Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters
Abstract
:1. Introduction
2. Results
2.1. Variability of AVN Contents Compared to Other Oat Grain Parameters
2.2. Analysis of the Influence of the Main Factors on the Monitored Grain Parameters
2.3. Mutual Correlations between AVNs and Other Grain Parameters of Oat
2.4. Effect of Weather Conditions on the Variability of AVNs
3. Discussion
4. Materials and Methods
4.1. Field Experiments
4.2. Weather Conditions
4.3. Basic Quality Parameters of Oat Grain
4.4. Analyses of Specific Nutritional Parameters of Oat Grain
4.5. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat Agricultural Production-Crops. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops#Cereals:// (accessed on 3 August 2021).
- Gorash, A.; Armoniene, R.; Fetch, J.M.; Liatukas, Z.; Danyte, V. Aspects in oat breeding: Nutrition quality, nakedness and disease resistance, challenges and perspectives. Ann. Appl. Biol. 2017, 171, 281–302. [Google Scholar] [CrossRef]
- Perrelli, A.; Goitre, L.; Salzano, A.M.; Moglia, A.; Scaloni, A.; Retta, S.F. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 6015351. [Google Scholar] [CrossRef] [PubMed]
- Multari, S.; Pihlava, J.M.; Ollennu-Chuasam, P.; Hietaniemi, V.; Yang, B.R.; Suomela, J.P. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat (Avena sativa L.) from Finland. J. Agric. Food Chem. 2018, 66, 2900–2908. [Google Scholar] [CrossRef] [PubMed]
- Gilissen, L.J.; Van der Meer, I.M.; Smulders, M.J. Why oats are safe and healthy for celiac disease patients. Med. Sci. 2016, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional advantages of oats and opportunities for its processing as value added foods—a review. J. Food Sci. Technol. 2015, 52, 662–675. [Google Scholar] [CrossRef]
- Liu, K.S.; Wise, M.L. Distributions of nutrients and avenanthramides within oat grain and effects on pearled kernel composition. Food Chem. 2021, 336, 127668. [Google Scholar] [CrossRef]
- Jagr, M.; Dvoracek, V.; Hlasna Cepkova, P.; Dolezalova, J. Comprehensive analysis of oat avenanthramides using hybrid quadrupole-Orbitrap mass spectrometry: Possible detection of new compounds. Rapid Commun. Mass Spectrom. 2020, 34, 20. [Google Scholar] [CrossRef]
- Chen, C.Y.; Milbury, P.E.; Kwak, H.K.; Collins, F.W.; Samuel, P.; Blumberg, J.B. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr. 2004, 134, 1459–1466. [Google Scholar] [CrossRef]
- Peterson, D.M.; Hahn, M.J.; Emmons, C.L. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 2002, 79, 473–478. [Google Scholar] [CrossRef]
- Turrini, E.; Maffei, F.; Milelli, A.; Calcabrini, C.; Fimognari, C. Overview of the Anticancer Profile of Avenanthramides from Oat. Int. J. Mol. Med. 2019, 20, 4536. [Google Scholar] [CrossRef]
- Jastrebova, J.; Skoglund, M.; Nilsson, J.; Dimberg, L.H. Selective and sensitive LC-MS determination of avenanthramides in oats. Chromatographia 2006, 63, 419–423. [Google Scholar] [CrossRef]
- Antonini, E.; Lombardi, F.; Alfieri, M.; Diamantini, G.; Redaelli, R.; Ninfali, P. Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J. Cereal Sci. 2016, 72, 46–53. [Google Scholar] [CrossRef]
- Li, X.P.; Li, M.Y.; Ling, A.J.; Hu, X.Z.; Ma, Z.; Liu, L.; Li, Y.X. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. J. Cereal Sci. 2017, 73, 130–137. [Google Scholar] [CrossRef]
- Peterson, D.M.; Wesenberg, D.M.; Burrup, D.E.; Erickson, C.A. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci. 2005, 45, 1249–1255. [Google Scholar] [CrossRef]
- Rao, S.W.; Santhakumar, A.B.; Chinkwo, K.A.; Blanchard, C.L. Investigation of phenolic compounds with antioxidant activity in barley and oats affected by variation in growing location. Cereal Chem. 2020, 97, 772–782. [Google Scholar] [CrossRef]
- Michels, D.K.; Chatham, L.A.; Butts-Wilmsmeyer, C.J.; Juvik, J.A.; Kolb, F.L. Variation in avenanthramide content in spring oat over multiple environments. J. Cereal Sci. 2020, 91, 102886. [Google Scholar] [CrossRef]
- Dimberg, L.H.; Gissen, C.; Nilsson, J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio 2005, 34, 331–337. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, W.J.C.; van Dinteren, S.; Gruppen, H.; Vincken, J.P. Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chem. 2019, 277, 682–690. [Google Scholar] [CrossRef]
- Comino, I.; Bernardo, D.; Bancel, E.; Moreno, M.D.; Sanchez, B.; Barro, F.; Suligoj, T.; Ciclitira, P.J.; Cebolla, A.; Knight, S.C.; et al. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr. Res. 2016, 60, 13. [Google Scholar] [CrossRef]
- Londono, D.M.; van’t Westende, W.P.C.; Goryunova, S.; Salentijn, E.M.J.; van den Broeck, H.C.; van der Meer, I.M.; Visser, R.G.F.; Gilissen, L.; Smulders, M.J.M. Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. J. Cereal Sci. 2013, 58, 170–177. [Google Scholar] [CrossRef]
- Sterna, V.; Zute, S.; Brunava, L. Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Procedia 2016, 8, 252–256. [Google Scholar] [CrossRef]
- Redaelli, R.; Del Frate, V.; Bellato, S.; Terracciano, G.; Ciccoritti, R.; Germeier, C.U.; De Stefanis, E.; Sgrulletta, D. Genetic and environmental variability in total and soluble beta-glucan in European oat genotypes. J. Cereal Sci. 2013, 57, 193–199. [Google Scholar] [CrossRef]
- van den Broeck, H.C.; Londono, D.M.; Timmer, R.; Smulders, M.J.; Gilissen, L.; van der Meer, I.M. Profiling of Nutritional and Health-Related Compounds in Oat Varieties. Foods 2016, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, O.E.; Sozer, N.; Ercili-Cura, D.; Poutanen, K. Protein From Oat: Structure, Processes,Functionality, and Nutrition. In Sustainable Protein Sources; Nadathur, S., Wanasundara, J.P.D., Scanlin, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 105–119. [Google Scholar]
- Capouchova, I.; Petr, J.; Tlaskalova-Hogenova, H.; Michalik, I.; Famera, O.; Urminska, D.; Tuckova, L.; Knoblochova, H.; Borovska, D. Protein fractions of oats and possibilities of oat utilization for patients with coeliac disease. Czech J. Food Sci. 2004, 22, 151–162. [Google Scholar] [CrossRef]
- Oraby, H.; Ahmad, R. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci. 2012, 185, 331–339. [Google Scholar] [CrossRef]
- Tyburski, J.; Kurowski, T.; Adamiak, E. Root and foot rot diseases of winter wheat grown in conventional and organic systems. J. Agric. Chem. Environ. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Jelic, M.; Dugalic, G.; Milivojevic, J.; Djekic, V. Effecr of liming and fertilization on yield and quality of aot (Avena sativa L.) on an acid luvisol soil. Rom. Agric. Res. 2013, 30, 249–258. [Google Scholar]
- Guinto, D. Nitrogen fertilisation effects on the quality of selected crops: A review. Agron. Sociaty N. Z. 2016, 46, 121–132. [Google Scholar]
- Havrlentová, M.; Hlinková, A.; Žofajová, A.; Kováčik, P.; Dvončová, D.; Deáková, Ľ. Effect of Fertilization on ß-D-Glucan Content in Oat Grain (Avena sativa L.). Agriculture/Pol’nohospodárstvo 2013, 59, 111–119. [Google Scholar] [CrossRef]
- Wise, M.L.; Doehlert, D.C.; McMullen, M.S. Association of avenanthramide concentration in oat (Avena sativa L.) grain with crown rust incidence and genetic resistance. Cereal Chem. 2008, 85, 639–641. [Google Scholar] [CrossRef]
- Xu, J.G.; Tian, C.R.; Hu, Q.P.; Luo, J.Y.; Wang, X.D.; Tian, X.D. Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. J. Agric. Food Chem. 2009, 57, 10392–10398. [Google Scholar] [CrossRef]
- Ding, J.Z.; Johnson, J.; Chu, Y.F.; Feng, H. Enhancement of gamma-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem. 2019, 283, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Donelson, J.R.; Gaines, C.S.; Donelson, T.S.; Finney, P.L. Detection of wheat preharvest sprouting using a pregelatinized starch substrate and centrifugation. Cereal Chem. 2001, 78, 282–285. [Google Scholar] [CrossRef]
- Czech State Norm (CSN). EN ISO 20483 (461401). Obiloviny a luštěniny-Stanovení obsahu dusíku a výpočet obsahu dusíkatých látek-Kjeldahlova metoda. 2014. Available online: http://www.technicke-normy-csn.cz/461401-csn-en-iso-20483_4_77835.html (accessed on 21 May 2018). (In Czech).
- Czech State Norm (CSN). EN ISO 10520 (566120). Přírodní škrob-Stanovení obsahu škrobu-Ewersova polarimetrická metoda. 1999. Available online: http://www.technicke-normy-csn.cz/566120-csn-en-iso-10520_4_56211.html (accessed on 21 July 2018). (In Czech).
- Czech State Norm (CSN). EN ISO 11085 (461087). Obiloviny, výrobky z obilovin a krmiva-Stanovení obsahu hrubého a celkového tuku extrakční metodou podle Randalla. 2016. Available online: http://www.technicke-normy-csn.cz/461087-csn-en-iso-11085_4_87418.html (accessed on 21 May 2018). (In Czech).
- Czech State Norm (CSN). EN ISO 2171 (461019). Obiloviny, luštěniny a výrobky z nich-Stanovení obsahu popela spalováním. 2009. Available online: http://www.technicke-normy-csn.cz/461019-csn-iso-2171_4_32087.html (accessed on 21 July 2018). (In Czech).
- Czech State Norm (CSN). EN ISO 662 (588801). Živočišné a rostlinné tuky a oleje-Stanovení vlhkosti a těkavých látek. 1996. Available online: http://www.technicke-normy-csn.cz/588801-csn-en-iso-662_4_61956.html (accessed on 21 May 2018). (In Czech).
- McCleary, B.V. Megazyme: Mixed-Linkage Beta-Glucan Assay Procedure (McCleary Method); Bray Business Park: Bray, UK, 2006. [Google Scholar]
- Halbmayr-Jech, E.; Hammer, E.; Fielder, R.; Coutts, J.; Rogers, A.; Cornish, M. Characterization of G12 Sandwich ELISA, a Next-Generation Immunoassay for Gluten Toxicity. J. AOAC Int. 2012, 95, 372–376. [Google Scholar] [CrossRef]
- Dvořáček, V.; Moudý, J.; Čurn, V. Studies of Protein Fraction in Grain of Spelt Wheat (Triticum spelta L.) and Common Wheat (Triticum aestivum L.). SAB 2001, 32, 287–305. [Google Scholar]
- Naeem, H.A.; Sapirstein, H.D. Ultra-fast separation of wheat glutenin subunits, by reversed-phase HPLC using a superficially porous silica-based column. J. Cereal Sci. 2007, 46, 157–168. [Google Scholar] [CrossRef]
- Mejías, J.H.; Lu, X.; Osorio, C.; Ullman, J.L.; Von Wettstein, D.; Rustgi, S. Analysis of wheat prolamins, the causative agents of celiac sprue, using reversed phase high performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Nutrients 2014, 6, 1578–1597. [Google Scholar] [CrossRef] [PubMed]
- Taghouti, M.; Nsarellah, N.; Gaboun, F.; Rochdi, R. Multi-environment assessment of the impact of genetic improvement on agronomic performance and on grain quality traits in Moroccan durum wheat varieties of 1949 to 2017. GJPBG 2017, 4, 394–404. [Google Scholar]
- Abdi, H.; Lynne, J.W. Principal component analysis. WIREs Comp. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
Parameters | N | Mean | Minimum | Maximum | SD | SE | RSD (%) |
---|---|---|---|---|---|---|---|
AVN 2p (mg/kg of dw) | 240 | 20.6 | 4.3 | 86.3 | 15.0 | 1.9 | 72.7 |
AVN 2f (mg/kg of dw) | 240 | 47.2 | 7.8 | 174.9 | 36.4 | 4.7 | 77.1 |
AVN 2c (mg/kg of dw) | 240 | 16.4 | 3.5 | 72.6 | 12.3 | 1.6 | 75.2 |
AVN 2pd (mg/kg of dw) | 240 | 3.7 | 0.8 | 19.2 | 3.0 | 0.4 | 80.1 |
AVN 3p (mg/kg of dw) | 240 | 1.0 | 0.1 | 5.3 | 1.2 | 0.2 | 113.5 |
AVN 3f (mg/kg of dw) | 240 | 10.7 | 0.7 | 55.8 | 11.8 | 1.5 | 110.6 |
AVN 2fd (mg/kg of dw) | 240 | 6.2 | 1.1 | 26.6 | 5.5 | 0.7 | 88.6 |
AVN 5f (mg/kg of dw) | 240 | 3.9 | 0.5 | 17.9 | 3.5 | 0.5 | 89.9 |
Σ AVNs | 240 | 109.7 | 25.2 | 407.4 | 78.8 | 10.2 | 71.9 |
CP (%) | 240 | 16.4 | 12.5 | 20.1 | 2.0 | 0.3 | 11.9 |
ST (%) | 240 | 61.7 | 54.8 | 67.0 | 2.8 | 0.4 | 4.5 |
FT (%) | 240 | 4.8 | 4.1 | 7.4 | 0.6 | 0.1 | 13.5 |
ß-GLU (%) | 240 | 4.1 | 3.0 | 5.7 | 0.6 | 0.1 | 14.7 |
AVE (%) | 240 | 2.6 | 1.5 | 3.5 | 0.5 | 0.1 | 17.5 |
GLU (%) | 240 | 2.5 | 1.5 | 3.5 | 0.5 | 0.1 | 20.9 |
G12 (mg/kg) | 240 | 11.2 | 2.4 | 39.9 | 8.4 | 1.1 | 74.8 |
ASH (%) | 240 | 2.3 | 2.0 | 2.8 | 0.2 | 0.0 | 7.9 |
TGW (g) * | 240 | 31.1 | 20.8 | 38.6 | 4.5 | 0.6 | 14.3 |
YLD (t/ha) | 240 | 4.7 | 1.6 | 9.4 | 1.9 | 0.2 | 40.3 |
Factors | AVN 2p | AVN 2f | AVN 2c | AVN 2pd | AVN 3p | AVN 3f | AVN 2fd | AVN 5f | Σ AVNs | |
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Fcrit | 134.8 ** | 56.4 ** | 115.2 ** | 6.8 ** | 14.1 ** | 161.1 ** | 24.4 ** | 75.9 ** | 49.8 ** |
Kertag | 20.2 c | 51.3 a,b | 12.6 a | 3.7 a | 1.7 d | 16.0 d | 7.3 b | 4.5 a | 117.3 a | |
Korok | 14.0 a | 33.3 c | 11.1 a | 3.5 a | 1.3 c | 13.3 c | 5.2 a | 3.3 c | 84.9 c | |
Patrik | 26.3 b | 54.5 b | 21.6 b | 3.8 a,b | 0.8 a | 7.8 a | 5.9 a | 2.8 b | 123.3 a | |
Raven | 17.8 d | 48.7 a | 16.6 c | 3.5 a | 0.6 b | 7.3 a | 7.1 b | 4.7 a | 106.3 b | |
Seldon | 24.6 e | 48.2 a | 20.0 b | 4.2 b | 0.9 a | 9.0 b | 5.2 a | 4.4 a | 116.4 a | |
Locality | Fcrit | 2095.5 ** | 1914.4 ** | 1255.3 ** | 1016.9 ** | 1862.7 ** | 2025.0 ** | 419.4 ** | 2093.8 | 2607.7 ** |
CB | 29.4 b | 68.4 b | 23.1 b | 5.3 b | 1.7 b | 16.7 b | 8.1 b | 5.9 b | 158.6 b | |
PR | 11.8 a | 25.9 a | 9.6 a | 2.1 a | 0.4 a | 4.6 a | 4.3 a | 2.0 a | 60.8 a | |
Cropping | Fcrit | 145.9 ** | 53.3 ** | 129.0 ** | 81.1 ** | 83.3 ** | 46.4 ** | 102.8 ** | 97.0 * | 129.2 ** |
CONV | 22.9 b | 50.7 b | 18.5 b | 4.2 b | 1.2 b | 11.6 b | 7.1 b | 4.4 b | 120.6 b | |
ORG | 18.3 a | 43.6 a | 14.2 a | 3.3 a | 0.9 a | 9.7 a | 5.2 a | 3.5 a | 98.8 a | |
Year | Fcrit | 291.2 ** | 681.9 ** | 113.7 ** | 160.1 ** | 597.7 ** | 877.7 ** | 274.6 * | 814.5 * | 546.6 * |
2018 | 17.4 a | 35.1 a | 12.8 a | 3.1 a | 0.6 a | 6.0 a | 7.2 b | 2.8 a | 85.0 a | |
2019 | 17.3 a | 33.9 a | 16.5 b | 3.1 a | 0.8 b | 7.3 b | 8.2 c | 2.6 a | 89.6 a | |
2020 | 27.1 b | 72.5 b | 19.8 c | 5.0 b | 1.7 c | 18.6 c | 3.2 a | 6.4 b | 154.4 b |
Factors | ß-GLU
(%) | AVE (%) | GLU (%) | G12 (mg/kg of dw) | CP (%) | ST (%) | FT
(%) | ASH
(%) | TGW
(%) | YLD (t/ha) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Fcrit | 131.8 ** | 25.7 ** | 16.2 ** | 9.7 ** | 1088.7 ** | 910.9 ** | 224.3 ** | 53.9 ** | 12,214.9 ** | 783.1 ** |
Kertag | 4.2 a | 2.5 b | 2.4 b | 9.8 a,b | 15.8 a | 62.7 e | 4.8 a | 2.3 a | 32.2 a | 5.3 c | |
Korok | 4.3 a | 2.7 a | 2.5 b | 10.3 a,b | 17.5 e | 60.4 a | 4.5 b | 2.4 b | 32.9 d | 4.8 a | |
Patrik | 3.9 c | 2.6 a | 2.6 a | 15.1 c | 16.0 b | 61.3 b | 5.3 d | 2.2 a | 26.4 b | 3.3 b | |
Raven | 3.5 b | 2.7 a | 2.6 a | 8.3 a | 16.5 d | 62.1 d | 4.8 a | 2.2 a | 31.8 c | 4.8 a | |
Seldon | 4.7 d | 2.5 b | 2.6 a | 12.7 b,c | 16.2 c | 61.9 c | 4.7 c | 2.2 a | 32.2 a | 5.5 d | |
Locality | Fcrit | 0.1 | 302.8 ** | 399.1 ** | 5.6 * | 3953.0 ** | 3615.1 ** | 300.3 ** | 13.6 * | 4783.8 ** | 2742.2 ** |
CB | 4.1 a | 2.8 b | 2.7 b | 10.4 a | 15.9 a | 62.5 b | 4.6 a | 2.3 b | 31.8 b | 4.0 a | |
PR | 4.1 a | 2.4 a | 2.4 a | 12.1 b | 16.9 b | 60.9 a | 4.9 b | 2.2 a | 30.4 a | 5.5 b | |
Cropping | Fcrit | 1.5 | 201.1 ** | 263.9 ** | 0.9 | 3284.6 ** | 6167.9 ** | 47.0 ** | 3.5 | 3126.1 ** | 3330.8 ** |
CONV | 4.1 a | 2.7 b | 2.7 b | 11.6 a | 17.0 b | 60.7 a | 4.7 a | 2.3 a | 31.7 b | 5.5 b | |
ORG | 4.1 a | 2.5 a | 2.4 a | 10.9 a | 15.8 a | 62.7 b | 4.9 b | 2.2 a | 30.5 a | 3.9 a | |
Year | Fcrit | 139.2 ** | 416.8 ** | 1308.6 ** | 7.3 ** | 11,990.3 ** | 5866.5 ** | 849.0 ** | 709.3 ** | 23,355.1 ** | 105.5 ** |
2018 | 3.8 a | 2.7 b | 2.8 a | 10.2 a | 16.8 b | 63.0 c | 5.3 c | 2.1 a | 32.0 b | 4.8 a | |
2019 | 4.1 b | 2.9 c | 2.8 a | 13.3 b | 17.9 c | 59.8 a | 4.6 b | 2.5 b | 27.9 a | 4.4 b | |
2020 | 4.5 c | 2.2 a | 2.0 b | 10.2 a | 14.5 a | 62.2 b | 4.4 a | 2.2 a | 33.4 c | 4.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvořáček, V.; Jágr, M.; Kotrbová Kozak, A.; Capouchová, I.; Konvalina, P.; Faměra, O.; Hlásná Čepková, P. Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters. Plants 2021, 10, 2485. https://doi.org/10.3390/plants10112485
Dvořáček V, Jágr M, Kotrbová Kozak A, Capouchová I, Konvalina P, Faměra O, Hlásná Čepková P. Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters. Plants. 2021; 10(11):2485. https://doi.org/10.3390/plants10112485
Chicago/Turabian StyleDvořáček, Václav, Michal Jágr, Anna Kotrbová Kozak, Ivana Capouchová, Petr Konvalina, Oldřich Faměra, and Petra Hlásná Čepková. 2021. "Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters" Plants 10, no. 11: 2485. https://doi.org/10.3390/plants10112485
APA StyleDvořáček, V., Jágr, M., Kotrbová Kozak, A., Capouchová, I., Konvalina, P., Faměra, O., & Hlásná Čepková, P. (2021). Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters. Plants, 10(11), 2485. https://doi.org/10.3390/plants10112485