Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826)
Abstract
:1. Introduction
2. Results and Discussion
Compound | RI measured | RI data range from the literature |
β-Z-ocimene | 1048 | 1032–1061 |
Bornyl acetate | 1296 | 1261–1297 |
c-Methyl cinnamate | 1314 | 1301–1321 |
3. Materials and Methods
3.1. Plant Material and Essential Oil Isolation
3.2. Chemical Analysis
3.2.1. Preparation of Distilled EO for Measurement
3.2.2. Qualitative and Quantitative Analysis of O. sanctum Essential oil by GC/MS
3.3. Target Organisms
3.3.1. Fungal Strains
3.3.2. Insect Rearing
3.4. Inhibitory Effect of O. sanctum on Target Filamentous Fungi and Experiment Design
3.5. Insecticidal Activity of O. sanctum Essential Oil against Culex quinquefasciatus
3.6. Insecticidal Activity of O. sanctum Essential Oil against Musca domestica
3.7. Insecticidal Activity of O. sanctum Essential Oil against Spodoptera littoralis
3.8. Toxicity of Ocimum Sanctum Essential Oil to Eisenia fetida (Non-Target Organism)
3.9. Statistical Analysis
3.9.1. Antifungal and Insecticidal Assays
3.9.2. Toxicity to Non-Target Soil Organisms
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Narayana, D.B.A.; Manohar, R.; Mahapatra, A.; Sujithra, R.M.; Aramya, A.R. Posological considerations of Ocimum sanctum (Tulasi) as per ayurvedic science and pharmaceutical sciences. Indian J. Pharm. Sci. 2014, 76, 240–244. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090833/ (accessed on 21 June 2014).
- Chowdhary, K.; Kaushik, N. Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE. 2015, 10, 25. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crop. Prod. 2018, 118, 367–382. [Google Scholar] [CrossRef]
- Rege, N.N.; Thatte, U.M.; Dahanukar, S.A. Adaptogenic properties of six Rasayana herbs used in ayurvedic medicine. Phytother. Res. 1999, 13, 275–291. [Google Scholar] [CrossRef]
- Bawankule, D.U.; Mani, D.; Pal, A.; Shanker, K.; Yadav, N.P.; Yadav, S.; Srivastava, A.K.; Agarwal, J.; Shasany, A.K.; Darokar, M.P.; et al. Immunopotentiating effect of an ayurvedic preparation from medicinal plants. J. Health Sci. 2009, 55, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, S.; Kalra, A.; Gupta, V.; Khan, F.; Lal, R.K.; Tripathi, A.K.; Parameswaran, S.; Gopalakrishnan, C.; Ramaswamy, G.; Shasany, A.K. Unravelling the genome of Holy basil: An “incomparable” “elixir of life” of traditional Indian medicine. BMC Genomics. 2015, 16, 413. [Google Scholar] [CrossRef] [Green Version]
- Marchand, P.A. Basic substances: An opportunity for approval of low-concern substances under EU pesticide regulation. Pest Manag. Sci. 2015, 71, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants. 2016, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Shukla, R.; Singh, P.; Dubey, N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010, 48, 539–543. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Moran, B.; Sandin-Espana, P.; Lopez-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere. 2013, 93, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Zabka, M.; Pavela, R.; Prokinova, E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere 2014, 112, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Zabka, M.; Bednar, J.; Triska, J.; Vrchotova, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Indian Crop. Prod. 2016, 83, 275–282. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Dwivedy, A.K.; Singh, V.K.; Das, S.; Singh, A.; Dubey, N.K. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ. Sci. Pollut. Res. 2019, 26, 25414–25431. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.G.; O’Callaghan, J.; Dobson, A.D.W. PCR-based detection and quantification of mycotoxigenic fungi. Mycol. Res. 2002, 106, 1005–1025. [Google Scholar] [CrossRef]
- Gubbins, P.O.; Heldenbrand, S. Clinically relevant drug interactions of current antifungal agents. Mycoses 2010, 53, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Romano, D. Mosquito vectors of Zika virus. Entomol. Gen. 2017, 36, 309–318. [Google Scholar] [CrossRef]
- Van Den Hurk, A.F.; Hall-Mendelin, S.; Jansen, C.C.; Higgs, S. Zika virus and Culex quinquefasciatus mosquitoes: A tenuous link. Lancet Infect. Dis. 2017, 17, 1014–1016. [Google Scholar] [CrossRef] [Green Version]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Mondello, L.; Zappia, G.; Cotroneo, A.; Bonaccorsi, I.; Chowdhury, J.U.; Yusuf, M.; Dugo, G. Studies on the essential oil-bearing plants of Bangladesh; Part VIII: Composition of some Ocimum oils O. basilicum L. var. purpurascens; O. sanctum L. green; O. sanctum L. purple; O. americanum L., citral type; O. americanum L., camphor type. Flavour Fragr. J. 2002, 17, 335–340. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active prin-ciples exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010, 161, 816–823. [Google Scholar] [CrossRef]
- Ijaz, B.; Hanif, M.A.; Mushtaq, Z.; Khan, M.M.; Bhatti, I.A.; Jilani, M.J. Isolation of bioactive fractions from Ocimum sanctum essential oil. Oxid. Commun. 2017, 40, 158–167. [Google Scholar]
- Stefan, M.; Zamfirache, M.M.; Padurariu, C.; Trută, E.; Gostin, I. The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Cent. Eur. J. Biol. 2013, 8, 600–608. [Google Scholar] [CrossRef]
- Gradinariu, V.; Cioanca, O.; Hritcu, L.; Trifan, A.; Gille, E.; Hancianu, M. Comparative efficacy of Ocimum sanctum L. and Ocimum basilicum L. essential oils against amyloid beta (1–42)-induced anxiety and depression in laboratory rats. Phytochem. Rev. 2015, 14, 567–575. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Indian Crop. Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Effectiveness of environmentally safe food additives and food supplements in an In vitro growth inhibition of significant Fusarium, Aspergillus and Penicillium species. Plant Prot. Sci. 2018, 54, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.I.D.; de Medeiros, A.C.A.; Silva, K.V.S.; Cardoso, G.N.; Lima, E.D.; Pereira, F.D. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.A.; Rahman, U.U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017, 7, 32669–32681. [Google Scholar] [CrossRef] [Green Version]
- Bassole, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Vieira, P.R.N.; de Morais, S.M.; Bezerra, F.H.Q.; Ferreira, P.A.T.; Oliveira, I.R.; Silva, M.G.V. Chemical composition and antifungal activity of essential oils from Ocimum species. Indian Crop. Prod. 2014, 55, 267–271. [Google Scholar] [CrossRef]
- Cheng, S.S.; Liu, J.Y.; Chang, E.H.; Chang, S.T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour. Technol. 2008, 99, 5145–5149. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Review Chapter: Fusarium genus and essential oils. In Natural Antimicrobial Agents; Merillon, J.M., Riviere, C., Eds.; Springer, Cham: New York, NY, USA, 2018; pp. 95–120. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Manzoor, N.; Khan, L.A. Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat. Prod. Commun. 2010, 5, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Induction of oxidative stress as a possible mechanism of the antifungal action of three phenylpropanoids. FEMS Yeast Res. 2011, 11, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Marei, G.I.K.; Rasoul, M.A.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pest. Biochem. Physiol. 2012, 103, 56–61. [Google Scholar] [CrossRef]
- Mahanta, S.; Khanikor, B.; Sarma, R. Allium sativum (Liliales: Asparagales) essential oil-based combinations–a potential larvicide for Culex quinquefasciatus (Diptera: Culicidae). Int. J. Trop. Insect Sci. 2020, 40, 837–844. [Google Scholar] [CrossRef]
- Fujiwara, G.M.; Annies, V.; de Oliveira, C.F.; Lara, R.A.; Gabriel, M.M.; Betim, F.C.M.; Nadal, J.M.; Farago, P.V.; Dias, J.F.G.; Miguel, O.G.; et al. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotox. Environ. Safe 2017, 139, 238–244. [Google Scholar] [CrossRef]
- Peterson, C.J.; Tsao, R.; Eggler, A.L.; Coates, J.R. Insecticidal activity of cyanohydrin and monoterpenoid compounds. Molecules 2000, 5, 648–654. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Xie, Y.J.; Wang, Y.; Lin, Z.F.; Wang, L.H.; Li, G.Y. Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 2017, 24, 24708–24713. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Yang, K.; Zhang, H.M.; Cao, J.; Fang, R.; Liu, Z.L.; Du, S.S.; Wang, Y.Y.; Deng, Z.W.; Zhou, L.G. Components and Insecticidal Activity against the Maize Weevils of Zanthoxylum schinifolium Fruits and Leaves. Molecules 2011, 16, 3077–3088. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Guo, S.S.; Pang, X.; Zhang, D.; Geng, Z.F.; Du, S.S. Insecticidal and repellent efficacy against stored-product insects of oxygenated monoterpenes and 2-dodecanone of the essential oil from Zanthoxylum planispinum var. dintanensis. Environ. Sci. Pollut. Res. 2019, 26, 24988–24997. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular Targets for Components of Essential Oils in the Insect Nervous System: A Review. Molecules. 2018, 23, 20. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Pavela, R.; Zorzetto, C.; Sanchez-Mateo, C.C.; Santini, G.; Canale, A.; Maggi, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- World Health Organization. Report of the WHO Informal Consultation on the Evaluation and Testing of Insecticides; Technical Report CTD/WHOPES/IC/96.1; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Bruno, M.; Benelli, G. Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 2018, 15, e1700382. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development. Guideline for Testing of Chemicals No. 207. Earthworm, Acute Toxicity Tests, OECD—Guideline for Testing Chemicals; Organization for Economic Co-operation and Development: Paris, France, 1984. [Google Scholar]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Bartolucci, F.; Canale, A.; Maggi, F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticide. Indian Crop. Prod. 2019, 134, 26–32. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971. [Google Scholar]
Compound Class | EO Component | RI | Normalized Area [%] | SD |
---|---|---|---|---|
Monoterpenoid, hydrocarbon | Ocimene * | 1048 | 0.5 | 0.01 |
Monoterpenoid, ketone | IS—α-Thujone | 1108 | x | x |
Monoterpenoid, bicyclic ether | Eucalyptol | 1030 | 1.7 | 0.03 |
Monoterpenoid, alcohol | Linalool | 1105 | 42.3 | 0.59 |
Monoterpenoid, bicyclic ketone | Camphor | 1145 | 0.3 | 0.01 |
Monoterpenoid, alcohol | Terpinen-4-ol | 1178 | 0.8 | 0.01 |
Acetate ester of borneol | Bornyl acetate * | 1296 | 0.3 | 0.01 |
Phenylpropanoid | Estragole | 1194 | 22.9 | 0.16 |
Phenylpropanoid | c-Methyl cinnamate * | 1314 | 1.4 | 0.03 |
Phenylpropanoid | t-Methyl cinnamate | 1382 | 19.9 | 0.47 |
Allylbenzene deriv. | Eugenol | 1355 | 0.5 | 0.03 |
Unidentified components | UN1 | 1388 | 1.5 | 0.05 |
UN2 | 1479 | 1.9 | 0.01 | |
UN3 | 1513 | 1.1 | 0.02 | |
UN4 | 1599 | 0.5 | 0.01 | |
UN5 | 1598 | 4.5 | 0.08 |
Target Species | MIC50/LC (LD)50 | CI95 | MIC90/LC (LD)90 | CI95 | Chia | p–Value | ||
---|---|---|---|---|---|---|---|---|
F. verticillioides | EO | (mg mL–1) | 0.73 ± 0.04 | 0.64–0.82 | 2.15 ± 0.24 | 1.78–2.78 | 0.242 | 0.886 ns |
propiconazole | (mg L–1) | 0.68 ± 0.09 | 0.51–0.87 | 11.8 ± 2.2 | 8.49–18.04 | 0.455 | 0.998 ns | |
P. expansum | EO | (mg mL–1) | 1.51 ± 0.13 | 1.31–1.83 | 4.9 ± 0.95 | 3.62–7.72 | 0.212 | 0.899 ns |
propiconazole | (mg L–1) | 0.41 ± 0.04 | 0.33–0.51 | 2.51 ± 0.31 | 2.02–3.29 | 0.451 | 0.998 ns | |
A. flavus | EO | (mg mL–1) | 0.64 ± 0.04 | 0.55–0.72 | 1.55 ± 0.16 | 1.34–1.89 | 1.17 | 0.557 ns |
propiconazole | (mg L–1) | 1.43 ± 0.18 | 1.11–1.81 | 31.3 ± 3.06 | 20.8–53.4 | 0.345 | 0.998 ns | |
Cx. quinquefasciatus larvae | EO | (mg L–1) | 89.5 ± 3.3 | 78.8–108.8 | 120.6 ± 11.1 | 109.1–137.1 | 6.505 | 0.164 ns |
pyrethrum | (mg L–1) | 0.02 ± 0.00 | 0.01–0.03 | 0.05 ± 0.01 | 0.04–0.06 | 1.231 | 0.578 ns | |
M. domestica adults | EO | (µg adult–1) | 58.1 ± 3.6 | 33.9–66.7 | 95.2 ± 2.1 | 83.2–109.7 | 2.602 | 0.271 ns |
pyrethrum | (µg adult–1) | 0.18 ± 0.2 | 0.17–0.21 | 0.91 ± 0.1 | 0.82–1.15 | 1.538 | 0.597 ns | |
S. littoralis larvae | EO | (µg larva–1) | 39.3 ± 2.5 | 28.2–44.7 | 74.5 ± 6.4 | 62.4–81.4 | 0.789 | 0.837 ns |
pyrethrum | (µg larva–1) | 0.1 ± 0.05 | 0.1–0.2 | 1.5 ± 0.3 | 1.3–1.8 | 1.562 | 0.652 ns |
Essential Oil (Dose mg·kg−1) | Mortality (%) a ± SE | |
---|---|---|
7th Day | 14th Day | |
500 | 10.0 ± 5.0 b | 10.0 ± 5.0 b |
300 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
150 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
100 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
50 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Negative control b | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Positive control (α-cypermethrin 0.1 mg.kg−1) | 85.0 ± 5.0 c | 100.0 ± 0.0 c |
ANOVA F6,21, p-value | 423.5, <0.001 | 1329.0, <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žabka, M.; Pavela, R.; Kovaříková, K.; Tříska, J.; Vrchotová, N.; Bednář, J. Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826). Plants 2021, 10, 2180. https://doi.org/10.3390/plants10102180
Žabka M, Pavela R, Kovaříková K, Tříska J, Vrchotová N, Bednář J. Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826). Plants. 2021; 10(10):2180. https://doi.org/10.3390/plants10102180
Chicago/Turabian StyleŽabka, Martin, Roman Pavela, Kateřina Kovaříková, Jan Tříska, Naděžda Vrchotová, and Jan Bednář. 2021. "Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826)" Plants 10, no. 10: 2180. https://doi.org/10.3390/plants10102180
APA StyleŽabka, M., Pavela, R., Kovaříková, K., Tříska, J., Vrchotová, N., & Bednář, J. (2021). Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826). Plants, 10(10), 2180. https://doi.org/10.3390/plants10102180