | 0.0078 | 1411.1 | 0.009 | 0.97 |
M1D5 | 34,409 | 0.0018 | 1463.8 | 0.007 | 0.95 | 28,114 | 0.0085 | 1380.9 | 0.010 | 0.97 |
M2D1 | 27,485 | 0.0024 | 1314.5 | 0.002 | 0.99 | 26,416 | 0.0061 | 1418.2 | 0.018 | 0.95 |
M2D2 | 29,730 | 0.0025 | 1277.0 | 0.004 | 0.98 | 28,409 | 0.0057 | 1442.6 | 0.018 | 0.95 |
M2D3 | 35,639 | 0.0020 | 1431.1 | 0.001 | 0.99 | 32,887 | 0.0062 | 1439.2 | 0.011 | 0.97 |
M2D4 | 36,214 | 0.0020 | 1311.0 | 0.007 | 0.96 | 36,660 | 0.0059 | 1463.0 | 0.011 | 0.97 |
M2D5 | 40,185 | 0.0019 | 1442.2 | 0.006 | 0.96 | 35,815 | 0.0068 | 1413.6 | 0.008 | 0.98 |
Cv | 11.6% | 14.5% | 7.4% | 16.0% | 19.1% | 6.4% |
Source of Variation | Freedom Degrees | Year | Factor | a | xinf | GRmax | xmax | x1 |
---|---|---|---|---|---|---|---|---|
Block | 2 | 2016 | Mulching | 12.404 * | 7.427 ** | 2.244 * | 2.449 * | 1.489 |
Mulching | 2 | Plant density | 13.744 ** | 0.771 | 6.489 * | 0.879 | 8.644 ** | |
Error | 4 | Mulching × Plant density | 3.693 * | 0.402 | 4.997 * | 0.407 | 0.988 | |
Plant density | 4 | 2017 | Mulching | 15.489 ** | 6.096 ** | 1.669 | 1.246 | 1.894 |
Mulching × Plant density | 8 | Plant density | 14.221 ** | 1.204 | 5.744 * | 1.042 | 6.884 * | |
Error | 24 | Mulching × Plant density | 2.109 * | 0.587 | 4.849 * | 0.946 | 1.032 | |
The sum | 44 |
Year | Treatments | a (kg ha−1) | xinf (°C d) | GRmax (kg (ha °C d) −1) | xmax (°C d) | x1 (°C d) |
---|---|---|---|---|---|---|
M0 | 30,397.2 c | 1293.6 b | 18.5 a | 2513.4 b | 838.5 a | |
M1 | 31,422.6 b | 1389.0 a | 14.8 b | 2953.3 a | 805.3 a | |
M2 | 33,850.5 a | 1355.2 a | 18.0 a | 2734.2 a | 840.7 a | |
2016 | D1 | 27,522.5 e | 1365.09 a | 15.7 c | 2667.5 a | 874.4 a |
D2 | 30,148.8 d | 1381.3 a | 16.5 bc | 2740.1 a | 879.1 a | |
D3 | 32,149.3 c | 1308.7 a | 17.2 ab | 2704.5 a | 787.9 b | |
D4 | 33,251.3 b | 1242.4 a | 18.3 a | 2606.8 a | 733.3 c | |
D5 | 36,378.6 a | 1432.2 a | 17.7 a | 2949.4 a | 866.2 a | |
M0 | 25,701.8 c | 1278.1 b | 41.8 a | 1739.0 a | 1106.2 a | |
M1 | 28,817.6 b | 1438.6 a | 49.8 a | 1874.4 a | 1276.0 a | |
M2 | 32,037.5 a | 1435.3 a | 49.3 a | 1916.6 a | 1255.7 a | |
2017 | D1 | 23,244.5 d | 1347.1 a | 41.2 c | 1770.5 a | 1232.7 a |
D2 | 27,230.1 c | 1390.5 a | 41.9 c | 1869.8 a | 1224.2 ab | |
D3 | 31,740.9 a | 1406.7 a | 49.9 b | 1874.9 a | 1211.0 b | |
D4 | 31,488.1 a | 1401.4 a | 49.7 b | 1876.4 a | 1189.1 d | |
D5 | 30,558.0 b | 1374.4 a | 52.1 a | 1825.2 a | 1206.2 c |
Characteristic Parameters | Correlation Coefficient | Direct Path Coefficient | Indirect Path Coefficient | The Contribution Rate to R2 | |||
---|---|---|---|---|---|---|---|
xinf | GRmax | xmax | x1 | ||||
xinf | 0.32 | 0.1967 | 0.2643 | −0.1066 | −0.0301 | 0.0629 | |
GRmax | 0.96 ** | 1.0072 | 0.0116 | −0.07 | 0.0049 | 0.9669 | |
xmax | 0.53 | −0.1133 | 0.215 | 0.50 | −0.0717 | −0.0600 | |
x1 | 0.03 | −0.0979 | 0.2609 | −0.0503 | −0.083 | −0.0029 |
Soil Layer | Particle Composition (%) | Soil Texture | ||
---|---|---|---|---|
(cm) | <0.002 mm | 0.002–0.05 mm | 0.05–2 mm | (International System) |
0–40 | 11.6 | 60.5 | 27.9 | silty loam |
40–100 | 18.9 | 58.0 | 23.1 | silty clay loam |
Year | Treatments | Sowing—Three-Leaf Stage | Three-Leaf—Jointing Stage | Jointing—Tasseling Stage |
---|---|---|---|---|
2016 | M1 | 1.86 | 0.65 | 1.56 |
M2 | 1.76 | 0.46 | 0.44 | |
2017 | M1 | 3.71 | 1.06 | 1.46 |
M2 | 2.54 | 1.32 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Friedman, S.P.; Chen, Z.; Zheng, J.; Sun, S. Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China. Plants 2022, 11, 1411. https://doi.org/10.3390/plants11111411
Zhu Z, Friedman SP, Chen Z, Zheng J, Sun S. Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China. Plants. 2022; 11(11):1411. https://doi.org/10.3390/plants11111411
Chicago/Turabian StyleZhu, Zhenchuang, Shmulik P. Friedman, Zhijun Chen, Junlin Zheng, and Shijun Sun. 2022. "Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China" Plants 11, no. 11: 1411. https://doi.org/10.3390/plants11111411
APA StyleZhu, Z., Friedman, S. P., Chen, Z., Zheng, J., & Sun, S. (2022). Dry Matter Accumulation in Maize in Response to Film Mulching and Plant Density in Northeast China. Plants, 11(11), 1411. https://doi.org/10.3390/plants11111411