A Review on Cistus sp.: Phytochemical and Antimicrobial Activities
Abstract
:1. Introduction
2. Genus’s Presentation
2.1. Botanical Presentation
2.2. Cultural Characteristics
2.3. Chemical Analysis
3. Biological Potent of Cistus Species
3.1. C. ladaniferus L.
3.2. C. monspeliensis L.
3.3. C. salviifolius L.
3.4. C. albidus L.
3.5. Cistus heterophyllus subsp. Carthaginensis (Pau)
3.6. C. clussii Dunal
3.7. Cistus populifolius L.
3.8. Cistus crispus L.
3.9. Cistus libanotis L. and Cistus villosus L.
3.10. Cistus creticus L.
3.11. Cistus laurifolius L.
4. Antiviral Activity of Cistus Extracts
Cistus Species | Collection Area | Part of Plant | Type of Extract | Viruses | Technique | Concentration µg/mL | % of Inhibition | Mechanism | References |
---|---|---|---|---|---|---|---|---|---|
C. incanus PANDALIS | Northern Greece | ND | CYSTUS052 solved in sterile PBS and sterile H2O | H7N7 | Cell culture and mouse infection model | 10,000 | 90% | Binding with virus and prevent adsorption to cells | [121] |
C. incanus PANDALIS | Northern Greece | ND | CYSTUS052 solved in sterile PBS | H1N1 H7N7 H5N1 | Cell culture and plaque titration of progeny virus | 50 | Maximum reduction in the order of two logs | Interaction of CYSTUS052 components with viral protein surface and block binding to cellular receptors | [122] |
C. incanus CYSTUS052®® and Cystus®® | Northern Greece Germany | ND | Aqueous extract and Polyphenol-enriched fraction | HIV Ebola virus Marburg virus | Cell culture and EASY-HIT technology for identification of HIV inhibitors | 100 | More than 80% | Blocking the viral gp120-mediated binding of virus protein to heparin and prevent primary attachment to host cells | [123] |
C. laurifolius | Kurtboğazı, Ankara, Turkey | Leaves | Ethanolic Extract and its fractions | HSV-1 PI-3 | Cell culture and Maximum cytopathogenic effect. | 512 | Not determined most activity with hexane (32 µg/mL MNTC) | ND | [126] |
C. creticus | Northern Crete | Labdanum resin | Diethyl ether and its fractions | Dengue virus | Cell culture and MTT-test | 31.25 | 100% | Based on literature: neuraminidase inhabiting and blocking viral proteins to prevent infection of host cells | [125] |
5. Antiparasitic Activity of Cistus Extracts
6. Antifungal Activity of Cistus Extracts
7. Antibacterial Activity of Cistus Extracts
7.1. Antibacterial Effect of EO
7.2. Antibacterial Effect of Isolated Compounds
7.3. Antibacterial Effect of Crude Extracts
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Adeniyi, A.; Asase, A.; Ekpe, P.K.; Asitoakor, B.K.; Adu-Gyamfi, A.; Avekor, P.Y. Ethnobotanical study of medicinal plants from Ghana; Confirmation of ethnobotanical uses, and review of biological and toxicological studies on medicinal plants used in Apra Hills Sacred Grove. J. Herb. Med. 2018, 14, 76–87. [Google Scholar] [CrossRef]
- Buragohain, J. Ethnomedicinal Plants Used by the ethnic Communities of Tinsukia District of Assam, India. Rec. Res. Sci. Technol. 2011, 3, 12. [Google Scholar]
- Mikawlrawng, K.; Rani, R.; Kumar, S.; Bhardwaj, A.R.; Prakash, G. Anti-paralytic medicinal plants—Review. J. Tradit. Complement. Med. 2018, 8, 4–10. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borris, R.P. Natural products research: Perspectives from a major pharmaceutical company. J. Ethnopharmacol. 1996, 51, 29–38. [Google Scholar] [CrossRef]
- Nair, J.J.; Wilhelm, A.; Bonnet, S.L.; van Staden, J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2017, 27, 4943–4951. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Haruna, A.; Yahaya, S.M. Recent Advances in the Chemistry of Bioactive Compounds from Plants and Soil Microbes: A Review. Chem. Afr. 2021, 4, 231–248. [Google Scholar] [CrossRef]
- Asif, M.; Yehya, A.H.S.; Al-Mansoub, M.A.; Revadigar, V.; Ezzat, M.O.; Ahamed, M.B.K.; Oon, C.E.; Murugaiyah, V.; Majid, A.S.A.; Majid, A.M.S.A. Anticancer attributes of Illicium verum essential oils against colon cancer. S. Afr. J. Bot. 2016, 103, 156–161. [Google Scholar] [CrossRef]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol. Adv. 2020, 38, 107287. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, D.E.; Watts, B.M. The Antioxidant Activity of Vegetable Extracts I. Flavone Aglycones. J. Food Sci. 1964, 29, 27–33. [Google Scholar] [CrossRef]
- Ahmed, S.I.; Hayat, M.Q.; Tahir, M.; Mansoor, Q.; Ismail, M.; Keck, K.; Bates, R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement. Altern. Med. 2016, 16, 460. [Google Scholar] [CrossRef] [Green Version]
- Traka, M.H.; Mithen, R.F. Plant Science and Human Nutrition: Challenges in Assessing Health-Promoting Properties of Phytochemicals. Plant Cell 2011, 23, 2483–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela-Grijalva, N.V.; Pinelli-Saavedra, A.; Muhlia-Almazan, A.; Domínguez-Díaz, D.; González-Ríos, H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 2017, 59, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, S.; Prabhu, S.; Rajalakhsmi, S.; Manogar, P. Review on potential phytocompounds in drug development for Parkinson disease: A pharmacoinformatic approach. Inform. Med. Unlocked 2016, 5, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Parvez, S.; Kang, M.; Chung, H.-S.; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 2007, 21, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Perrino, E.V.; Tomaselli, V.; Costa, R.; Pavone, P. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a Mediterranean biodiversity hot spot (Gargano—Italy). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2013, 147, 1006–1028. [Google Scholar] [CrossRef]
- Wagensommer, R.P.; Medagli, P.; Turco, A.; Perrino, E.V. IUCN Red List evaluation of the Orchidaceae endemic to Apulia (Italy) and considerations on the application of the IUCN protocol to rare species. Nat. Conserv. Res. 2020, 5. [Google Scholar] [CrossRef]
- Perrino, E.; Valerio, F.; Gannouchi, A.; Trani, A.; Mezzapesa, G. Ecological and Plant Community Implication on Essential Oils Composition in Useful Wild Officinal Species: A Pilot Case Study in Apulia (Italy). Plants 2021, 10, 574. [Google Scholar] [CrossRef]
- Maruca, G.; Spampinato, G.; Turiano, D.; Laghetti, G.; Musarella, C.M. Ethnobotanical notes about medicinal and useful plants of the Reventino Massif tradition (Calabria region, Southern Italy). Genet. Resour. Crop. Evol. 2019, 66, 1027–1040. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.; Kishor, A.; Singh, S.; Bhat, M.; Surmal, O.; Musarella, C. Exploring Plant-Based Ethnomedicine and Quantitative Ethnopharmacology: Medicinal Plants Utilized by the Population of Jasrota Hill in Western Himalaya. Sustainability 2020, 12, 7526. [Google Scholar] [CrossRef]
- Fernández-Mazuecos, M.; Vargas, P. Ecological rather than geographical isolation dominates Quaternary formation of Mediterranean Cistus species. Mol. Ecol. 2010, 19, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Vitali, F.; Pennisi, G.; Attaguile, G.; Savoca, F.; Tita, B. Antiproliferative and cytotoxic activity of extracts from Cistus incanus L. And Cistus monspeliensis L. on human prostate cell lines. Nat. Prod. Res. 2011, 25, 188–202. [Google Scholar] [CrossRef]
- Kalli, V.; Kollia, E.; Roidaki, A.; Proestos, C.; Markaki, P. Cistus incanus L. extract inhibits Aflatoxin B1 production by Aspergillus parasiticus in macadamia nuts. Ind. Crop. Prod. 2018, 111, 63–68. [Google Scholar] [CrossRef]
- Viapiana, A.; Konopacka, A.; Waleron, K.; Wesolowski, M. Cistus incanus L. commercial products as a good source of polyphenols in human diet. Ind. Crop. Prod. 2017, 107, 297–304. [Google Scholar] [CrossRef]
- Ellul, P.; Boscaiu, M.; Vicente, O.; Moreno, V.; Rosselló, J.A. Intra- and Interspecific Variation in DNA Content in Cistus (Cistaceae). Ann. Bot. 2002, 90, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, B.; Vargas, P. Systematics, character evolution, and biogeography of Cistus L. (Cistaceae) based on ITS, trnL-trnF, and matK sequences. Mol. Phylogenet. Evol. 2005, 37, 644–660. [Google Scholar] [CrossRef]
- Civeyrel, L.; Leclercq, J.; Demoly, J.-P.; Agnan, Y.; Quèbre, N.; Pélissier, C.; Otto, T. Molecular systematics, character evolution, and pollen morphology of Cistus and Halimium (Cistaceae). Plant Syst. Evol. 2011, 295, 23–54. [Google Scholar] [CrossRef]
- Simões, M.P.; Madeira, M.; Gazarini, L.C. Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil 2009, 323, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Catoni, R.; Gratani, L.; Varone, L. Physiological, morphological and anatomical trait variations between winter and summer leaves of Cistus species. Flora Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 442–449. [Google Scholar] [CrossRef]
- Roy, J.; Sonie, L. Germination and Population Dynamics of Cistus Species in Relation to Fire. J. Appl. Ecol. 1992, 29, 647–655. [Google Scholar] [CrossRef]
- Amaral, F.; Nova Flora de Portugal. Cont. E Açores Lisb. 1971, Volume I. Available online: https://www.castroesilva.com/store/sku/1710PG047/nova-flora-de-portugal (accessed on 15 June 2021).
- Pawluczyk, M.; Weiss, J.; Vicente-Colomer, M.J.; Egea-Cortines, M. Two alleles of rpoB and rpoC1 distinguish an endemic European population from Cistus heterophyllus and its putative hybrid (C. clausonis) with C. albidus. Plant Syst. Evol. 2011, 298, 409–419. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Sousa, M.J.; Morais, J.S.; Ferreira, I.C. Aromatic plants as a source of important phytochemicals: Vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crop. Prod. 2009, 30, 427–430. [Google Scholar] [CrossRef]
- Ben Jemia, M.; Kchouk, M.E.; Senatore, F.; Autore, G.; Marzocco, S.; De Feo, V.; Bruno, M. Antiproliferative activity of hexane extract from Tunisian Cistus libanotis, Cistus monspeliensis and Cistus villosus. Chem. Cent. J. 2013, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Galmés, J.; Medrano, H.; Flexas, J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007, 175, 81–93. [Google Scholar] [CrossRef]
- Simões, M.P.; Madeira, M.; Gazarini, L.C. The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of mediterranean shrubs in the context of global climate changes. Flora Morphol. Distrib. Funct. Ecol. Plants 2008, 203, 578–589. [Google Scholar] [CrossRef]
- Carlier, J.; Leitão, J.; Fonseca, F. Population genetic structure of Cistus ladanifer L. (Cistaceae) and genetic differentiation from co-occurring Cistus species. Plant Species Biol. 2008, 23, 141–151. [Google Scholar] [CrossRef]
- De Dato, G.D.; Micali, M.; Jaoudé, R.A.; Liberati, D.; De Angelis, P. Earlier summer drought affects leaf functioning of the Mediterranean species Cistus monspeliensis L. Environ. Exp. Bot. 2013, 93, 13–19. [Google Scholar] [CrossRef]
- Preedy, V.R. Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Waltham, MA, USA, 2016. [Google Scholar]
- Chaves, N.; Sosa, T.; Alías, J.C.; Escudero, J.C. Identification and Effects of Interaction Phytotoxic Compounds from Exudate of Cistus ladanifer Leaves. J. Chem. Ecol. 2001, 27, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Chaves, N.; Sosa, T.; Escudero, J.C. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 2001, 27, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Saracini, E.; Tattini, M.; Traversi, M.L.; Vincieri, F.F.; Pinelli, P. Simultaneous LC-DAD and LC-MS Determination of Ellagitannins, Flavonoid Glycosides, and Acyl-Glycosyl Flavonoids in Cistus salvifolius L. Leaves. Chromatographia 2005, 62, 245–249. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Fernández-Arroyo, S.; Roldán, C.; Guillén, E.; Saura, D.; Carretero, A.S.; Micol, V. A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: Evolutionary relationship. Phytochem. Anal. 2011, 22, 303–312. [Google Scholar] [CrossRef]
- Farley, R.A.; McNeilly, T. Diversity and divergence in Cistus salvifolius (L.) populations from contrasting habitats. Hereditas 2004, 132, 183–192. [Google Scholar] [CrossRef]
- Hegnauer, M.; Hegnauer, R. Chemotaxonomie der Pflanzen: Eine Ubersicht uber die Verbreitung und die Systematische Bedeutung der Pflanzenstoffe; Birkhäuser: Basel, Switzerland, 1962. [Google Scholar]
- Teresa, J.D.P.; Urones, J.; Marcos, I.; Bermejo, F.; Basabe, P. A rearranged labdane: Salmantic acid from Cistus laurifolius. Phytochemistry 1983, 22, 2783–2785. [Google Scholar] [CrossRef]
- Teresa, J.D.P.; Urones, J.G.; Marcos, I.S.; Barcala, P.B.; Garrido, N.M. Diterpenoid and other components of Cistus laurifolius. Phytochemistry 1986, 25, 1185–1187. [Google Scholar] [CrossRef]
- Demetzos, C.; Harvala, C.; Philianos, S.M.; Skaltsounis, A.L. A New Labdane-Type Diterpene and Other Compounds from the Leaves of Cistus incanus ssp. creticus. J. Nat. Prod. 1990, 53, 1365–1368. [Google Scholar] [CrossRef]
- Demetzos, C.; Mitaku, S.; Couladis, M.; Harvala, C.; Kokkinopoulos, D. Natural Metabolites of ent-13-epi-Manoyl Oxide and Other Cytotoxic Diterpenes from the Resin “LADANO” of Cistus creticus. Planta Med. 1994, 60, 590–591. [Google Scholar] [CrossRef]
- Urones, J.G.; Basabe, P.; Marcos, I.S.; Jiménez, A.; Lithgow, A.M.; López, M.; Moro, R.F.; Gómez, A. Ring a functionalized Neo-clerodane diterpenoids from Cistus populifolius. Tetrahedron 1994, 50, 10791–10802. [Google Scholar] [CrossRef]
- Berger, S.; Sicker, D. Classics in Spectroscopy: Isolation and Structure Elucidation of Natural Products; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Demetzos, C.; Mitaku, S.; Skaltsounis, A.L.; Harvala, M.C.C.; Libot, F. Diterpene esters of malonic acid from the resin ‘Ladano’ of Cistus creticus. Phytochemistry 1994, 35, 979–981. [Google Scholar] [CrossRef]
- Angelopoulou, D.; Demetzos, C.; Perdetzoglou, D. Diurnal and seasonal variation of the essential oil labdanes and clerodanes from Cistus monspeliensis L. leaves. Biochem. Syst. Ecol. 2002, 30, 189–203. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem. Toxicol. 2013, 59, 586–594. [Google Scholar] [CrossRef]
- Oller-López, J.L.; Rodriguez, R.; Cuerva, J.M.; Oltra, J.E.; Bazdi, B.; Dahdouh, A.; Lamarti, A.; Ibn Mansour, A. Composition of the Essential Oils of Cistus ladaniferus and C. monspeliensis from Morocco. J. Essent. Oil Res. 2005, 17, 553–555. [Google Scholar] [CrossRef]
- Deschepper, R. Variabilité de la Composition des Huiles Essentielles et Intérêt de la Notion de Chémotype en Aromathérapie. Ph.D. Thesis, Université d’Aix-Marseille—Faculté de Pharmacie, Marseille, France, 2017. [Google Scholar]
- Gomes, P.B.; Mata, V.G.; Rodrigues, A.E. Characterization of the Portuguese-Grown Cistus ladanifer Essential Oil. J. Essent. Oil Res. 2005, 17, 160–165. [Google Scholar] [CrossRef]
- Robles, C.; Bousquet-Mélou, A.; Garzino, S.; Bonin, G. Comparison of essential oil composition of two varieties of Cistus ladanifer. Biochem. Syst. Ecol. 2003, 31, 339–343. [Google Scholar] [CrossRef]
- Teixeira, S.; Mendes, A.; Alves, A.; Santos, L. Simultaneous distillation–extraction of high-value volatile compounds from Cistus ladanifer L. Anal. Chim. Acta 2007, 584, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Rauwald, H.W.; Grötzinger, K. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Pharmazie 2010, 4, 290–295. [Google Scholar] [CrossRef]
- Demetzos, C.; Loukis, A.; Spiliotis, V.; Zoakis, N.; Stratigakis, N.; Katerinopoulos, H.E. Composition and Antimicrobial Activity of the Essential oil of Cistus criticus L. J. Essent. Oil Res. 1995, 7, 407–410. [Google Scholar] [CrossRef]
- Demetzos, C.; Katerinopoulos, H.; Kouvarakis, A.; Stratigakis, N.; Loukis, A.; Ekonomakis, C.; Spiliotis, V.; Tsaknis, J. Composition and Antimicrobial Activity of the Essential Oil of Cistus criticus subsp. eriocephalus. Planta Med. 1997, 63, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Paolini, J.; Falchi, A.; Quilichini, Y.; Desjobert, J.-M.; De Cian, M.-C.; Varesi, L.; Costa, J. Morphological, chemical and genetic differentiation of two subspecies of Cistus creticus L. (C. creticus subsp. eriocephalus and C. creticus subsp. corsicus). Phytochemistry 2009, 70, 1146–1160. [Google Scholar] [CrossRef]
- Robles, C.; Garzino, S. Essential oil composition of Cistus albidus leaves. Phytochemistry 1998, 48, 1341–1345. [Google Scholar] [CrossRef]
- Maccioni, S.; Baldini, R.; Cioni, P.L.; Tebano, M.; Flamini, G. In vivo volatiles emission and essential oils from different organs and pollen of Cistus albidus from Caprione (Eastern Liguria, Italy). Flavour Fragr. J. 2006, 22, 61–65. [Google Scholar] [CrossRef]
- Paolini, J.; Tomi, P.; Bernardini, A.-F.; Bradesi, P.; Casanova, J.; Kaloustian, J. Detailed analysis of the essential oil from Cistus albidus L. by combination of GC/RI, GC/MS and 13C-NMR spectroscopy. Nat. Prod. Res. 2008, 22, 1270–1278. [Google Scholar] [CrossRef]
- Demetzos, C.; Angelopoulou, D.; Perdetzoglou, D. A comparative study of the essential oils of Cistus salviifolius in several populations of Crete (Greece). Biochem. Syst. Ecol. 2002, 30, 651–665. [Google Scholar] [CrossRef]
- Riehle, P.; Vollmer, M.; Rohn, S. Phenolic compounds in Cistus incanus herbal infusions—Antioxidant capacity and thermal stability during the brewing process. Food Res. Int. 2013, 53, 891–899. [Google Scholar] [CrossRef]
- Šarić, A.; Balog, T.; Sobočanec, S.; Kušić, B.; Šverko, V.; Rusak, G.; Likić, S.; Bubalo, D.; Pinto, B.; Reali, D.; et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem. Toxicol. 2009, 47, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, M.; Toniolo, C.; Venditti, A.; Bruno, M.; Ben Jemia, M. Antioxidant activity and chemical composition of three Tunisian Cistus: Cistus monspeliensis Cistus villosus and Cistus libanotis. Nat. Prod. Res. 2014, 29, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Orhan, N.; Aslan, M.; Şüküroğlu, M.; Orhan, D.D. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC–TOF-MS analysis. J. Ethnopharmacol. 2013, 146, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Lutzoni, F. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 2007, 88, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Mekhfi, H.; El Haouari, M.; Legssyer, A.; Bnouham, M.; Aziz, M.; Atmani, F.; Remmal, A.; Ziyyat, A. Platelet anti-aggregant property of some Moroccan medicinal plants. J. Ethnopharmacol. 2004, 94, 317–322. [Google Scholar] [CrossRef]
- Aziz, M.; Tab, N.; Karim, A.; Mekhfi, H.; Bnouham, M.; Ziyyat, A.; Melhaoui, A.; Legssyer, A. Relaxant effect of aqueous extract of Cistus ladaniferus on rodent intestinal contractions. Fitoterapia 2006, 77, 425–428. [Google Scholar] [CrossRef]
- El Kabbaoui, M.; Chda, A.; Azdad, O.; Mejrhit, N.; Aarab, L.; Bencheikh, R.; Tazi, A. Evaluation of hypoglycemic and hypolipidemic activities of aqueous extract of Cistus ladaniferus in streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2016, 6, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Belmokhtar, M.; Bouanani, N.E.; Ziyyat, A.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Matéo, P.; Fischmeister, R.; Legssyer, A. Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochem. Biophys. Res. Commun. 2009, 389, 145–149. [Google Scholar] [CrossRef]
- Youbi, A.E.H.E.; El Mansouri, L.; Boukhira, S.; Daoudi, A.; Bousta, D. In Vivo Anti-Inflammatory and Analgesic Effects of Aqueous Extract of Cistus ladanifer L. From Morocco. Am. J. Ther. 2016, 23, e1554–e1559. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Fernández-Arroyo, S.; Saura, D.; Guillén, E.; Fernández-Gutiérrez, A.; Carretero, A.S.; Micol, V. Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem. Toxicol. 2010, 48, 2273–2282. [Google Scholar] [CrossRef]
- El Kabbaoui, M.; Chda, A.; El-Akhal, J.; Azdad, O.; Mejrhit, N.; Aarab, L.; Bencheikh, R.; Tazi, A. Acute and sub-chronic toxicity studies of the aqueous extract from leaves of Cistus ladaniferus L. in mice and rats. J. Ethnopharmacol. 2017, 209, 147–156. [Google Scholar] [CrossRef]
- Dimas, K.; Demetzos, C.; Angelopoulou, D.; Kolokouris, A.; Mavromoustakos, T. Biological activity of myricetin and its derivatives against human leukemic cell lines in vitro. Pharmacol. Res. 2000, 42, 475–478. [Google Scholar] [CrossRef]
- Demetzos, C.; Dimas, K.; Hatziantoniou, S.; Anastasaki, T.; Angelopoulou, D. Cytotoxic and Anti-Inflammatory Activity of Labdane and cis-Clerodane Type Diterpenes. Planta Medica 2001, 67, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Abrini, J.; El-Baabou, A.; Dakka, Y.B.A.N. Determination of Phenol Content and Antibacterial Activity of Five Medicinal Plants Ethanolic Extracts from North-West of Morocco. J. Plant Pathol. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Sayah, K.; Marmouzi, I.; Mrabti, H.N.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. BioMed Res. Int. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Qa’Dan, F.; Petereit, F.; Mansoor, K.; Nahrstedt, A. Antioxidant oligomeric proanthocyanidins from Cistus salvifolius. Nat. Prod. Res. 2006, 20, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- El Euch, S.K.; Bouajila, J.; Bouzouita, N. Chemical composition, biological and cytotoxic activities of Cistus salviifolius flower buds and leaves extracts. Ind. Crop. Prod. 2015, 76, 1100–1105. [Google Scholar] [CrossRef]
- Sayah, K.; Chemlal, L.; Marmouzi, I.; El Jemli, M.; Cherrah, Y.; Faouzi, M.E.A. In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts. S. Afr. J. Bot. 2017, 113, 160–163. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crop. Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Et-Touys, A.; Bakri, Y.; Dakka, N. Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. Eur. J. Integr. Med. 2017, 13, 9–25. [Google Scholar] [CrossRef]
- López-Orenes, A.; Ros-Marín, A.F.; Ferrer, M.A.; Calderón, A.A. Antioxidant Capacity as a Marker for Assessing the In Vitro Performance of the Endangered Cistus heterophyllus. Sci. World J. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, I.; Alegre, L.; Munné-Bosch, S. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 2004, 24, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Bouyahya, A.; Abrini, J.; Talbaoui, A.; Et-Touys, A.; Chatoui, K.; Harhar, H.; Bakri, Y.; Dakka, N. Phytochemical Screening, Antiradical and Antibacterial Activities of Cistus crispus from Morocco. J. Mater. Environ. Sci. 2017, 8, 7. [Google Scholar]
- Bouyahya, A.; Bakri, Y.; Et-Touys, A.; Assemian, I.C.C.; Abrini, J.; Dakka, N. In vitro antiproliferative activity of selected medicinal plants from the North-West of Morocco on several cancer cell lines. Eur. J. Integr. Med. 2018, 18, 23–29. [Google Scholar] [CrossRef]
- Dimas, K.; Demetzos, C.; Marsellos, M.; Sotiriadou, R.; Malamas, M.; Kokkinopoulos, D. Cytotoxic Activity of Labdane Type Diterpenes Against Human Leukemic Cell Lines in vitro. Planta Medica 1998, 64, 208–211. [Google Scholar] [CrossRef]
- Matsingou, C.; Hatziantoniou, S.; Georgopoulos, A.; Dimas, K.; Terzis, A.; Demetzos, C. Labdane-type diterpenes: Thermal effects on phospholipid bilayers, incorporation into liposomes and biological activity. Chem. Phys. Lipids 2005, 138, 1–11. [Google Scholar] [CrossRef]
- Skorić, M.; Todorović, S.; Gligorijević, N.; Janković, R.; Živković, S.; Ristić, M.; Radulović, S. Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus subsp. creticus L. on human cancer cell lines. Ind. Crop. Prod. 2012, 38, 153–159. [Google Scholar] [CrossRef]
- Barkaoui, M.; Katiri, A.; Boubaker, H.; Msanda, F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J. Ethnopharmacol. 2017, 198, 338–350. [Google Scholar] [CrossRef]
- Manousidis, T.; Parissi, Z.; Kyriazopoulos, A.; Malesios, C.; Koutroubas, S.; Abas, Z. Relationships among nutritive value of selected forages, diet composition and milk quality in goats grazing in a Mediterranean woody rangeland. Livest. Sci. 2018, 218, 8–19. [Google Scholar] [CrossRef]
- Attaguile, G.; Perticone, G.; Mania, G.; Savoca, F.; Pennisi, G.; Salomone, S. Cistus incanus and Cistus monspeliensis inhibit the contractile response in isolated rat smooth muscle. J. Ethnopharmacol. 2004, 92, 245–250. [Google Scholar] [CrossRef]
- Hatziantoniou, S.; Dimas, K.; Georgopoulos, A.; Sotiriadou, N.; Demetzos, C. Cytotoxic and antitumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacol. Res. 2006, 53, 80–87. [Google Scholar] [CrossRef]
- Slezak, A.; Moreira, H.; Szyjka, A.; Oszmianski, J.; Gasiorowski, K. Conditions of prooxidant activity of cistus and pomegranate polyphenols in v79 cell cultures. Acta Pol. Pharm. Drug Res. 2017, 74, 670–678. [Google Scholar]
- Yeşilada, E.; Üstün, O.; Sezik, E.; Takaishi, Y.; Ono, Y.; Honda, G. Inhibitory effects of Turkish folk remedies on inflammatory cytokines: Interleukin-1α, interleukin-1β and tumor necrosis factor α. J. Ethnopharmacol. 1997, 58, 59–73. [Google Scholar] [CrossRef]
- Sadhu, S.K.; Okuyama, E.; Fujimoto, H.; Ishibashi, M.; Yesilada, E. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. J. Ethnopharmacol. 2006, 108, 371–378. [Google Scholar] [CrossRef]
- Küpeli, E.; Yesilada, E. Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. J. Ethnopharmacol. 2007, 112, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Ark, M.; Ustun, O.; Yesilada, E. Analgesic Activity of Cistus laurifolius in Mice. Pharm. Biol. 2004, 42, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Kupeli, E.; Orhan, D.D.; Yesilada, E. Effect of Cistus laurifolius L. leaf extracts and flavonoids on acetaminophen-induced hepatotoxicity in mice. J. Ethnopharmacol. 2006, 103, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Akkol, E.K.; Orhan, I.E.; Yesilada, E. Anticholinesterase and antioxidant effects of the ethanol extract, ethanol fractions and isolated flavonoids from Cistus laurifolius L. leaves. Food Chem. 2012, 131, 626–631. [Google Scholar] [CrossRef]
- Enomoto, S.; Okada, Y.; Güvenc, A.; Erdurak, C.S.; Coşkun, M.; Okuyama, T. Inhibitory Effect of Traditional Turkish Folk Medicines on Aldose Reductase (AR) and Hematological Activity, and on AR Inhibitory Activity of Quercetin-3-O-methyl Ether Isolated from Cistus laurifolius L. Biol. Pharm. Bull. 2004, 27, 1140–1143. [Google Scholar] [CrossRef] [Green Version]
- Papaefthimiou, D.; Papanikolaou, A.; Falara, V.; Givanoudi, S.; Kostas, S.; Kanellis, A.K. Genus Cistus: A model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front. Chem. 2014, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Stępień, A.E.; Aebisher, D.; Aebisher, D.B. Biological properties of Cistus species. Eur. J. Clin. Exp. Med. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Nováková, L.; Pavlík, J.; Chrenková, L.; Martinec, O.; Červený, L. Current antiviral drugs and their analysis in biological materials—Part II: Antivirals against hepatitis and HIV viruses. J. Pharm. Biomed. Anal. 2018, 147, 378–399. [Google Scholar] [CrossRef]
- Chiang, L.; Chiang, W.; Chang, M.; Ng, L.; Lin, C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antivir. Res. 2002, 55, 53–62. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Ammar, S.; Mighri, Z.; Gutmann, L.; Aouni, M. Antiviral activity of leaves extracts of Marrubium alysson L. J. Med. Plants Res. 2011, 5, 360–363. [Google Scholar]
- Droebner, K.; Ehrhardt, C.; Poetter, A.; Ludwig, S.; Planz, O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antivir. Res. 2007, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, C.; Hrincius, E.R.; Korte, V.; Mazur, I.; Droebner, K.; Poetter, A.; Dreschers, S.; Schmolke, M.; Planz, O.; Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antivir. Res. 2007, 76, 38–47. [Google Scholar] [CrossRef]
- Rebensburg, S.; Helfer, M.; Schneider, M.; Koppensteiner, H.; Eberle, J.; Schindler, M.; Gürtler, L.; Brack-Werner, R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci. Rep. 2016, 6, 20394. [Google Scholar] [CrossRef]
- Duncan, C.J. What caused the Black Death? Postgrad. Med. J. 2005, 81, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Kuchta, K.; Tung, N.H.; Ohta, T.; Uto, T.; Raekiansyah, M.; Grötzinger, K.; Rausch, H.; Shoyama, Y.; Rauwald, H.W.; Morita, K. The old pharmaceutical oleoresin labdanum of Cistus creticus L. exerts pronounced in vitro anti-dengue virus activity. J. Ethnopharmacol. 2020, 257, 112316. [Google Scholar] [CrossRef]
- Berrin-Ozcelik, O.U.; Baykal, T. Bioactivities of ethanolic extract and its fractions of Cistus laurifolius L. (Cistaceae) and Salvia wiedemannii Boiss. (Lamiaceae) species. Pharmacogn. Mag. 2016, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Fokialakis, N.; Kalpoutzakis, E.; Tekwani, B.L.; Khan, S.I.; Kobaisy, M.; Skaltsounis, A.L.; Duke, S.O. Evaluation of the antimalarial and antileishmanial activity of plants from the Greek island of Crete. J. Nat. Med. 2006, 61, 38–45. [Google Scholar] [CrossRef]
- Fokialakis, N.; Kalpoutzakis, E.; Tekwani, B.L.; Skaltsounis, A.L.; Duke, S.O. Antileishmanial Activity of Natural Diterpenes from Cistus sp. and Semisynthetic Derivatives Thereof. Biol. Pharm. Bull. 2006, 29, 1775–1778. [Google Scholar] [CrossRef] [Green Version]
- Bouyahya, A.; Et-Touys, A.; Dakka, N.; Fellah, H.; Abrini, J.; Bakri, Y. Antileishmanial potential of medicinal plant extracts from the North-West of Morocco. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 50–54. [Google Scholar] [CrossRef]
- Bouamama, H.; Noel, T.; Villard, J.; Benharref, A.; Jana, M. Antimicrobial activities of the leaf extracts of two Moroccan Cistus L. species. J. Ethnopharmacol. 2006, 104, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Alves, C.T.; Silva, S.; Henriques, M.; Santos-Buelga, C.; Ferreira, I.C. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind. Crop. Prod. 2013, 41, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Roidaki, A.; Kollia, E.; Panagopoulou, E.; Chiou, A.; Varzakas, T.; Markaki, P.; Proestos, C. Super foods and Super herbs: Antioxidant and Antifungal Activity. Curr. Res. Nutr. Food Sci. J. 2016, 4, 138–145. [Google Scholar] [CrossRef]
- Lahcen, S.A.; El Hattabi, L.; Benkaddour, R.; Chahboun, N.; Ghanmi, M.; Satrani, B.; Tabyaoui, M.; Zarrouk, A. Chemical composition, antioxidant, antimicrobial and antifungal activity of Moroccan Cistus creticus leaves. Chem. Data Collect. 2020, 26, 100346. [Google Scholar] [CrossRef]
- Ameziane, N.; Boubaker, H.; Boudyach, H.; Msanda, F.; Jilal, A.; Benaoumar, A.A. Antifungal activity of Moroccan plants against citrus fruit pathogens. Agron. Sustain. Dev. 2007, 27, 273–277. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.; Msanda, F.; Saadi, B.; Ben Aoumar, A.A. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop. Prot. 2012, 35, 41–46. [Google Scholar] [CrossRef]
- Karim, H.; Boubaker, H.; Askarne, L.; Cherifi, K.; Lakhtar, H.; Msanda, F.; Boudyach, E.; Ben Aoumar, A.A. Use of Cistus aqueous extracts as botanical fungicides in the control of Citrus sour rot. Microb. Pathog. 2017, 104, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Karim, H.; Boubaker, H.; Askarne, L.; Talibi, I.; Msanda, F.; Boudyach, E.; Saadi, B.; Ben Aoumar, A.A. Antifungal properties of organic extracts of eight Cistus L. species against postharvest citrus sour rot. Lett. Appl. Microbiol. 2016, 62, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrabet, N.; Mrabkt, N.; Lahlou, H.; Benjilali, B. Effect of Moroccan Cistus ladaniferus L. (rockrose) extracts on the growth of four fungi. Cryptogam. Mycol. 1999, 20, 23–33. [Google Scholar] [CrossRef]
- Upadhyay, N.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Chaudhari, A.K.; Dubey, N.K. Cistus ladanifer L. essential oil as a plant based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. LWT 2018, 92, 395–403. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Aouadhi, C.; Kaddour, R.; Gruber, M.; Zargouni, H.; Zaouali, W.; Ben Hamida, N.; Ben Nasri, M.; Ouerghi, Z.; Hosni, K. Comparison of antioxidant and antimicrobial activities of two cultivated Cistus species from Tunisia. Biosci. J. 2016, 32, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Demetzos, C.; Stahl, B.; Anastassaki, T.; Gazouli, M.; Tzouvelekis, L.S.; Rallis, M. Chemical Analysis and Antimicrobial Activity of the Resin Ladano, of its Essential Oil and of the Isolated Compounds. Planta Med. 1999, 65, 76–78. [Google Scholar] [CrossRef]
- Guinoiseau, E.; Luciani, A.; Serra, D.D.R.; Quilichini, Y.; Berti, L.; Lorenzi, V. Primary Mode of Action of Cistus ladaniferus L. Essential Oil Active Fractions on Staphylococcus aureus Strain. Adv. Microbiol. 2015, 5, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.; Bessa, L.J.; Martins, M.R.; Arantes, S.; Teixeira, A.P.S.; Mendes, Â.; Da Costa, P.M.; Belo, A.D.F. Chemical Composition, Antibacterial, Antibiofilm and Synergistic Properties of Essential Oils from Eucalyptus globulus Labill. and Seven Mediterranean Aromatic Plants. Chem. Biodivers. 2017, 14, e1700006. [Google Scholar] [CrossRef] [Green Version]
- Zohra, M. Antibacterial activity of essential oils from Cistus ladaniferus L. and Lavandula stoechas L. Int. J. Pharm. Res. 2011, 3, 484–487. [Google Scholar]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef] [Green Version]
- Kolocouris, A.; Mavromoustakos, T.; Demetzos, C.; Terzis, A.; Grdadolnik, S.G. Structure elucidation and conformational properties of a novel bioactive clerodane diterpene using a combination of high field NMR spectroscopy, computational analysis and X-ray diffraction. Bioorg. Med. Chem. Lett. 2001, 11, 837–840. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Szeremeta, D.; Knaś, M.; Długosz, E.; Ott, P.G.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. J. Chromatogr. A 2018, 1534, 170–178. [Google Scholar] [CrossRef]
- Ben Sassi, A.; Harzallah-Skhiri, F.; Aouni, M. Investigation of Some Medicinal Plants from Tunisia for Antimicrobial Activities. Pharm. Biol. 2007, 45, 421–428. [Google Scholar] [CrossRef]
- Güvenç, A.; Yildiz, S.; Ozkan, A.M.G.; Erdurak, C.S.; Coskun, M.; Yilmaz, G.; Okuyama, T.; Okada, Y.; Yıldız, S.; Yılmaz, G. Antimicrobiological Studies on Turkish Cistus. Species. Pharm. Biol. 2005, 43, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Menor, L.; Morales-Soto, A.; Barrajón-Catalán, E.; Roldan-Segura, C.M.; Carretero, A.S.; Micol, V. Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food Chem. Toxicol. 2013, 55, 313–322. [Google Scholar] [CrossRef]
- Bayoub, K.; Baibai, T.; Mountassif, D.; Retmane, A. Antibacterial activities of the crude ethanol extracts of medicinal plants against Listeria monocytogenes and some other pathogenic strains. Afr. J. Biotechnol. 2010, 9, 27. [Google Scholar]
- Ferreira, S.; Santos, J.; Duarte, A.; Queiroz, J.; Domingues, F. Screening of antimicrobial activity of Cistus ladanifer and Arbutus unedo extracts. Nat. Prod. Res. 2012, 26, 1558–1560. [Google Scholar] [CrossRef]
- Rebaya, A.; Souad, I.; Hammrouni, S.; Maaroufi, A.; Ayadi, M.; Chérif, J. Antibacterial and Antifungal Activities of Ethanol Extracts of Halimium halimifolium, Cistus salviifolius and Cistus monspeliensis. HAL 2016, 8, 6. [Google Scholar]
- Sqalli, H.; El Ouarti, A.; Ennabili, A.; Ibnsouda, S.; Farah, A.; Haggoud, A.; Houari, A.; Iraqui, M. Évaluation de l’effet antimycobactérien de plantes du centre-nord du Maroc. Bull. Soc. Pharm. 2007, 146, 271–288. [Google Scholar]
- Haouat, A.C.; Sqalli, H.; Farah, A.; Haggoud, A.; Iraqui, M. Activité antimycobactérienne des extraits de deux espèces marocaines du genre Cistus. Phytothérapie 2013, 11, 365–372. [Google Scholar] [CrossRef]
- Rauwald, H.W.; Liebold, T.; Grötzinger, K.; Lehmann, J.; Kuchta, K. Labdanum and Labdanes of Cistus creticus and C. ladanifer: Anti-Borrelia activity and its phytochemical profiling. Phytomedicine 2019, 60, 152977. [Google Scholar] [CrossRef]
- Hannig, C.; Spitzmüller, B.; Al-Ahmad, A.; Hannig, M. Effects of Cistus-tea on bacterial colonization and enzyme activities of the in situ pellicle. J. Dent. 2008, 36, 540–545. [Google Scholar] [CrossRef]
- Lekbach, Y.; Xu, D.; El Abed, S.; Dong, Y.; Liu, D.; Khan, M.S.; Koraichi, S.I.; Yang, K. Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract. Int. Biodeterior. Biodegrad. 2018, 133, 159–169. [Google Scholar] [CrossRef]
- Manikandan, P. Antibacterial activities of the methanol extracts of Cinnamomum cassia Cistus monspeliensis and three other medicinal plants against multi-drug resistant Gram-negative bacteria. In Proceedings of the National Conference on RIPP 2018, Tamil Nadu, India, 26–27 October 2018. [Google Scholar] [CrossRef]
Cistus Species | Collection Area | Part of Plant | Type of Extract | Parasite | Technique | Concentration µg/mL | IC50 µg/mL | Mechanism | References |
---|---|---|---|---|---|---|---|---|---|
C. monspeliensis C. creticus | Greece | Aerial parts Resin | Pure compounds from Dichloromethane extracts and semisynthetic derivatives | L. donovani | In vitro culture of promastigote and Alamar blue assay | 1.6–8–40 | From 3.5 to 37 | ND | [129] |
C. crispus | Ouezzane, Morocco | Leaves | Methanolic, Ethanolic and n-hexane extracts | L. major L. tropica L. infantum | MTT assay | ND | n-hexane against L. major = 47.29 | ND | [130] |
Cistus Species | Collection Area | Part of Plant | Type of Extract | Fungi | MIC µg/mL | MGI % | References |
---|---|---|---|---|---|---|---|
C. creticus | Greece | Leaves | EO | C. albicans | MID (1/250) | ND | [69] |
C. criticus subsp. eriocephalus | Kandanos Chania, Greece | Aerial parts | EO | C. albicans | MID (<1/200) | ND | [70] |
C. criticus subsp. creticus | MID (<1/250) | ||||||
C. ladaniferus | ND | ND | Essential Oil; Concrete; Absolute and Resinoid | A. niger B. cinerea M. racemosus V. albo-atrum | 4000 to 10,000 ppm of EO | 99.4% (M. racemosus) | [139] |
C. villosus | Ourika, Morocco | Leaves | Methanolic extracts and their fractions | A. fumigatus C. albicans C. krusei C. glabrata | 100,000 to 200,000 1560 to 200,000 6250 to >200,000 190 to 390 | ND | [131] |
C. monspeliensis | A. fumigatus C. albicans C. krusei C. glabrata | 25,000 to 200,000 25,000 to 200,000 12,500 to 100,000 1560 to 3125 | |||||
C. villosus | Agadir, Morocco | Leaves+stem | Plant powders | P. digitatum P. italicum G. candidum | ND | 100% 100% 100% | [135] |
EO | 37% 30% 18% | ||||||
Methanolic | 77% 17% 79% | ||||||
Chloroformic | 27% 27% 21% | ||||||
C. villosus | Agadir, Morocco | Leaves and stem | Aqueous | G. candidum | 156 | 100% | [136] |
C. ladanifer | Montesinho, Portugal | Leaves | Phenolic extract | C. albicans C. tropicalis C. glabrata C. parapsilosis | <50 625 <50 <50 | ND | [132] |
C. incanus | Greece | ND | Hydro-methanolic | A. parasiticus A. carbonarius | ND | 45.91% 30.65% | [133] |
C. incanus | Turkey | Unknown | Aqueous | C. albicans C. glabrata | 32,000 8000 | ND | [31] |
C. albidus | Morocco | Aerial parts | Aqueous | Geotrichumcitri-aurantii | >10,000 | >80% | [137] |
C. creticus | Aerial parts | 1250 | 100% | ||||
C. laurifolius | Aerial parts | <625 | 100% | ||||
C. salviifolius | Aerial parts | <625 | ND | ||||
C. monspeliensis | Aerial parts | <625 | 100% | ||||
C. ladanifer | Aerial parts | <625 | 100% | ||||
C. crispus | Aerial parts | >10,000 | 100% | ||||
C. populifolius | Leaves | <625 | 100% | ||||
C. creticus | Tafraout, Morocco | Leaves | EO | C. versicolor G. trabeum C. puteana P. placenta P. digitatum P. expansum A. niger | 1/64 1/250 1/1000 1/2000 1/100 1/32 1/100 | ND | [134] |
Ethanolic | >10,000 1000 >10,000 1000 1000 >10,000 >10,000 | ||||||
C. salviifolius C. monspeliensis | Jendouba, Tunisia | Leaves | Ethanol Hexane Water | C. albicans A. niger | ND | 6300–12,500 3100–12,500 | [141] |
Cistus Species | Collection Area | Part of Plant | Type of Extract | Fungi | Fungi Secondary Metabolites | MIC µL/mL | Finding | Mode of Action | References |
---|---|---|---|---|---|---|---|---|---|
C. incanus | North Greece | ND | Hydro-methanolic | Aspergillus parasiticus | Aflatoxin B1 | ND | Both mediums (macadamia, YES) inoculated in the presence of C. incanus extract showed potent inhibition of AFB1 production ranging from 72.5% to 90.1% | ND | [30] |
C. ladanifer | ND | ND | Essential Oil | Aspergillus flavus AF-M-K5 | Aflatoxin B1 | 0.6 | The EO was found to have an intense antifungal activity, with fungistatic action (MFC 3.0 µL/mL). Moreover, it caused absolute suppression of AFB1 at 0.5 µL/mL, without any phytotoxicity against tested seeds | Inhibition of ergosterol biosynthesis and enhancement of ions leakage from fungal cells leads to fungal growth inhibition -Antiaflatoxigenic potential can be attributed to the reduction of methylglyoxal which represses the expression of aflR | [140] |
Cistus Species | Collection Area | Part of Plant | Type of Extract | Tested Bacteria | DZI (mm) | MID | References |
---|---|---|---|---|---|---|---|
C. creticus | Greece | Leaves | EO | S. aureus S. epidermidis E. coli P. aeruginosa B. subtilis M. luteus | ND | 1/2000 1/500 <1/125 <1/400 1/2000 1/500 | [69] |
C. creticus | Kandanos, Chania, Greece | Aerial parts | EO | B. subtilis S. aureus S. epidermidis P. aeruginosa E. coli | ND | <1/2000 1/2000 1/500 <1/400 <1/125 | [70] |
C. creticus | Greece | Resin Ladano | EO | S. aureus S. epidermidis S. hominis | ND | 2000 µg/mL | [142] |
C. ladaniferus | Corsica, France | Aerial parts | EO | S. aureus | 52 | 800 µg/mL | [143] |
Hydrocarbonated fraction | 6.70 | 50,000 µg/mL | |||||
Oxygenated fraction | 35 | 100 µg/mL | |||||
Acetate fraction | 30 | 12.5 µg/mL | |||||
Alcohol fraction | 50 | 1500 µg/mL | |||||
C. ladaniferus | Alentejo, Portugal | Leaves | EO | S. aureus B. subtilis S. pneumoniae E. coli P. aeruginosa MRSA E. coli ESBL | 11 11 38 10 9 23 20 | ND | [144] |
C. ladaniferus | Unknown | Leaves and branches | EO | S. aureus | ND | 400 | [146] |
Cistus Species | Collection Area | Part of Plant | Isolated Compounds | Tested Bacteria | MIC (µg/mL) | References |
---|---|---|---|---|---|---|
C. creticus | Greece | Resin Ladano | Ent-3β-hydroxy-13-epi-manoyl oxide | S. aureus S. epidermidis S. hominis | 100 100 100 | [142] |
C. monspeliensis | ND | Leaves | (+)-19-acetoxy-cis-clerodan-3-ene-15-oic acid | S. aureus S. epidermidis S. hominis K. pneumoniae E. coli P. aeruginosa | 31 31 31 499.4 499.4 499.4 | [147] |
C. incanus * | Turkey | Aerial parts | Apigenin Kaempferide Cis-tiliroside/trans-tiliroside p-coumaric acid-conjugated tiliroside | B. subtilis A. fischeri | ND | [148] |
Cistus Species | Collection Area | Part of Plant | Solvent Used | Sensitive Bacteria | DZI (mm) | MIC (µg/mL) | References |
---|---|---|---|---|---|---|---|
C. creticus C. laurifolius C. monspeliensis C. parviflorus L.C. salviifolius | Aegean Mediterranean and Inner Anatolian, Turkey | Leavesand fruits | Water Methanol Chloroform Ethyl acetate n-butanol | S. aureus B. subtilis B. cereus | 9–15 8–10 8–12 | ND | [150] |
C. villosus | Ourika, Marrakesh, Morocco | Leaves | Methanol Hexane Dichloromethane Ethylacetate Butanol | E. coli P. aeruginosa S. aureus E. hirea | ND | 1560–3125 3125 0.78–1.56 1560–6250 | [131] |
C. monspeliensis | 3125–25,000 1560–50,000 1560–25,000 1560–25,000 | ||||||
C. albidus C. monspeliensis C. salviifolius | Chefchaouen, Morocco | Leaves | Water Ethanol | M. aurum A+ M. smegmatis MC2 M. bovis M. vaccae | Total inhibition at 160 mg/mL of extracts incorporated in the medium | [155] | |
C. monspeliensis | Tunisia | Leaves and Flowers | Hexane Acetone Methanol | S. aureus S. epidermidis S. saprophiticus E. faecalis P. aeruginosa | 12–23 12–32 10–24 10–18 12–18 | 156–625 78–1250 312–1250 625–1250 625–1250 | [149] |
C. ladaniferus | Spain | Aerial parts | Water | S. aureus E. coli | ND | MIC50 154 900 | [86] |
C. populifolius | 344 123 | ||||||
C. salviifolius | Unknown | Leaves | Ethanol | L. monocytogenes | 20 | 515 | [152] |
C. ladaniferus | Spain | Unknown | Water Hydroalcohol | S. aureus E. coli | ND | MIC50 144–569 113–612 | [151] |
C. albidus | 60–292 233–336 | ||||||
C. salviifolius | 45–52 221–289 | ||||||
C. clusii | 91–392 116–1064 | ||||||
C. monspeliensis | Ouezzane, Morocco | Leaves | Ethanol | E. coli K12 S. aureus | 9 16 | ND | [90] |
C. albidus | Aerial parts | 9 17 | |||||
C. crispus | Ouezzane, Morocco | Leaves | Ethanol n-butanol Methanol– Ethyl acetate (fraction) | E. coli K12 | <8–14 | >8000 | [99] |
S. aureus | 15–29 | 1000–3000 | |||||
L. monocytogenes | 21–31 | 1000–8000 | |||||
P. aeruginosa | <8–13 | 1000–>8000 | |||||
C. incanus | Turkey | Unknown | Water | S. aureus MRSA S. epidermidis MRSE S. pyogenes β E. hirae B. subtilis E. coli P. aeruginosa H. pylori | ND | 500 500 1000 1000 8000 16,000 8000 8000 8000 64,000 | [31] |
C. laurifolius | Ankara, Turkey | Leaves | Ethanol n-hexane Dichloromethane Butanol | E.coli P. aeruginosa P. mirabilis K. pneumonia A. baumannii S. aureus E. faecalis | ND | 32 64 32 32 32 64 64 | [126] |
C. monspeliensis | Leaves | Methanol | E. coli E. aerogenes K. pneumoniae P. stuartii P. aeruginosa | 13 11 8 10 9 | 64 68 71 75 65 | [160] | |
C. ladaniferus | Taza, Morocco | Leaves | Ethanol | P. aeruginosa | ND | 2500 | [159] |
C. salviifolius | Sidi Mechreg, Tunisia | Leavesand Flowers | Ethanol | E. coli P. aeruginosa S. typhimurium S. aureus B. subtilis L. monocytogenes | 22–24 23–26 21–25 22–25 23–24 20–25 | 12,500 12,500 12,500 1562–3125 12,500 1562–12,500 | [154] |
C. monspeliensis | 11–22 15–25 15–24 15–25 15–24 15–22 | 12,500 12,500 12,500 1562 12,500 1562–3125 | |||||
C. salviifolius | Jendouba, Tunisia | Leaves | Ethanol Hexane Water | E. coli S. typhimirium P. aeruginosa S. aureus E. faecalis | 18 20 10 17 13 | 12,500 25,000 3100 12,500 6300 | [141] |
C. monspeliensis | 14 17 10 17 16 | 6300 12,500 6300 12,500 12,500 |
Cistus Species | Collection Area | Part of Plant | Solvent Used | Bacteria Used | Surface Used | Finding | References |
---|---|---|---|---|---|---|---|
C. incanus Dr. Pandalis | Northern Greece | Unknown | Water | Oral bacteria | Cylindrical enamel slabs | Rinses with cistus-tea rich with polyphenols have reduced initial bacterial colonization (visualized by microscopic fluorescence method) on enamel in situ. Also, enzymes present in the pellicle were conserved and not affected by compounds present in the extract. | [158] |
C. ladaniferus | Taza, Morocco | Leaves | Ethanol | P. aeruginosa | 304 L SS coupons | P. aeruginosa accelerates the corrosion rate, while the compounds present in ethanolic extract demonstrate a dual effect: damage in the morphology of bacterial cell membrane and adsorption on a surface. That changes physicochemical proprieties and led to the formation of the non-conducting protective layer, which inhibited the 304 L SS coupon surface’s biocorrosion. | [159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. Plants 2021, 10, 1214. https://doi.org/10.3390/plants10061214
Zalegh I, Akssira M, Bourhia M, Mellouki F, Rhallabi N, Salamatullah AM, Alkaltham MS, Khalil Alyahya H, Mhand RA. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. Plants. 2021; 10(6):1214. https://doi.org/10.3390/plants10061214
Chicago/Turabian StyleZalegh, Imane, Mohamed Akssira, Mohammed Bourhia, Fouad Mellouki, Naima Rhallabi, Ahmad Mohammad Salamatullah, Mohammed Saeed Alkaltham, Heba Khalil Alyahya, and Rajaa Ait Mhand. 2021. "A Review on Cistus sp.: Phytochemical and Antimicrobial Activities" Plants 10, no. 6: 1214. https://doi.org/10.3390/plants10061214