How Does the pH of Tree Bark Change with the Presence of the Epiphytic Bryophytes from the Family Orthotrichaceae in the Interaction with Trunk Inclination?
Abstract
:1. Introduction
- (i)
- Inclination influences the pH of the naked bark of selected tree species.
- (ii)
- The pH of naked bark differs from the pH of the bark covered by bryophytes and inclination affects the pH difference within paired samples.
- (iii)
- The pH of bark changes after with neutral cover in comparison to with bryophyte cover.
2. Results
3. Discussion
3.1. Drawbacks of Study
3.2. Effect of Inclination on pH of the Bark
4. Materials and Methods
4.1. Study Design
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kricke, R. Measuring bark pH. In Monitoring with Lichens—Monitoring Lichens; Nimis, P.L., Scheidegger, C., Wolseley, P.A., Eds.; NATO Science Series 7; Springer: Dordrecht, The Netherlands, 2002; pp. 333–336. ISBN 978-1-4020-0430-8. [Google Scholar]
- Chrabąszcz, M.; Mróz, L. Tree Bark, a valuable source of information on air quality. Pol. J. Environ. Stud. 2017, 26, 453–466. [Google Scholar] [CrossRef]
- André, F.; Jonard, M.; Ponette, Q. Influence of species and rain event characteristics on stemflow volume in a temperate mixed oak-beech stand. Hydrol. Process. 2008, 22, 4455–4466. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Spier, L.; van Dobben, H.; van Dort, K. Is bark pH more important than tree species in determining the composition of nitrophytic or acidophytic lichen floras? Environ. Pollut. 2010, 158, 3607–3611. [Google Scholar] [CrossRef]
- Nihlgård, B. Precipitation, Its Chemical Composition and Effect on Soil Water in a Beech and a Spruce Forest in South Sweden. Oikos 1970, 21, 208–217. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Stokes, A.; Mickovski, S. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics. J. Hydrol. 2020, 582, 124448. [Google Scholar] [CrossRef]
- Kelly, J. Power Plant Influences on Bulk Precipitation, Throughfall, and Stemflow Nutrient Inputs. J. Environ. Qual. 1984, 13, 405–409. [Google Scholar] [CrossRef]
- Levia, D.; Van Stan, J.; Mage, S.; Kelley-Hauske, P. Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. J. Hydrol. 2010, 380, 112–120. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Yuan, Z.; Wang, S.; Chen, A.; He, B. Concentration, exchange and source identification of polycyclic aromatic hydrocarbons in soil, air and tree bark from the Middle-Lower Yangtze Plain, China. Atmos. Pollut. Res. 2019, 10, 1276–1283. [Google Scholar] [CrossRef]
- Van Stan, J.; Levia, D. Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States. Ecohydrogeomorphology 2009, 3, 11–19. [Google Scholar] [CrossRef]
- McGee, G.; Cardon, M.; Kiernan, D. Variation in Acer saccharum Marshall (Sugar Maple) Bark and Stemflow Characteristics: Implications for Epiphytic Bryophyte Communities. Northeast. Nat. 2019, 26, 214–235. [Google Scholar] [CrossRef]
- Fritz, Ö.; Niklasson, M.; Churski, M. Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl. Veg. Sci. 2009, 12, 93–106. [Google Scholar] [CrossRef]
- Valová, M.; Bieleszová, S. Interspecific variations of bark´s water storage capacity of chosen types of trees and the dependance on occurance of epiphytic mosses. GeoScience Eng. 2008, 54, 45–51. [Google Scholar]
- Levia, D.; Herwitz, S. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena 2005, 64, 117–137. [Google Scholar] [CrossRef]
- Levia, D. Differential winter stemflow generation under contrasting storm conditions in a southern New England broad-leaved deciduous forest. Hydrol. Process. 2004, 18, 1105–1112. [Google Scholar] [CrossRef]
- Levia, D.; Herwitz, S. Physical properties of water in relation to stemflow leachate dynamics: Implications for nutrient cycling. Can. J. For. Res. 2011, 30, 662–666. [Google Scholar] [CrossRef]
- Hansen, K.; Draaijers, G.; Ivens, W.; Gundersen, P.; Vanleeuwen, N. Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos. Environ. 1994, 28, 3195–3205. [Google Scholar] [CrossRef]
- Draaijers, G.; Erisman, J.; Leeuwen, N.; Römer, F.; Winkel, B.; Veltkamp, A.; Vermeulen, A.; Wyers, G. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos. Environ. 1997, 31, 387–397. [Google Scholar] [CrossRef]
- Van Stan, J.; Siegert, C.; Levia, D.; Scheick, C. Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agric. For. Meteorol. 2011, 151, 1277–1286. [Google Scholar] [CrossRef]
- Alpert, P. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 2006, 209, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Hao, Z.; Yu, D.; Yan, H.; Feng, D. Research advances in bryophyte ecological function. J. Appl. Ecol. 2004, 15, 1939–1942. [Google Scholar]
- Bini, C.; Bresolin, F. Soil acidification by acid rain in forest ecosystems: A case study in northern Italy. Sci. Total Environ. 1998, 222, 1–15. [Google Scholar] [CrossRef]
- Fojcik, B.; Chruścińska, M.; Nadgórska-Socha, A.; Stebel, A. Determinants of occurrence of epiphytic mosses in the urban environment; a case study from Katowice city (S Poland). Acta Mus. Sil. Sci. Nat. 2015, 64, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Lowman, M.; Rinker, B. Forest Canopies; Elsevier Academic Press: Brighton, UK, 2004; pp. 1–544. ISBN 9780124575530. [Google Scholar]
- Pypker, T.; Unsworth, M.; Bond, B. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Can. J. For. Res. 2006, 36, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Shorohova, E.; Kapitsa, E.; Kazartsev, I.; Romashkin, I.; Polevoi, A.; Kushnevskaya, H. Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest. For. Ecol. Manag. 2016, 377, 36–45. [Google Scholar] [CrossRef]
- Duckett, J.G.; Burch, J.; Fletcher, P.; Matcham, H.W. In vitro cultivation of bryophytes: A review of practicalities, problems, progress and promise. J. Bryol. 2004, 26, 3–20. [Google Scholar] [CrossRef]
- Vellak, K.; Vellak, A.; Ingerpuu, N. Reasons for moss rarity: Study in three neighbouring countries. Biol. Conserv. 2007, 135, 360–368. [Google Scholar] [CrossRef]
- Young, C. Acidity and Moisture in Tree Bark. Proc. Indian Acad. Sci. 1937, 1, 106–114. [Google Scholar]
- Wiklund, K.; Rydin, H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 2004, 18, 907–913. [Google Scholar] [CrossRef]
- Pereira, I.; Müller, F.; Moya, M. Influence of Nothofagus bark pH on the lichen and bryophytes richness, Central Chile. Gayana Botánica 2014, 71, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Per, D.; Nils, C. Bryophytes in black alder swamps in south Sweden: Habitat classification, environmental factors and life-strategies. Lindbergia 2011, 34, 9–29. [Google Scholar]
- Bates, J. Influence of Chemical and Physical Factors on Quercus and Fraxinus Epiphytes at Loch Sunart, Western Scotland: A Multivariate Analysis. J. Ecol. 1992, 80, 163–179. [Google Scholar] [CrossRef]
- Adams, K. Proposal for a 5-km2 mapping scheme for eastern England. Bull. Br. Bryol. Soc. 1990, 55, 14–17. [Google Scholar]
- Dymytrova, L. Epiphytic lichens and bryophytes as indicators of air pollution in Kyiv city (Ukraine). Folia Cryptog. Estonica 2009, 46, 33–44. [Google Scholar]
- Hazell, P.; Kellner, O.; Rydin, H.; Gustafsson, L. Presence and abundance of four epiphytic bryophytes in relation to density of aspen (Populus tremula) and other stand characteristics. For. Ecol. Manag. 1998, 107, 147–158. [Google Scholar] [CrossRef]
- Zotz, G.; Vollrath, B. The epiphyte vegetation of the palm Socratea exorrhiza—Correlations with tree size, tree age and bryophyte cover. J. Trop. Ecol. 2003, 19, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Rose, F. Temperate forest management: Its effects on bryophyte and lichen floras and habitats. In Bryophytes and Lichens in a Changing Environment; Bates, J.W., Farmer, A.M., Eds.; Agris, Clarendon: Oxford, UK, 1992; pp. 211–233. ISBN 9780198542919. [Google Scholar]
- Whitelaw, M.; Burton, M. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob. Ecol. Conserv. 2015, 4, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Putna, S.; Mežaka, A. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptog. Estonica 2014, 51, 75–83. [Google Scholar] [CrossRef]
- Plášek, V.; Komínková, Z.; Ochyra, R.; Fialová, L.; Guo, S.; Sulayman, M. A Synopsis of Orthotrichum s. lato (Bryophyta, Orthotrichaceae) in China, with Distribution Maps and a Key to Determination. Plants 2021, 10, 499. [Google Scholar] [CrossRef]
- Steindor, K.; Palowski, B.; Goras, P.; Nadgórska-Socha, A. Assessment of Bark Reaction of Select Tree Species as an Indicator of Acid Gaseous Pollution. Pol. J. Environ. Stud. 2010, 20, 619–622. [Google Scholar]
- Schmidt, J.; Kricke, R.; Feige, G. Measurements of bark pH with a modified flathead electrode. Lichenologist 2001, 33, 456–460. [Google Scholar] [CrossRef]
- Radzi Abas, M.; Ahmad-Shah, A.; Nor Awang, M. Fluxes of ions in precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. Environ. Pollut. 1992, 75, 209–213. [Google Scholar] [CrossRef]
- Herwitz, S. Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf. Process. Landf. 1987, 12, 425–432. [Google Scholar] [CrossRef]
- Veneklaas, E.; Zagt, R.; Leerdam, A.; Ek, R.V.; Broekhoven, A.J.; Genderen, M.V. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 1990, 89, 183–192. [Google Scholar] [CrossRef]
- Foster, N.; Nicolson, J.A. Acid Deposition and Nutrient Leaching from Deciduous Vegetation and Podzolic Soils at the Turkey Lakes Watershed. Can. J. Fish. Aquat. Sci. 1988, 45, 96–100. [Google Scholar] [CrossRef]
- Chen, S.; Cao, R.; Yoshitake, S.; Ohtsuka, T. Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agric. For. Meteorol. 2019, 279, 107753. [Google Scholar] [CrossRef]
- Pearson, J.; Wells, D.M.; Seller, K.J.; Bennett, A.; Soares, A.; Woodall, J.; Ingrouille, M.J. Traffic exposure increases natural 15 N and heavy metal concentrations in mosses. New Phytol. 2000, 147, 317–326. [Google Scholar] [CrossRef]
- Leith, I.; Mitchell, R.; Truscott, A.; Cape, J.; van Dijk, N.; Smith, R.; Fowler, D.; Sutton, M. The influence of nitrogen in stemflow and precipitation on epiphytic bryophytes, Isothecium myosuroides Brid., Dicranum scoparium Hewd. and Thuidium tamariscinum (Hewd.) Schimp of Atlantic oakwoods. Environ. Pollut. 2008, 155, 237–246. [Google Scholar] [CrossRef]
- Mizuno, T.; Momohara, A.; Okitsu, S. The effects of bryophyte communities on the establishment and survival of an epiphytic fern. Folia Geobot. Phytotax. 2015, 50, 331–337. [Google Scholar] [CrossRef]
- Tremblay, R.L.; Zimmerman, J.; Lebrón, L.; Bayman, P.; Sastre, I.; Axelrod, F.; Alers-García, J. Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biol. Conserv. 1998, 85, 297–304. [Google Scholar] [CrossRef]
- Scheu, S.; Poser, G. The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: Indications for stemflow induced changes in community structure. Appl. Soil Ecol. 1996, 3, 115–125. [Google Scholar] [CrossRef]
- Thoms, C.; Gattinger, A.; Jacob, M.; Thomas, F.M.; Gleixner, G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol. Biochem. 2010, 42, 1558–1565. [Google Scholar] [CrossRef]
- Subramoniam, A.; Subhisha, S. Antifungal activities of a steroid from Pallavicinia lyellii, a liverwort. Indian J. Pharmacol. 2005, 37, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Rawat, A.K.S.; Raghavan, G. Antimicrobial activity of some Indian mosses. Fitoterapia 2007, 78, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.; Adamczak, A. Antibacterial activity of ethanolic extracts of some moss species. Herba Pol. 2017, 63, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Löbel, S.; Rydin, H. Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct. Ecol. 2010, 24, 887–897. [Google Scholar] [CrossRef]
- Friedel, A.; von Oheimb, G.; Dengler, J.; Haerdtle, W. Species diversity and species composition of epiphytic bryophytes and lichens a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert. 2006, 117, 172–185. [Google Scholar] [CrossRef]
- Mcgee, G.; Kimmerer, R. Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, USA. Can. J. For. Res. 2002, 32, 1562–1576. [Google Scholar] [CrossRef]
- Kříž, V. Moravian-Silesian region—Climatic and hydrological conditions. In Moravskoslezský Kraj—Klimatické a Hydrologické Poměry; University of Ostrava: Ostrava, Czech Republic, 2004; pp. 1–43. ISBN 80-704-2994-1. [Google Scholar]
- Rychlík, Š. Týdenní Analýza Atmosférických Srážek. CHMI. 2019. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2019_enh/precipitation_week/week_TBKRF_CZ.html (accessed on 15 November 2021).
- Rychlík, Š. Týdenní Analýza Atmosférických Srážek. CHMI. 2020. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2020_enh/precipitation_week/week_TBKRF_CZ.html (accessed on 15 November 2021).
- Mištera, L.; Demek, J.; Bašovský, O. Geografie Československé Socialistické Republiky, 1st ed.; SPN: Praha, Czech Republic, 1984. [Google Scholar]
- Čihař, M. Naše Hory; Cesty: Praha, Czech Republic, 2002; ISBN 80-718-1760-0. [Google Scholar]
- Sawicki, J.; Plášek, V.; Ochyra, R.; Szczecińska, M.; Slipiko, M.; Myszczyński, K.; Kulik, T. Mitogenomic analyses support the recent division of the genus Orthotrichum (Orthotrichaceae, Bryophyta). Sci. Rep. 2017, 7, 4408. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovářová, M.; Pyszko, P.; Plášek, V. How Does the pH of Tree Bark Change with the Presence of the Epiphytic Bryophytes from the Family Orthotrichaceae in the Interaction with Trunk Inclination? Plants 2022, 11, 63. https://doi.org/10.3390/plants11010063
Kovářová M, Pyszko P, Plášek V. How Does the pH of Tree Bark Change with the Presence of the Epiphytic Bryophytes from the Family Orthotrichaceae in the Interaction with Trunk Inclination? Plants. 2022; 11(1):63. https://doi.org/10.3390/plants11010063
Chicago/Turabian StyleKovářová, Markéta, Petr Pyszko, and Vítězslav Plášek. 2022. "How Does the pH of Tree Bark Change with the Presence of the Epiphytic Bryophytes from the Family Orthotrichaceae in the Interaction with Trunk Inclination?" Plants 11, no. 1: 63. https://doi.org/10.3390/plants11010063