An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance
Abstract
:1. Introduction
2. Types of Biopesticides
2.1. Microbial Pesticides
2.2. Biochemical Pesticides
2.2.1. Insect Pheromones
2.2.2. Plant-Based Extracts and Essential Oils
2.2.3. Insect Growth Regulators
2.3. GMO Products
3. Mode of Action of Biopesticides
3.1. Microbial Biopesticides
3.2. Biochemical Pesticides
3.3. GMO-Based Biopesticides
4. Biopesticides from Algal and Cyanobacterial Sources
5. Biopesticide Activity from RNAi-Based Treatments
6. Bacteria-Based Biopesticide
7. Biopesticides from Arbuscular Mycorrhizal Fungi (AMF)
8. Nanobiopesticides
9. Biopesticides from Aquatic Plants
10. Merits of Biopesticides over Chemical Pesticides
- High cost of pesticide production due to the costs involved in screening, developing, and getting regulatory clearance for new biological agents;
- Short shelf life due to the sensitivity of biopesticides to fluctuations in temperature and humidity;
- Limited field efficacy due to climatic/regional variations in temperature, humidity, soil conditions, etc.;
- Due to the high specificity of the biopesticides, i.e., they are only effective against target pathogens and pests, farmers are disinterested in them. They need to use multiple biological agents to control different pathogens and pests in the field. These agents are confusing, costly, and cumbersome, and are also not available for every pest or pathogen.
11. Commercial Exploitation of Biopesticides
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working Paper No ESA/P/WP; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- Pathak, J.; Maurya, P.K.; Singh, S.P.; Häder, D.P.; Sinha, R.P. Cyanobacterial farming for environment friendly sustainable agriculture practices: Innovations and perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Kalafati, L.; Barouni, R.; Karakousi, T.; Abdollahi, M.; Tsatsakis, A. Association of pesticide exposure with human congenital abnormalities. Toxicol. Appl. Pharmacol. 2018, 346, 58–75. [Google Scholar] [CrossRef]
- Kalliora, C.; Mamoulakis, C.; Vasilopoulos, E.; Stamatiades, G.A.; Scholtz, M.T.; Voldner, E.; McMillan, A.C.; Van Heyst, B.J. A pesticide emission model (PEM). Part I: Model development. Atmos. Environ. 2002, 36, 5005–5013. [Google Scholar]
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q.; Li, Y. Overview of mechanisms and uses of biopesticides. Int. J. Pest Manag. 2021, 67, 65–72. [Google Scholar] [CrossRef]
- Lehr, P. Global Markets for Biopesticides; Report Code CHM029E; BCC Research: Wellesley, MA, USA, 2014. [Google Scholar]
- Chen, J. Biopesticides: Global Markets to 2022; Report Code CHM029G; BCC Research: Wellesley, MA, USA, 2018. [Google Scholar]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilisers; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 25–54. [Google Scholar]
- FAOSTAT. Pesticides. Food and Agriculture Organization, Rome. Available online: http://www.fao.org/faostat/en/#data/RP (accessed on 10 May 2021).
- Consumption of Chemical Pesticides in Various States/UTs during 2014–2015 to 2019–2020. Department of Agriculture, Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India. Available online: http://ppqs.gov.in/statistical-database (accessed on 10 May 2021).
- FICCI. A Report on Indian Agrochemical Industry; A Federation of Indian Chambers of Commerce and Industry Report; FICCI: New Delhi, India, 2016; p. 45. Available online: https://ficci.in/spdocument/23103/agrochemical-ficci.pdf (accessed on 3 May 2021).
- Annual Report 2019–2020. Department of Chemicals and Petrochemicals, Ministry of Chemicals and Fertilisers, Government of India. Available online: http://chemicals.nic.in/sites/default/files/English%20Annual%20Report%20date%2024-2-2020.pdf (accessed on 10 May 2021).
- EPA. Ingredients Used in Pesticide Products: Pesticides. What Are Biopesticides? Available online: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides (accessed on 10 May 2021).
- Essiedu, J.A.; Adepoju, F.O.; Ivantsova, M.N. Benefits and limitations in using biopesticides: A review. In Proceedings of the VII International Young Researchers’ Conference—Physics, Technology, Innovations (PTI-2020), Ekaterinburg, Russia, 18–22 May 2020; Volume 2313, p. 080002. [Google Scholar] [CrossRef]
- Chang, J.H.; Choi, J.Y.; Jin, B.R.; Roh, J.Y.; Olszewski, J.A.; Seo, S.J.; O’Reilly, D.R.; Je, Y.H. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 2003, 84, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Ruiu, L. Microbial Biopesticides in Agroecosystems. Agronomy 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Ujváry, I. Chapter 3—Pest Control Agents from Natural Products. In Handbook of Pesticide Toxicology, 2nd ed.; Krieger, R.I., Krieger, W.C., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 109–179. [Google Scholar]
- Sporleder, M.; Lacey, L.A. Biopesticides. In Insect Pests of Potato; Alyokhin, A., Vincent, C., Giordanengo, P., Eds.; Elsevier: Oxford, UK, 2021; pp. 463–497. [Google Scholar]
- Gonzalez-Coloma, A.; Reina, M.; Diaz, C.E.; Fraga, B.M.; Santana-Meridas, O. Natural Product-Based Biopesticides for Insect Control. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Gurr, G.M.; Thwaite, W.G.; Nicol, H.I. Field evaluation of the effects of the insect growth regulator (tebufenozide) on entomophagous arthropods and pests of apples. Austr. J. Entomol. 1999, 38, 135–140. [Google Scholar] [CrossRef]
- Magierowicz, K.; Górska-Drabik, E.; Golan, K. Effects of plant extracts and essential oils on the Inc.behavior of Acrobasis advenella (Zinck.) caterpillars and females. J. Plant Dis. Prot. 2020, 127, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Doaa, S.M.; El-Sayed, H.S.; Asmaa, M.E. Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J. Entomol. Zool. 2017, 5, 1476–1482. [Google Scholar]
- Halder, J.; Rai, A.B.; Kodandaram, M.H. Compatibility of Neem Oil and Different Entomopathogens for the Management of Major Vegetable Sucking Pests. Natl. Acad. Sci. Lett. 2013, 36, 19–25. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P.R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother. 2009, 1, 52–63. [Google Scholar]
- Mordue, A.J.; Morgan, E.D.; Nisbet, A.J. Azadirachtin, a Natural Product in Insect Control. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 117–135. [Google Scholar]
- Dannon, H.F.; Dannon, A.E.; Douro-kpindou, O.K.; Zinsou, A.V.; Houndete, A.T.; Toffa-Mehinto, J.; Elegbede, I.A.T.M.; Olou, B.D.; Tamo, M. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. J. Cotton Res. 2020, 3, 24. [Google Scholar] [CrossRef]
- Parween, T.; Jan, S. Pesticides and environmental ecology. In Ecophysiology of Pesticides; Parween, T., Jan, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–38. [Google Scholar]
- Gwinn, K.D. Bioactive Natural Products in Plant Disease Control. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 56, pp. 229–246. [Google Scholar] [CrossRef]
- Parker, K.M.; Barragán, B.V.; van Leeuwen, D.M.; Lever, M.A.; Mateescu, B.; Sander, M. Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils. Environ. Sci. Technol. 2019, 53, 3027–3036. [Google Scholar] [CrossRef]
- Svidritskiy, E.; Ling, C.; Ermolenko, D.N.; Korostelev, A.A. Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. Proc. Natl. Acad. Sci. USA 2013, 110, 12283–12288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuwirth, B.S.; Day, J.M.; Hau, C.W.; Janssen, G.R.; Dahlberg, A.E.; Cate, J.H.; Vila-Sanjurjo, A. Structural analysis of kasugamycin inhibition of translation. Nat. Struct. Mol. Biol. 2006, 13, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Arena, J.P.; Liu, K.K.; Paress, P.S.; Frazier, E.G.; Cully, D.F.; Mrozik, H.; Schaeffer, J.M. The mechanism of action of avermectins in Caenorhabditis elegans: Correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. J. Parasitol. 1995, 2, 286–294. [Google Scholar] [CrossRef]
- Feduchi, E.; Cosín, M.; Carrasco, L. Mildiomycin: A nucleoside antibiotic that inhibits protein synthesis. J. Antibiot. 1985, 38, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Schorderet, W.S.; Kaminski, K.P.; Perret, J.-L.; Leroy, P.; Mazurov, A.; Peitsch, M.C.; Ivanov, N.V.; Hoeng, J. Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food Chem. Toxicol. 2019, 132, 110660. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.B.; Du, Y.; Hou, X.; Yan, N.; Dong, W.; Mao, X.; Zhang, Z. Chemical Basis of the Fungicidal Activity of Tobacco Extracts against Valsa mali. Molecules 2016, 21, 1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgar, M.A.; Zhang, D.; Wang, Q.; Wittwer, B.; Thi Pham, H.; Johnson, T.L.; Freelance, C.B.; Coquilleau, M. Insect Antennal Morphology: The Evolution of Diverse Solutions to Odorant Perception. Yale J. Biol. Med. 2018, 91, 457–469. [Google Scholar] [PubMed]
- Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl. Soil Ecol. 2018, 123, 714–728. [Google Scholar] [CrossRef]
- Ranglová, K.; Lakatos, G.E.; Câmara Manoel, J.A.; Grivalský, T.; Suárez Estrella, F.; Acién Fernández, F.G.; Molnár, Z.; Ördög, V.; Masojídek, J. Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. 2021, 53, 102136. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health Part B 2019, 54, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Prasanna, R.; Bidyarani, N.; Babu, S.; Mishra, B.K.; Kumar, A.; Adak, A.; Jauhari, S.; Yadav, K.; Singh, R.; et al. Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci. Hortic. 2013, 164, 94–101. [Google Scholar] [CrossRef]
- Koul, O. Microbial biopesticides: Opportunities and challenges. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 1–26. [Google Scholar]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Saberi, F.; Marzban, R.; Ardjmand, M.; Pajoum, S.F.; Tavakoli, O. Optimization of culture media to enhance the ability of local Bacillus thuringiensis var. tenebrionis. J. Saudi Soc. Agric. Sci. 2020, 19, 468–475. [Google Scholar] [CrossRef]
- McGuire, A.V.; Northfield, T.D. Tropical Occurrence and Agricultural Importance of Beauveria bassiana and Metarhizium anisopliae. Front. Sustain. Food Syst. 2020, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Gams, W.; Diederich, P.; Poldmaa, K. Fungicolous Fungi. In Biodiversity of Fungi; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Academic Press: Cambridge, MA, USA, 2004; pp. 343–392. [Google Scholar] [CrossRef]
- Dolatabadi, K.H.; Goltapeh, E.M.; Varma, A.; Rohani, N. In vitro evaluation of arbuscular mycorrhizal-like fungi and Trichoderma species against soil borne pathogens. J. Agric. Technol. 2011, 7, 73–84. [Google Scholar]
- Bailey, K.L. The Bioherbicide Approach to Weed Control Using Plant Pathogens. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 245–266. [Google Scholar] [CrossRef]
- Moreno-Gavíra, A.; Huertas, V.; Diánez, F.; Sánchez-Montesinos, B.; Santos, M. Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. Plants 2020, 9, 1746. [Google Scholar] [CrossRef] [PubMed]
- Kadoić, B.M.; Bažok, R.; Mikac, K.M.; Lemic, D.; Pajač, Ž.I. Pest Management Challenges and Control Practices in Codling Moth: A Review. Insects 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lala, F.; Cahyaningrum, H.; Hadiarto, A.; Brahmantiyo, B. Implementation of Biopesticides to Control Phytophthora palmivora Butl. and Conopomorpha cramerella Snell. on Cacao in South Halmahera. In Proceedings of the 5th International Conference on Food, Agriculture and Natural Resources (FANRes, 2019), Ternate, Indonesia, 17–19 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Kanwar, R.K.; Sehgal, A.; Cahill, D.M.; Barrow, C.J.; Sehgal, R.; Kanwar, J.R. Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides. Front. Plant Sci. 2017, 8, 610. [Google Scholar] [CrossRef] [PubMed]
- Marrone, P. An effective biofungicide with novel modes of action. Pestic. Outlook 2002, 13, 193–194. [Google Scholar] [CrossRef]
- Isman, M.B. Bioinsecticides based on plant essential oils: A short overview. Z Nat. C J. Biosci. 2020, 75, 179–182. [Google Scholar] [CrossRef]
- Guerra, F.; Sepúlveda, S. Saponin Production from Quillaja Genus Species. An Insight into Its Applications and Biology. Sci. Agric. 2021, 78, 305. [Google Scholar] [CrossRef]
- Ishikawa, S. Integrated disease management of strawberry anthracnose and development of a new biopesticide. J. Gen. Plant Pathol. 2013, 79, 441–443. [Google Scholar] [CrossRef]
- Mensah, R.; Moore, C.; Watts, N.; Deseo, M.A.; Glennie, P.; Pitt, A. Discovery and development of a new semiochemical biopesticide for cotton pest management: Assessment of extract effects on the cotton pest Helicoverpa spp. Entom. Exp. Appl. 2014, 152, 1–15. [Google Scholar] [CrossRef]
- Kirk, W.W.; Schafer, R.S. Efficacy of new active ingredient formulations and new biopesticides for managing Fusarium root rot disease of gladiolus hybrids. Acta Hortic. 2015, 1105, 55–60. [Google Scholar] [CrossRef]
- Eski, A.; Demir, D.; Sezen, K.; Demirbag, Z.A. New biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 2017, 33, 95. [Google Scholar] [CrossRef] [PubMed]
- Dubois, C.; Arsenault-Labrecque, G.; Pickford, J. Evaluation of a new biopesticide against angular leaf spot in a commercial operation system. Acta Hortic. 2017, 1156, 757–764. [Google Scholar] [CrossRef]
- Pavela, R.; Waffo-Teguo, P.; Biais, B.; Richard, T.; Mérillon, J.M. Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J. Pest Sci. 2017, 90, 961–970. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 2017, 576, 10–21. [Google Scholar] [CrossRef]
- Mauchline, A.L.; Hervé, M.R.; Cook, S.M. Semiochemical-based alternatives to synthetic toxicant insecticides for pollen beetle management. Arthropod-Plant Interact. 2018, 12, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Mossa, A.T.H.; Abdelfattah, N.A.H.; Mohafrash, S.M.M. Nanoemulsion of camphor (Eucalyptus globules) essential oil, formulation, characterization and insecticidal activity against wheat weevil, Sitophilus granaries. Asian J. Crop Sci. 2017, 9, 50–62. [Google Scholar] [CrossRef]
- El-Sayed, A.; Bengtsson, M.; Rauscher, S.; Lofqvist, J.; Witzgall, P. Multicomponent Sex Pheromone in Codling Moth (Lepidoptera: Tortricidae). Environ. Entomol. 1999, 28, 775–779. [Google Scholar] [CrossRef]
- Olowe, O.M.; Olawuyi, O.J.; Sobowale, A.A.; Odebode, A.C. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L. (Maize). Curr. Plant Biol. 2018, 15, 30–37. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Sharma, S. Role of Arbuscular Mycorrhizae in pest management. Int. J. Ecol. Environ. Sci. 2006, 32, 193–205. [Google Scholar]
- Mukerji, K.G.; Ciancio, A. Mycorrhizae in the integrated pest and disease management. In General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, Switzerland, 2007; Volume 1. [Google Scholar] [CrossRef]
- Narware, J.; Yadav, R.N.; Keswani, C.; Singh, S.P.; Singh, H.B. Silver nanoparticle-based biopesticides for phytopathogens: Scope and potential in agriculture. In Nano-Biopesticides Today and Future Perspectives; Koul, O., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 303–314. [Google Scholar]
- Rodrigues, D.; Costa-Pinto, A.R.; Sousa, S.; Vasconcelos, M.W.; Pintado, M.M.; Pereira, L.; Rocha-Santos, T.A.P.; Costa, J.P.D.; Silva, A.M.S.; Duarte, A.C.; et al. Sargassum muticum and Osmundea pinnatifida Enzymatic Extracts: Chemical, Structural, and Cytotoxic Characterization. Mar. Drugs 2019, 17, 209. [Google Scholar] [CrossRef] [Green Version]
- Sponsler, D.B.; Grozinger, C.M.; Hitaj, C.; Rundlöf, M.; Botías, C.; Code, A.; Lonsdorf, E.V.; Melathopoulos, A.P.; Smith, D.J.; Suryanarayanan, S.; et al. Pesticides and pollinators: A socioecological synthesis. Sci. Total Environ. 2019, 662, 1012–1027. [Google Scholar] [CrossRef]
- Dar, S.A.; Wani, S.H.; Mir, S.H.; Showkat, A.; Dolkar, T.; Dawa, T. Biopesticides: Mode of Action, Efficacy and Scope in Pest Management. J. Adv. Res. Biochem. Pharmacol. 2021, 4, 1–8. [Google Scholar]
- Malinga, L.N.; Laing, M.D. Efficacy of three biopesticides against cotton pests under field conditions in South Africa. Crop. Prot. 2021, 145, 105578. [Google Scholar] [CrossRef]
- Ratcliff, F.; Harrison, B.D.; Baulcombe, D.C. A similarity between viral defense and gene silencing in plants. Science 1997, 276, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.T.; Voinnet, O.; Baulcombe, D.C. Initiation and maintenance of virus-induced gene silencing. Plant Cell 1998, 10, 937–946. [Google Scholar] [CrossRef]
- Wang, M.B.; Abbott, D.C.; Waterhouse, P.M. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol. 2000, 1, 347–356. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286, 950–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: Doublestranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Dalmay, T.; Hamilton, A.; Rudd, S.; Angell, S.; Baulcombe, D.C. An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 2000, 101, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S.; Running, M.; Meyerowitz, E. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 1999, 126, 5231–5243. [Google Scholar] [CrossRef]
- Schauer, S.E.; Jacobsen, S.E.; Meinke, D.W.; Ray, A. DICER-LIKE1: Blind men and elephants in Arabidopsis development. Trends Plant Sci. 2002, 7, 487–491. [Google Scholar] [CrossRef]
- Liu, J.; Carmell, M.A.; Rivas, F.V.; Marsden, C.G.; Thomson, J.M.; Song, J.-J.; Hammond, S.M.; Joshua-Tor, L.; Hannon, G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305, 1437–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumberger, N.; Baulcombe, D.C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 2005, 102, 11928–11933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, S.J.; Reeves, P.T.; Hoang, B.T.; Mitter, N. A perspective on RNAi-based biopesticides. Front. Plant Sci. 2020, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.B.; Cai, W.J.; Wang, J.W.; Hong, G.J.; Tao, X.Y.; Wang, L.J.; Huang, Y.-P.; Chen, X.-Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 2007, 25, 1307–1313. [Google Scholar] [CrossRef]
- Waltz, E. USDA approves next-generation GM potato. Nat. Biotechnol. 2015, 33, 12–13. [Google Scholar] [CrossRef]
- Baranski, R.; Klimek-Chodacka, M.; Lukasiewicz, A. Approved genetically modified (GM) horticultural plants: A 25-year perspective. Folia Hortic. 2019, 31, 3–49. [Google Scholar] [CrossRef] [Green Version]
- Rosa, C.; Kuo, Y.W.; Wuriyanghan, H.; Falk, B.W. RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol. 2018, 56, 581–610. [Google Scholar] [CrossRef]
- Head, G.P.; Carroll, M.W.; Evans, S.P.; Rule, D.M.; Willse, A.R.; Clark, T.L.; Storer, N.P.; Flannagan, R.D.; Samuel, L.W.; Meinke, L.J. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: Efficacy and resistance management. Pest Manag. Sci. 2017, 73, 1883–1899. [Google Scholar] [CrossRef] [Green Version]
- Roh, J.Y.; Choi, J.Y.; Li, M.S.; Jin, B.R.; Je, Y.H. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 2007, 17, 547–549. [Google Scholar] [PubMed]
- Mishra, V.; Ellouze, W.; Howard, R.J. Utility of Arbuscular Mycorrhizal Fungi for Improved Production and Disease Mitigation in Organic and Hydroponic Greenhouse Crops. J. Hortic. 2018, 5, 1–10. [Google Scholar] [CrossRef]
- Ellouze, W.; Hamel, C.; Singh, A.K.; Mishra, V.; DePauw, R.M.; Knox, R.E. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairie. Can. J. Microbiol. 2018, 64, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Vannette, R.L.; Hunter, M.D. Mycorrhizal fungi as mediators of defence against insect pests in agricultural systems. Agric. For. Entomol. 2009, 11, 351–358. [Google Scholar] [CrossRef]
- Olowe, O.M.; Odebode, A.C.; Olawuyi, O.J.; Akanmu, A.O. Correlation, Principal Component Analysis and Tolerance of Maize Genotypes to Drought and Diseases in Relation to Growth Traits. Am. Eurasian J. Agric. Environ. Sci. 2003, 13, 1554–1561. [Google Scholar]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef]
- Kremer, R.J. Bioherbicides and nanotechnology: Current status and future trends. In Nano-Biopesticides Today and Future Perspectives; Koul, O., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 353–366. [Google Scholar]
- Abd-Elsalam, K.A.; Al-Dhabaan, F.A.; Alghuthaymi, M.; Njobeh, P.B.; Almoammar, H. Nanobiofungicides: Present concept and future perspectives in fungal control. In Nano-Biopesticides Today and Future Perspectives; Koul, O., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 315–351. [Google Scholar]
- Fu, Y.; Bhadha, J.H.; Rott, P.; Beuzelin, J.M.; Kanissery, R. Investigating the use of aquatic weeds as biopesticides towards promoting sustainable agriculture. PLoS ONE 2020, 15, e0237258. [Google Scholar] [CrossRef]
- Sundh, I.; Goettel, M.S. Regulating biocontrol agents: A historical perspective and a critical examination comparing microbial and macrobial agents. BioControl 2012, 58, 575–593. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Current Status and Recent Developments in Biopesticide Use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, A. Biopesticides: Present status and the future prospects. J. Fertil. Pestic. 2015, 6, e129. [Google Scholar] [CrossRef]
- Czaja, K.; Góralczyk, K.; Strucinski, P.; Hernik, A.; Korcz, W.; Minorczyk, M.; Łyczewska, M.; Ludwicki, J.K. Biopesticides—Towards increased consumer safety in the European Union. Pest Manag. Sci. 2015, 71, 3–6. [Google Scholar] [CrossRef] [PubMed]
Source | Type | Organism | Pest Type | Target Crop | Reference(s) |
---|---|---|---|---|---|
Bacteria | Insecticide | Bacillus thuringiensis var kurstaki B. thuringiensis var tenebrionis | caterpillars, fungi (Botrytis) Elm Leaf Beetle, Alfalfa weevil | vegetables, fruits, ornamentals, cereals Potato | Koul [44]; Bravo et al. [45] Saberi et al. [46] |
fungicide | Bacillus subtilis | Botrytis spp. | vegetables, fruits, and ornamentals | Koul [44]; Bravo et al. [45] | |
Fungi | insecticide | Beauveria bassiana | Whitefly | protected edible and ornamental plant production | McGuire and Northfield [47] |
fungicide | Coniothyrium minitans Trichoderma harzianum | Sclerotinia spp. S sclerotiorum. | outdoor edible and nonedible crops and protected crops Starwberry crops | Gams et al. [48] Dolatabadi et al. [49] | |
herbicide | Chondrostereum purpureum | cut stumps of hardwood trees and shrubs | Forestry | Bailey [50] | |
nematicide | Paecilomyces lilacinus | plant-parasitic nematodes in soil | vegetables, soft fruit, citrus, ornamentals, tobacco and turf | Moreno-Gavíra et al. [51] | |
Virus | insecticide | Cydia pomonella granulovirus | codling moth | apples and pears | Kadoić Balaško et al. [52] |
Oomycetes | herbicide | Phytophthora palmivora | Morenia orderata | citrus crops | Lala et al. [53] |
Neem (Azadirachta indica) | insecticide | Azadirachtin | aphids, scale, thrips, whitefly, leafhoppers, weevils | vegetables, fruits, herbs, and ornamental crops | Chaudhary et al. [54] |
Plant extracts | fungicide | Reynoutria sachalinensis (giant knotweed) extract | powdery mildew, downy mildew, Botrytis, late blight, citrus canker | protected ornamental and edible crops | Marrone [55] |
herbicide | Plant essential oils | Ragwort, many arthropods | Grassland | Isman [56] | |
nematicide | Quillaja saponaria | plant parasitic nematodes | vineyards, orchards, field crops, ornamentals and turf | Guerra and Sepúlveda [57] | |
Talaromyces flavus; Clitoria ternatea (butterfly pea); Trichoderma harzianum; Bacillus thuringiensis var. tenebrionis; Lactobacillus casei fermentation products | biopesticides | Glomerella cingulata and Colletotrichum acutatum; Helicoverpa spp.; Fusarium oxysporum Agelastica alni; Spodoptera litura, Helicoverpa armigera, Aphis gossypii; Xanthomonas fragariae; Spodoptera littoralis and others | Strawberry, Cotton, Gladiolus hybrids, alder leaf, and hazelnut, other economically important plants and trees | Ishikawa [58]; Mensah et al. [59].; Kirk and Schafer [60] Eski et al. [61].; Dubois et al. [62]; Pavela et al. [63]; El-Abbassi et al. [64] | |
Semiochemical | attractant | Citronellol | tetranychid mites | apples, cucurbits, grapes, hops, nuts, pears, stone fruit, nursery, and ornamental crops | Mauchline et al. [65]; Mossa et al. [66] |
attractant | Multi-component sex pheromone, such as (E,E)-8,10-dodecadien-1-ol | codling moth | Fruits, such as apples and pears | El-Sayed et al. [67] | |
Arbuscular Mycorrhizal Fungi | Mutual inhabitant in the roots | Fungi | Fusarium verticillioides; pathogens affecting below ground plant organs | Zea mays | Olowe et al. [68]; Bharadwaj and Sharma [69]; Mukerji and Ciancio, [70] |
Microalgae | Filamentous cyanobacterium; Single-celled green algae | Nostoc piscinale; Chlamydopodium fusiforme; Chlorella vulgaris | - | - | Ranglova et al. [41] |
Anabaena laxa and Calothrix elenkinii | Increase in fungicidal activity | Coriander, cumin, and fennel | Kumar et al. [43] | ||
Nanobiopesticide | Silver nanobiopesticide | None | Alternaria alternata, A. solani | Alternaria leaf blight and leaf spot diseases in tomato, pepper, and potato | Narware et al. [71] |
Sargassum muticum derived NPs | None | Ariadne merione, a Lepidopteran pest | - | Narware et al. [71]; Rodrigues et al. [72] | |
Caulerpa scalpelliformis and Mesocyclops longisetus-derived NPs | None | Culex quinquefasciatus | - | Narware et al. [71] |
Conventional Chemical Pesticides | Biopesticides |
---|---|
Synthesised or produced from artificial/chemicals | Use naturally occurring compounds derived from living organisms for the production |
They cause environmental pollution and are not eco-friendly | They do not cause environmental harm |
Harmful to nontarget organisms | Do not cause harm to nontarget organisms |
Cost ineffective | Cost efficient and cheaper, compared to chemical fertilisers |
Microorganisms develop resistance gradually as the application increases | Pests do not develop resistance |
High market value | Not preferred in the market |
Contaminate water and soil | Cannot contaminate water sources |
Lead to bioaccumulation | Do not lead to bioaccumulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. https://doi.org/10.3390/plants10061185
Kumar J, Ramlal A, Mallick D, Mishra V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants. 2021; 10(6):1185. https://doi.org/10.3390/plants10061185
Chicago/Turabian StyleKumar, Jitendra, Ayyagari Ramlal, Dharmendra Mallick, and Vachaspati Mishra. 2021. "An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance" Plants 10, no. 6: 1185. https://doi.org/10.3390/plants10061185
APA StyleKumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants, 10(6), 1185. https://doi.org/10.3390/plants10061185