Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Sampling Survey
2.3. Environmental Factors
2.4. Data Analysis
3. Results
3.1. Water, Energy, and Plant Diversity in Dryland
3.2. Relative Importance of Water and Energy on Overall Plant Diversity along the Aridity Gradient
3.3. The Responses of Different Plant Lifeforms to Water and Energy along the Aridity Gradient
4. Discussion
4.1. The Effects of Water-Energy Dynamics on Dryland Plant Diversity
4.2. The Different Responses of Plant Lifeforms to Water and Energy along the Aridity Gradient
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Wang, Z.; Rahbek, C.; Sanders, N.J.; Fang, J. Geographical variation in the importance of water and energy for oak diversity. J. Biogeogr. 2016, 43, 279–288. [Google Scholar] [CrossRef]
- Hageer, Y.; Esperón-Rodríguez, M.; Baumgartner, J.B.; Beaumont, L.J. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species? PeerJ 2017, 5, e3446. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Gaston, K.J. Climate, energy and diversity. Proc. R. Soc. B Biol. Sci. 2006, 273, 2257–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.M.; Wang, G.X.; Morris, E.C.; Wei, X.P.; Li, D.X.; Chen, B.M.; Zhao, C.M.; Liu, J.; Wang, Y. Plant mass-density relationship along a moisture gradient in north-west China. J. Ecol. 2006, 94, 953–958. [Google Scholar] [CrossRef]
- Groffman, P.M.; Driscoll, C.T.; Fahey, T.J.; Hardy, J.P.; Fitzhugh, R.D.; Tierney, G.L. Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 2001, 56, 135–150. [Google Scholar] [CrossRef]
- Francis, A.P.; Currie, D.J. A Globally Consistent Richness-Climate Relationship for Angiosperms. Am. Nat. 2003, 161, 523–536. [Google Scholar] [CrossRef]
- O’Brien, E.M. Climatic Gradients in Woody Plant Species Richness: Towards an Explanation Based on an Analysis of Southern Africa’s Woody Flora. J. Biogeogr. 1993, 20, 181–198. [Google Scholar] [CrossRef]
- Vico, G.; Thompson, S.E.; Manzoni, S.; Molini, A.; Albertson, J.D.; Almeida-Cortez, J.S.; Fay, P.A.; Feng, X.; Guswa, A.J.; Liu, H.; et al. Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology 2015, 8, 660–681. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.-M.; Li, T.; Wang, G.-X.; Liu, J.; Yu, Z.-L.; Zhao, C.-M.; Ji, M.-F.; Zhang, Q.; Liu, J.-q. Trade-offs between the metabolic rate and population density of plants. PLoS ONE 2008, 3, e1799. [Google Scholar] [CrossRef] [Green Version]
- Forni, C.; Duca, D.; Glick, B.R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 2017, 410, 335–356. [Google Scholar] [CrossRef]
- O’Brien, E.M. Water-energy dynamics, climate, and prediction of woody plant species richness: An interim general model. J. Biogeogr. 1998, 25, 379–398. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, D.; Li, W.; Guo, S.; Guan, Y.; Bian, X.; Yao, W. Effect of the Long-Term Mean and the Temporal Stability of Water-Energy Dynamics on China’s Terrestrial Species Richness. Int. J. Geo-Inf. 2017, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, E.M. Biological relativity to water–energy dynamics. J. Biogeogr. 2006, 33, 1868–1888. [Google Scholar] [CrossRef]
- O’Brien, E.M.; Field, R.; Whittaker, R.J. Climatic gradients in woody plant (tree and shrub) diversity: Water-energy dynamics, residual variation, and topography. Oikos 2000, 89, 588–600. [Google Scholar] [CrossRef]
- Hawkins, B.A.; Field, R.; Cornell, H.V.; Currie, D.J.; Guégan, J.-F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.; Oberdorff, T.; O’Brien, E.M. Energy, water, and broad-scale geographic patterns of species richness. Ecology 2003, 84, 3105–3117. [Google Scholar] [CrossRef] [Green Version]
- Panda, R.M.; Behera, M.D.; Roy, P.S.; Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 2017, 7, 10850–10860. [Google Scholar] [CrossRef]
- Kreft, H.; Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 5925–5930. [Google Scholar] [CrossRef] [Green Version]
- Currie, D.J.; Mittelbach, G.G.; Cornell, H.V.; Field, R.; Guégan, J.F.; Hawkins, B.A.; Kaufman, D.M.; Kerr, J.T.; Oberdorff, T.; O’Brien, E. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 2004, 7, 1121–1134. [Google Scholar] [CrossRef]
- UNEP. World Atlas of Desertification; Edward Arnold: London, UK, 1992. [Google Scholar]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Chen, R.; Ran, J.; Huang, H.; Dong, L.; Sun, Y.; Ji, M.; Hu, W.; Yao, S.; Lu, J.; Gong, H. Life history strategies drive size-dependent biomass allocation patterns of dryland ephemerals and shrubs. Ecosphere 2019, 10, e02709. [Google Scholar] [CrossRef]
- Waudby, H.P.; Petit, S. Ephemeral plant indicators of livestock grazing in arid rangelands during wet conditions. Rangel. J. 2015, 37, 323. [Google Scholar] [CrossRef]
- Akram, M.A.; Wang, X.; Hu, W.; Xiong, J.; Zhang, Y.; Deng, Y.; Ran, J.; Deng, J. Convergent Variations in the Leaf Traits of Desert Plants. Plants 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.M.; Bowers, J.E.; Burgess, T.L. Sonoran Desert Plants; University of Arizona Press: Tucson, AZ, USA, 2005. [Google Scholar]
- Jia, Y.; Sun, Y.; Zhang, T.; Shi, Z.; Maimaitiaili, B.; Tian, C.; Feng, G. Elevated precipitation alters the community structure of spring ephemerals by changing dominant species density in Central Asia. Ecol. Evol. 2020, 10, 2196–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Li, Y.; Padilla, F.M. Ephemeral plants mediate responses of ecosystem carbon exchange to increased precipitation in a temperate desert. Agric. For. Meteorol. 2015, 201, 141–152. [Google Scholar] [CrossRef]
- Angert, A.; Huxman, T.; Barron-Gafford, G.; Gerst, K.; Venable, D. Linking growth strategies to long-term population dynamics in a guild of desert annuals. J. Ecol. 2007, 95, 321–331. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, H. Patterns of ephemeral plant communities and their adaptations to temperature and precipitation regimes in Dzungaria Desert, Xinjiang. Biodivers. Sci. 2010, 18, 346. [Google Scholar]
- Chen, Y.; Zhang, L.; Shi, X.; Liu, H.; Zhang, D. Life history responses of two ephemeral plant species to increased precipitation and nitrogen in the Gurbantunggut Desert. PeerJ 2019, 7, e6158. [Google Scholar] [CrossRef]
- Rothstein, D.E.; Zak, D.R. Photosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs. Funct. Ecol. 2001, 15, 722–731. [Google Scholar] [CrossRef] [Green Version]
- Augspurger, C.K.; Salk, C.F. Constraints of cold and shade on the phenology of spring ephemeral herb species. J. Ecol. 2017, 105, 246–254. [Google Scholar] [CrossRef]
- Lapointe, L.; Lerat, S. Annual growth of the spring ephemeral Erythronium americanum as a function of temperature and mycorrhizal status. Botany 2006, 84, 39–48. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, T.; Zhang, C.; Liu, B.; Pan, B.; Wu, S.; Chen, X. Mapping Spring Ephemeral Plants in Northern Xinjiang, China. Sustainability 2018, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.-L.; Tang, L.-S.; Wu, L.-F.; Ma, J.; Li, Y. The limited role of snow water in the growth and development of ephemeral plants in a cold desert. J. Veg. Sci. 2014, 25, 681–690. [Google Scholar] [CrossRef]
- Zhang, L. Ephemeral plants in Xinjiang (III): Significance of community and resources. J. Plant 2002, 3, 4–5. [Google Scholar]
- Li, L.; Wang, Z.; Zerbe, S.; Abdusalih, N.; Tang, Z.; Ma, M.; Yin, L.; Mohammat, A.; Han, W.; Fang, J. Species richness patterns and water-energy dynamics in the drylands of Northwest China. PLoS ONE 2013, 8, e66450. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Palpurina, S.; Wagner, V.; von Wehrden, H.; Hájek, M.; Horsák, M.; Brinkert, A.; Hölzel, N.; Wesche, K.; Kamp, J.; Hájková, P. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Glob. Ecol. Biogeogr. 2017, 26, 425–434. [Google Scholar] [CrossRef]
- Team, R.D.C. Version 3.6.0: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org (accessed on 1 May 2019).
- Speziale, K.L.; Ruggiero, A.; Ezcurra, C. Plant species richness–environment relationships across the Subantarctic–Patagonian transition zone. J. Biogeogr. 2010, 37, 449–464. [Google Scholar] [CrossRef]
- Meng, H.-H.; Gao, X.-Y.; Huang, J.-F.; Zhang, M.-L. Plant phylogeography in arid Northwest China: Retrospectives and perspectives. J. Syst. Evol. 2015, 53, 33–46. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, M. Evolutionary response to Quaternary climate aridification and oscillations in north-western China revealed by chloroplast phylogeography of the desert shrub Nitraria sphaerocarpa (Nitrariaceae). Biol. J. Linn. Soc. 2013, 109, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.-Y.; Meng, H.-H.; Zhang, M.-L. Diversification and vicariance of desert plants: Evidence inferred from chloroplast DNA sequence variation of Lagochilus ilicifolius (Lamiaceae). Biochem. Syst. Ecol. 2014, 55, 93–100. [Google Scholar] [CrossRef]
- Wang, Q.; Abbott, R.J.; Yu, Q.S.; Lin, K.; Liu, J.Q. Pleistocene climate change and the origin of two desert plant species, Pugionium cornutum and Pugionium dolabratum (Brassi-caceae), in northwest China. New Phytol. 2013, 199, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.-W.; Turner, N.C.; Palta, J.A.; Yu, M.-X.; Gao, T.-P.; Li, F.-M. The distribution of four Caragana species is related to their differential responses to drought stress. Plant Ecol. 2014, 215, 133–142. [Google Scholar] [CrossRef]
- Harrison, S.P.; Gornish, E.S.; Copeland, S. Climate-driven diversity loss in a grassland community. Proc. Natl. Acad. Sci. USA 2015, 112, 8672–8677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabotnov, T. On coenopopulations of perennial herbaceous plants in natural coenoses. Vegetatio 1969, 19, 87–95. [Google Scholar] [CrossRef]
- Ochoa-Hueso, R.; Eldridge, D.J.; Delgado-Baquerizo, M.; Soliveres, S.; Bowker, M.A.; Gross, N.; Le Bagousse-Pinguet, Y.; Quero, J.L.; García-Gómez, M.; Valencia, E. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 2018, 106, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Saiz, H.; Gómez-Gardeñes, J.; Borda, J.P.; Maestre, F.T. The structure of plant spatial association networks is linked to plant diversity in global drylands. J. Ecol. 2018, 106, 1443–1453. [Google Scholar] [CrossRef]
- Yan, R.; Tang, H.; Xin, X.; Chen, B.; Murray, P.J.; Yan, Y.; Wang, X.; Yang, G. Grazing intensity and driving factors affect soil nitrous oxide fluxes during the growing seasons in the Hulunber meadow steppe of China. Environ. Res. Lett. 2016, 11, 054004. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.A.; Harte, J.; Zhao, X.Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol. Lett. 2004, 7, 1170–1179. [Google Scholar] [CrossRef]
- Yao, S.; Hu, W.; Ji, M.; Dong, L.; Deng, J. Distribution, determinants, and relative importance of different plant life-forms across drylands in China. Unpublished work.
- Rutherford, M.C.; Powrie, L.W. Can heavy grazing on communal land elevate plant species richness levels in the Grassland Biome of South Africa? Plant Ecol. 2011, 212, 1407–1418. [Google Scholar] [CrossRef]
- Yan, R.; Xin, X.; Yan, Y.; Wang, X.; Zhang, B.; Yang, G.; Liu, S.; Deng, Y.; Li, L. Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe. Rangel. Ecol. Manag. 2015, 68, 54–64. [Google Scholar] [CrossRef]
Climatic Variables | PC 1 | PC 2 | PC 3 | PC 4 |
---|---|---|---|---|
Water | ||||
Annual precipitation (mm) | 0.568 | −0.079 | 0.387 | 0.722 |
Annual actual evapotranspiration (mm) | 0.563 | −0.069 | −0.823 | −0.009 |
Precipitation of wettest quarter (mm) | 0.552 | −0.259 | 0.406 | −0.681 |
Precipitation of the driest quarter (mm) | 0.236 | 0.960 | 0.083 | −0.125 |
Proportion explained | 76.50% | 22.47% | 0.95% | 0.08% |
Cumulative proportion | 76.50% | 98.97% | 99.92% | 100.00% |
Energy | ||||
Mean annual temperature (°C) | 0.554 | 0.006 | −0.321 | −0.768 |
Annual potential evapotranspiration (mm) | 0.538 | 0.030 | 0.842 | 0.037 |
Mean temperature of warmest quarter (°C) | 0.435 | −0.748 | −0.270 | 0.421 |
Mean temperature of coldest quarter (°C) | 0.463 | 0.662 | −0.340 | 0.481 |
Proportion explained | 80.57% | 17.02% | 2.33% | 0.08% |
Cumulative proportion | 80.57% | 97.59% | 99.92% | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, S.; Akram, M.A.; Hu, W.; Sun, Y.; Sun, Y.; Deng, Y.; Ran, J.; Deng, J. Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China. Plants 2021, 10, 636. https://doi.org/10.3390/plants10040636
Yao S, Akram MA, Hu W, Sun Y, Sun Y, Deng Y, Ran J, Deng J. Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China. Plants. 2021; 10(4):636. https://doi.org/10.3390/plants10040636
Chicago/Turabian StyleYao, Shuran, Muhammad Adnan Akram, Weigang Hu, Yuan Sun, Ying Sun, Yan Deng, Jinzhi Ran, and Jianming Deng. 2021. "Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China" Plants 10, no. 4: 636. https://doi.org/10.3390/plants10040636
APA StyleYao, S., Akram, M. A., Hu, W., Sun, Y., Sun, Y., Deng, Y., Ran, J., & Deng, J. (2021). Effects of Water and Energy on Plant Diversity along the Aridity Gradient across Dryland in China. Plants, 10(4), 636. https://doi.org/10.3390/plants10040636