Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage
Abstract
:1. Introduction
2. Results
2.1. Fruit Quality Attributes at Harvest
2.1.1. Effect of SA on Fruit Physical Characteristics at Harvest
2.1.2. Effect of SA on the Chemical Characteristics of the Fruits
2.1.3. Performance of Fruit during Storage
Fruit Weight Loss
Fruit Firmness
Fruit Skin Lightness (L*) and Fruit Skin Color Index (a*/b*)
Effect of SA on TSS, TA and TSS/TA
Vitamin C
Biosynthesis of Ethylene
2.2. Chilling Injury (Browning Index) and Electrolyte Leakage
2.3. Disease and Decay Incidence
3. Discussion
3.1. Effect of Pre-Harvest Treatments of SA on Fruit Quality Parameters at Harvest
3.2. Effect of Pre-Harvest Treatments of SA on Fruit Quality Parameters during Storage
3.2.1. Weight Loss
3.2.2. Fruit Skin Color Brightness/Darkness and Color Index
3.2.3. Disease and Decay Incidence
3.3. Chemical Parameters
3.4. Ascorbic Acid
3.5. Ethylene Biosynthesis
3.6. Chilling Injury Index
4. Materials and Methods
4.1. Fruit Quality Parameters at Harvest
4.2. Postharvest Performance of Peach Fruit during Storage
4.2.1. Fruit Physical Characteristics
4.2.2. Chemical Parameters
4.2.3. Chilling Injury and Membrane (Electrolyte) Leakage
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lurie, S.; Crisosto, C. Chilling Injury in Peach and Nectarine. Postharvest Biol. Technol. 2005, 37, 195–208. [Google Scholar] [CrossRef]
- Meng, X.; Han, J.; Wang, Q.; Tian, S. Changes in Phsiology and Quality of Peach Fruits Treated by Methyl Jasmonate under Low Temperature Stress. Food Chem. 2009, 114, 1028–1035. [Google Scholar] [CrossRef]
- Tareen, M.J.; Abbasi, N.A.; Hafiz, I.A. Effect of SA Treatments on Storage Life of Peach Fruits cv. ‘Flordaking’. Pak. J. Bot. 2012, 44, 119–124. [Google Scholar]
- Crisosto, C.H.; Crisosto, G.M.; Day, K.R. Market life update for peach, nectarine, and plum cultivars grown in California. Adv. Hort. Sci. 2008, 22, 201–204. [Google Scholar]
- Kader, A.A. Postharvest Biology and Technology: An Overview. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; University of California: Oakland, CA, USA, 1992; pp. 15–20. [Google Scholar]
- Charles, W.; el Ghaouth, A.; Chalutz, E.; Arul, J. Potential of Induced Resistance to Control Postharvest Diseases of Fruit and Vegetables. Plant Dis. 1994, 78, 837–844. [Google Scholar]
- Wisniewski, M.; Biles, C.; Droby, S.; McLaughlin, R.; Wilson, C.; Chalutz, E. Mode of Action of the Postharvest Biocontrol Yeast, Pichiaguilliermondii-1. Characterization of Attachment to Botrytis cinerea. Physiol. Mol. Plant Pathol. 1991, 39, 245–258. [Google Scholar] [CrossRef]
- Wang, L.J.; Chen, S.J.; Kun, W.F.; Li, S.H.; Archbold, D.D. SA Pretreatment Alleviates Chilling Injury and Affects the Antioxidant System and Heat Shock Proteins of Peach during Cold Storage. Postharvest Biol. Technol. 2006, 41, 244–251. [Google Scholar] [CrossRef]
- Raskin, I. Role of SA in Plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43, 439–463. [Google Scholar] [CrossRef]
- Janda, T.; Szalai, G.; Tari, I.; Páldi, E. Hydroponic Treatment with SA Decreases the Effects of Chilling Injury in Maize (Zea mays L.) Plants. Planta 1999, 208, 175–180. [Google Scholar] [CrossRef]
- Ding, C.K.; Wang, C.Y.; Gross, K.C.; Smith, D.L. Jasmonate and Salicylate Induce the Expression of Pathogenesis-Related Protein Genes and Increase Resistance to Chilling Injury in Tomato Fruit. Planta 2002, 214, 895–901. [Google Scholar] [CrossRef]
- Kang, G.Z.; Wang, Z.X.; Sun, G.C. Participation of H2O2 in Enhancement of Cold Chilling by SA in Banana Seedlings. Acta Bot. Sin. 2003, 45, 567–573. [Google Scholar]
- Wang, D.; Amornsiripanitch, N.; Dong, X. A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. PLoS Pathog. 2006, 2, e123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Wang, Y.; Li, L.; Ge, X. Effect of exogenous SA on postharvest physiology of peaches. In Proceedings of the XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, Toronto, ON, Canada, 12 December 2003. [Google Scholar]
- Kassem, H.A.; Al-Obeed, R.S.; Ahmed, M.A.; Omar, A.K.H. Productivity, Fruit Quality and Profitability of Jujube Trees Improvement by Preharvest Application of Agro-Chemicals. Middle East J. Sci. Res. 2011, 9, 628–637. [Google Scholar]
- Serrano, M.; Martínez-Romero, D.; Castillo, S.; Guillén, F.; Valero, D. Effect of Preharvest Sprays Containing Calcium, Magnesium and Titanium on the Quality of Peaches and Nectarines at Harvest and during Post-Harvest Storage. J. Sci. Food Agric. 2004, 84, 1270–1276. [Google Scholar] [CrossRef]
- Ali, E.A.M.; Sarrwy, S.M.A.; Hassan, H.S.A. Improving Canino Apricot Trees Productivity by Foliar Spraying with Polyamines. J. App. Sci. Res. 2010, 6, 1359–1365. [Google Scholar]
- El-Alakmy, H.A. Effect of Calcium Application and Wrapping on Fruit Quality of Earli Grande Peach Trees (Prunuspersica L.). J. App. Sci. Res. 2012, 8, 3845–3849. [Google Scholar]
- Valero, Y.D.; Martinez-Romero, D.; Serrano, M. The Role of Polyamines in the Improvement of the Shelf Life of Fruit. Trends Food Sci. Tech. 2002, 13, 228–234. [Google Scholar] [CrossRef]
- Srivastava, M.K.; Dwivedi, U.N. Delayed Ripening of Banana Fruit by SA. Plant Sci. 2000, 158, 87–96. [Google Scholar] [CrossRef]
- Supapvanich, S. Effects of SA Incorporated with Lukewarm Water Dips on the Quality and Bioactive Compounds of Rambutan Fruit (Nephelium lappaceum L.). Chiang Mai Univ. J. Nat. Sci. 2015, 14, 23–37. [Google Scholar]
- Wei, Y.; Liu, Z.; Su, Y.; Liu, D.; Ye, X. Effect of SA Treatment on Postharvest Quality, Antioxidant Activities, and Free Polyamines of Asparagus. J. Food Sci. 2011, 76, 126–132. [Google Scholar] [CrossRef]
- Babalar, M.; Asghari, M.; Talaei, A.; Khosroshahi, A. Effect of Pre-and Postharvest SA Treatment on Ethylene Production, Fungal Decay and Overall Quality of Selva. Food Chem. 2007, 105, 449–453. [Google Scholar] [CrossRef]
- Shafiee, M.; Taghavi, T.S.; Babalar, M. Addition of SA to Nutrient Solution Combined with Post-Harvest Treatments (Hot Water, SA, and Calcium Dipping) Improved Post-Harvest Fruit Quality of Strawberry. Sci. Hortic. 2010, 124, 40–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Zhang, S. The Role of SA in Postharvest Ripening of Kiwifruit. Postharvest Biol. Technol. 2003, 28, 67–74. [Google Scholar] [CrossRef]
- Maalekuu, K.; Elkind, Y.; Tuvia-Alkalai, S.; Shalom, Y.; Fallik, E. Quality Evaluation of Three Sweet Pepper Cultivars After Prolonged Storage. Adv. Hort. Sci. 2003, 17, 187–191. [Google Scholar]
- Abbasi, N.A.; Hafeez, S.; Tareen, M.J. SA Prolongs Shelf Life and Improves Quality of “Mari Delicia” Peach Fruit. Acta Hort. 2010, 880, 191–197. [Google Scholar] [CrossRef]
- Kazemi, M.; Aran, M.; Zamani, S. Effect of SA Treatments on Quality Characteristics of Apple Fruits during Storage. Am. J. Plant Physiol. 2011, 6, 113–119. [Google Scholar] [CrossRef]
- Pila, N.; Gol, N.B.; Rao, T.V.R. Effect of Post-Harvest Treatments on Physicochemical Characteristics and Shelf Life of Tomato (Lycopersicon esculentum Mill.) Fruits during Storage. Am.-Eurasian J. Agric. Environment. Sci. 2010, 9, 470–479. [Google Scholar]
- Fattahi, J.; Fifall, R.; Babri, M. Postharvest Quality of Kiwifruit (Actinidiadeliciosa cv. Hayward) Affected by Pre-Storage Application of SA. South West. J. Hortic. Biol. Environ. 2010, 1, 175–186. [Google Scholar]
- Zheng, Y.; Zhang, Q. Effects of Polyamines and SA Post-Harvest Storage of ‘Ponkan’ Mandarin. Acta Hort. 2004, 632, 317–320. [Google Scholar]
- Solaimani, M.; Mostofi, Y.; Motallebiazar, A.; FattahiMoghadam, J.; Ghasemnezhad, M. Effect of MeSA Vapor on Fungal Decay, Ethylene Production, APX and CAT Activity in Hayward Kiwifruit. In Proceedings of the 28th International Horticultural Congress, Lisbon, Portugal, 22 August 2010. [Google Scholar]
- Labavitch, J.M. Cell Wall Turnover in Plant Development. Amu. Rev. Plant Physiol. 1981, 32, 385–406. [Google Scholar] [CrossRef]
- Payasi, A.; Sanwal, R.; Sanwal, G. Microbial Pectatelyases: Characterization and Enzymological Properties. World J. Microbiol. Biotechnol. 2009, 25, 1–14. [Google Scholar] [CrossRef]
- Li, N.; Parsons, B.L.; Liu, D.; Mattoo, A.K. Accumulation of Wound-Inducible ACC Synthase Transcript in Tomato Fruit Is Inhibited by SA and Polyamines. Plant Mol. Biol. 1992, 18, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Delwiche, M.; Baumgardner, R.A. Ground Color as a Peach Maturity Index. J. Am. Soc. Hortic. Sci. 1983, 110, 53–57. [Google Scholar]
- Jia, H.; Araki, J.; Ang, A.; Okamoto, G. Influence of Fruit Bagging on Aroma Volatiles and Skin Coloration of ‘Hakuho’ Peach (Prunus persica Batsch). Postharvest Biol. Technol. 2005, 35, 61–68. [Google Scholar] [CrossRef]
- Amborabe, B.E.; Pierrette, F.L.; Chollet, J.F. Antifungal Effects of SA and Other Benzoic Acid Derivatives towards Eutypalata: Structure-Activity Relationship. Plant. Physiol. Biochem. 2002, 40, 1051–1060. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, K.; Jiang, W. Enhancement of Postharvest Disease Resistance in Ya Li Pear (Pyrus bretschneideri) Fruit by Salicylic Acid Sprays on the Trees during Fruit Growth. Eur. J. Plant Pathol. 2006, 114, 363–370. [Google Scholar] [CrossRef]
- Asghari, M.; Aghdam, M.S. Impact of SA on Post-Harvest Physiology of Horticultural Crops. Trends Food Sci. Technol. 2010, 21, 502–509. [Google Scholar] [CrossRef]
- Yao, J.H.; Tian, S.P. Effect of Pre-and Post-Harvest Application of SA or Methyl Jasmonate on Inducing Disease Resistance of Sweet Cherry Fruit in Storage. Postharvest Biol. Technol. 2005, 35, 253–262. [Google Scholar] [CrossRef]
- Bhattacharya, G. Served Fresh. Spotlight. Times Food Processing Journal. Available online: http://www.timesb2b.com/foodprocessing/dec03_jan04/spotlight.html (accessed on 15 July 2004).
- Ulrich, R. The Biochemistry of Fruits and Their Products. In Organic Acids; Hulme, A.C., Ed.; Academic Press: London, UK, 1970. [Google Scholar]
- Ramana, K.V.R.; Setty, G.R.; Murthy, N.V.N.; Saroja, S.; Najundaswamy, A.M. Effect of Ethephone, Benomyl, Thiobendazole and Wax on Color and Shelf Life of Coorg Mandarin (Citrus reticulate Blanco). Trop. Sci. 1979, 21, 265–272. [Google Scholar]
- Mattoo, A.K.; Murata, T.; Pantastico, E.B.; Chachin, K.; Ogata, K.; Phan, C.T. Chemical Changes during Ripening and Senescence. In Post Harvest Physiology Handling and Utilization of Tropical and Subtropical Fruits and Vegetable; Pantastico, E.B., Ed.; AVI Publication: Westport, CT, USA, 1975; pp. 103–127. [Google Scholar]
- Salunkhe, D.K.; Desai, B.B. 1984. Postharvest Biotechnology of Vegetables; CRC Press: Boca Raton, FL, USA, 1984; Volume 2, pp. 70–75. [Google Scholar]
- Bal, E.; Celik, S. The Effects of Postharvest Treatments of SA and Potassium Permanganate on the Storage of Kiwifruit. Bulg. J. Agric. Sci. 2010, 16, 576–584. [Google Scholar]
- Esteves, M.T.C.; Carvalho, V.D.; Chitarra, M.I.F.; Chitarra, A.B.; Paula, M.B. Caracterização dos frutos de seiscultivares de goibeiras (Psidium guajava L.) namaturação, II-vitamina C e taninos. In VII Congresso Brasileiro de Fruticultura; SBF: Florianópolis, Brasil, 1984. [Google Scholar]
- Tavarini, S.; DeglInnocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant Capacity, Ascorbic Acid, Total Phenols and Carotenoids Changes during Harvest and after Storage of Hayward Kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Renhua, H.; Renxue, X.; Yunmel, L.; Liming, H.; Yongjie, X. Effect of Pre-Harvest SA Spray Treatment on Post-Harvest Antioxidant in the Pulp and Peel of ‘Cara Cara’ Navel Orange (Citrus sinenisis L. Osbeck). J. Sci. Food Agric. 2008, 88, 229–236. [Google Scholar]
- Lam, P.F.; Kosiyachinda, S.; Lizada, M.C.C.; Mendoza, D.B.J.; Prahawati, S.; Lee, S.K. Postharvest Physiology and Storage of Rambutan. In Rambutan: Fruit Development, Postharvest Physiology, and Marketing in Asean; Lam, P.F., Kosiyachinda, S., Eds.; Asean Food Handling Bureau: Kuala Lumpur, Malaysia, 1987; pp. 37–50. [Google Scholar]
- Shahkoomahally, S.; Ramezanian, A. Effect of Natural Aloe vera Gel Coating Combined with Calcium Chloride and Citric Acid Treatments on Grape (Vitis vinifera L. cv. Askari) Quality during Storage. Am. J. Food Sci. Technol. 2014, 2, 1–5. [Google Scholar]
- Tsay, L.M.; Mizuno, S.; Kozukue, N. Changes in Respiration, Ethylene Evolution and Abscisic Acid Content during Ripening and Senescence of Fruit Picked at Young and Mature Stage. J. Jpn. Soc. Hortic. Sci. 1984, 52, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Sun, D.; Li, Y.; Shi, W.; Sun, G. Pre–and Post-Harvest SA Treatments Alleviate Internal Browning and Maintain Quality of Winter Pineapple Fruit. Sci. Hortic. 2011, 130, 97–101. [Google Scholar] [CrossRef]
- Leslie, C.A.; Romani, R.G. Inhibition of Ethylene Biosynthesis by SA. Plant Physiol. 1988, 88, 833–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Matches, J.P.; Fellowman, J.K. Inhibition of Apple Fruit 1-Aminocyclopropane-1-Carboxylic Acid Oxides Activity and Respiration by acetyl SA. J. Plant. Physiol. 1996, 149, 469–471. [Google Scholar] [CrossRef]
- Xu, W.P.; K S Chen, F.L.; Zhang, S.L. Regulation of Lipoxygenase on Jasmonic Acid Biosynthesis in Ripening Kiwifruit. Acta Plant Physiol. Mol. Biol. 2000, 26, 507–514. [Google Scholar]
- Hodges, D.M. Postharvest Oxidative Stress in Horticultural Crops; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Mortazavi, N.; Naderi, R.; Khalighi, A.; Babalar, M.; Allizadeh, H. The Effect of Cytokinin and Calcium on Cut Flower Quality in Rose (Rosa hybrida L.) cv. Illona. J. Food Agric. Environ. 2007, 5, 311–313. [Google Scholar]
- Lurie, S.; Sonego, L.; Ben-Arie, R. Permeability, Microviscosity and Chemical Changes in the Plasma Membrane during Storage of Apple Fruit. Sci. Hortic. 1987, 32, 73–83. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Martinez-Romero, D.; Guillen, F.; Valverde, J.M.; Zapata, P.J.; Serrano, M.; Valero, D. Reduction of Pomegranate Chilling Injury during Storage after Heat Treatment: Role of Polyamines. Postharvest Biol. Technol. 2010, 44, 19–25. [Google Scholar] [CrossRef]
- Cai, C.; Li, X.; Chen, K. Acetyl SA Alleviates Chilling Injury of Postharvest Loquat (Eriobotrya japonica L.) Fruit. Eur. Food Res. Technol. 2006, 223, 533–539. [Google Scholar] [CrossRef]
- Sayyari, M.; Castillo, S.; Valero, D.; Diaz-Mula, H.M.; Serrano, M. Acetyl SA Alleviates Chilling Injury and Maintains Nutritive and Bioactive Compounds and Antioxidant Activity During Post-Harvest Storage of Pomegranates. Postharvest Biol. Technol. 2011, 60, 136–142. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Shen, L.; Fan, B.; Liu, K.L.; Yu, M.M.; Zheng, Y.; Ding, Y.; Sheng, J.P. Physiological and Genetic Properties of Tomato Fruits from 2 Cultivars Differing in Chilling Tolerance at Cold Storage. Food Chem. 2009, 74, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Sayyari, M.; Babalar, M.; Kalantari, S.; Serrano, M.; Valero, M. Effect of SA Treatment on Reducing Chilling Injury in Stored Pomegranates. Postharvest Biol. Technol. 2009, 53, 152–154. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical; Association of Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Hortwitz, W. Official and Tentative Methods of Analysis, 9th ed.; Association of Analytical Chemists: Washington, DC, USA, 1960; pp. 314–320. [Google Scholar]
- Hans, Y.S.H. The Guide Book of Food Chemical Experiments; Pekin Agricultural University: Bejing, China, 1992. [Google Scholar]
- Abbasi, N.M. Relationship of Free Radical Scavenging Enzymes to Fruit Growth, Development, Ripening and Senescence in ‘Red Delicious’ Apples. Ph.D. Thesis, University of Illinois Urbana-Champaign, Champaign, IL, USA, 1996. [Google Scholar]
- Wang, Y.S.; Tian, S.P.; Xu, Y. Effects of High Oxygen Concentration on Pro-and Anti-Oxidant Enzymes in Peach Fruits during Post-Harvest Periods. Food Chem. 2005, 91, 99–104. [Google Scholar] [CrossRef]
- Russel, D.F.; Eisensmith, S.P. MSTAT-C; Michigan State University: East Lansing, MI, USA, 1983. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
Fruit Weight (g) | Diameter (mm) | Pulp:Stone | Harvesting Date | Yield (Kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | |
Control | 123.33 b | 106.67 b | 53.78 c | 54.42 b | 9.29 b | 8.92 c | 0 | 0 | 44.75 c | 41.87 c |
SA 1 | 123.33 b | 108.33 b | 55.66 bc | 54.58 b | 9.79 b | 10.45 b | 0 | 0 | 47.38 b | 42.76 bc |
SA 2 | 125.56 b | 112.22 a | 58.66 ab | 57.52 ab | 11.94 a | 11.08 b | +2 | +1 | 48.07 b | 45.00 b |
SA 3 | 132.56 a | 113.78 a | 60.33 a | 58.85 a | 12.14 a | 12.59 a | +2 | +2 | 52.07 a | 47.78 a |
LSD | 2.63 | 3.84 | 3.44 | 3.29 | 1.69 | 0.74 | 2.42 | 2.43 |
Fruit Firmness (N) | Total Soluble Solids (˚Brix) | Total Acidity (%) | Total Sugars (%) | Ascorbic Acid (mg/100 g FW) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | |
Control | 75.33c | 97.44 c | 9.32 a | 9.17 a | 0.93 c | 1.09 b | 4.51 a | 4.65 a | 4.33 c | 4.90 c |
SA 1 | 83.00 b | 100.00 bc | 9.45 a | 9.03 a | 0.98 b | 1.10 b | 4.50 a | 4.62 a | 4.77 b | 5.33 bc |
SA 2 | 85.46 b | 101.28 b | 9.40 a | 9.17 a | 1.10 a | 1.12 ab | 4.57 a | 4.79 a | 5.00 ab | 5.65 ab |
SA 3 | 94.67 a | 107.69 a | 9.40 a | 9.37 a | 1.11 a | 1.14 a | 4.58 a | 4.75 a | 5.20 a | 6.08 a |
LSD | 3.75 | 3.57 | 0.59 | 1.16 | 0.04 | 0.04 | 0.13 | 0.24 | 0.32 | 0.74 |
SA mM (Concentration) | Storage Period (Weeks) | Weight Loss (%) | Firmness (N) | Fruit Skin Brightness | |||
---|---|---|---|---|---|---|---|
1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | ||
0 | 0 | 0.00 L | 0.00 L | 75.33 C | 97.43 AB | 68.45 A | 72.47 AB |
1 | 0 | 0.00 L | 0.00 L | 83.00 B | 100.00 AB | 69.66 A | 73.97 A |
2 | 0 | 0.00 L | 0.00 L | 85.47 B | 101.30 AB | 69.52 A | 73.67 AB |
3 | 0 | 0.00 L | 0.00 L | 94.67 A | 107.70 A | 69.03 A | 73.30 AB |
0.00 G | 0.00 F | 84.62 A | 101.61 A | 69.16 A | 73.35 A | ||
0 | 1 | 8.52 JK | 6.09 I–L | 36.35 GH | 75.67 C | 61.04 A–E | 70.58 AB |
1 | 1 | 7.33 K | 5.24 I–L | 41.20 FG | 82.67 BC | 63.30 A–D | 70.89 AB |
2 | 1 | 6.48 K | 4.43 KL | 49.60 DE | 83.33 BC | 69.13 A | 72.76 AB |
3 | 1 | 6.33 K | 4.45 J–L | 55.95 D | 84.00 BC | 69.23 A | 72.99 AB |
7.17 F | 5.05 E | 45.78 B | 81.42 B | 65.68 AB | 71.81 A | ||
0 | 2 | 13.27 GHI | 17.06 E–H | 31.94 HI | 45.67 D–G | 57.79 B–E | 70.16 AB |
1 | 2 | 11.75 HI | 13.38 G–J | 45.44 EF | 50.00 DE | 58.84 B–E | 69.84 AB |
2 | 2 | 10.94 IJ | 13.62 GHI | 51.64 DE | 53.33 DEF | 65.71 AB | 71.85 AB |
3 | 2 | 10.71 IJ | 10.95 H–K | 53.53 D | 54.00 D | 69.04 A | 71.93 AB |
11.67 E | 13.75 D | 45.64 B | 50.75 C | 62.85 BC | 70.95 AB | ||
0 | 3 | 18.74 D | 24.78 B–F | 18.43 JK | 30.33 FGH | 54.80 CDE | 69.84 AB |
1 | 3 | 15.92 EFG | 20.13 C–G | 26.75 I | 34.67 D–H | 58.52 B–E | 68.90 AB |
2 | 3 | 14.09 GH | 18.72 D–H | 28.25 I | 35.33 D–H | 63.78 A–D | 70.57 AB |
3 | 3 | 13.42 GHI | 16.01 FGH | 30.70 HI | 39.67 D–H | 66.01 AB | 70.95 AB |
15.54 D | 19.91 C | 26.03 C | 35.00 D | 60.78 CD | 70.06 ABC | ||
0 | 4 | 23.2 C | 28.59 ABC | 13.39 JKL | 27.00 GH | 54.79 CDE | 64.86 B |
1 | 4 | 18.56 DE | 23.84 B–F | 19.16 J | 31.67 FGH | 58.60 B–E | 68.02 AB |
2 | 4 | 15.58 FG | 20.83 B–G | 19.16 J | 34.67 D–H | 64.11 ABC | 67.69 AB |
3 | 4 | 14.62 G | 19.01 D–H | 26.03 I | 33.33 D–H | 66.27 AB | 70.36 AB |
18.04 C | 23.07 BC | 19.44 D | 31.67 D | 60.94 CD | 67.73 BCD | ||
0 | 5 | 29.94 B | 29.72 AB | 9.70 L | 25.67 GH | 53.03 E | 64.83 B |
1 | 5 | 21.94 C | 25.43 B–E | 12.97 JKL | 31.00 FGH | 57.04 B–E | 65.61 AB |
2 | 5 | 18.90 D | 24.91 B–F | 15.23 JKL | 32.00 E–H | 62.65 A–D | 67.11 AB |
3 | 5 | 18.25 DEF | 23.45 B–F | 18.23 JK | 34.00 D–H | 64.85 AB | 68.84 AB |
22.26 B | 25.88 AB | 14.03 E | 30.67 D | 59.39 CD | 66.60 CD | ||
0 | 6 | 35.15 A | 34.66 A | 8.73 L | 22.00 H | 51.83 E | 64.83 B |
1 | 6 | 27.49 B | 26.08 A–D | 12.47 KL | 28.33 GH | 54.55 DE | 65.67 AB |
2 | 6 | 23.36 C | 29.00 ABC | 12.97 JKL | 29.67 FGH | 60.84 A–E | 65.43 AB |
3 | 6 | 21.88 C | 27.59 A–D | 14.73 KL | 31.67 FGH | 62.64 A–D | 66.30 AB |
26.97 A | 29.33 A | 12.22 E | 27.92 D | 57.46 D | 65.56 D | ||
LSD (p <0.05) | 2.76 | 8.9382 | 6.55 | 21.519 | 3.71 | ||
Concentration | ** | ** | * | ||||
Storage period | ** | ** | ** | ||||
Concentration × storage period | NS | NS | NS |
SA mM (Concentration) | Storage Period (Weeks) | Fruit Skin Color Index (a*b*) | TSS (°Brix) | TA (%) | |||
---|---|---|---|---|---|---|---|
1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | ||
0 | 0 | 0.17 I | 0.17 IJ | 9.32 J | 9.17 GH | 0.93 D–I | 1.07 ABC |
1 | 0 | 0.15 I | 0.13 J | 9.45 IJ | 9.03 H | 0.98 C–F | 1.10 AB |
2 | 0 | 0.15 I | 0.17 IJ | 9.40 IJ | 9.17 GH | 1.10 A | 1.13 A |
3 | 0 | 0.15 I | 0.17 IJ | 9.40 IJ | 9.37 FGH | 1.11 A | 1.13 A |
0.15 E | 0.16 E | 9.39 F | 9.18 E | 1.03 A | 1.11 A | ||
0 | 1 | 0.35 D–H | 0.35 D–H | 10.52 D–G | 10.33 C–F | 0.88 I–L | 0.96 A–F |
1 | 1 | 0.31 GH | 0.31 E–I | 10.17 E–J | 9.77 E–H | 0.93 E–I | 1.03 A–D |
2 | 1 | 0.22 I | 0.22 G–J | 9.58 HIJ | 9.33 FGH | 1.00 CD | 1.00 A–E |
3 | 1 | 0.20 I | 0.20 HIJ | 9.50 HIJ | 9.13 H | 1.09 AB | 1.08 AB |
0.27 D | 0.27 D | 9.94 E | 9.64 D | 0.97 B | 1.02 B | ||
0 | 2 | 0.40 DE | 0.40 C–F | 10.65 D–G | 10.43 CDE | 0.79 MN | 0.97 A–E |
1 | 2 | 0.38 D–G | 0.38 C–G | 10.32 E–I | 10.47 CDE | 0.87 I–L | 0.95 B–F |
2 | 2 | 0.32 F–H | 0.32 E–I | 9.99 E–J | 10.20 D–G | 0.96 C–G | 1.01 A–E |
3 | 2 | 0.30 H | 0.30 F–I | 9.76 G–J | 9.90 E–H | 1.02 BC | 1.02 A–D |
0.35 C | 0.35 C | 10.18 DE | 10.25 C | 0.91 C | 0.99 B | ||
0 | 3 | 0.41 DE | 0.41 C–F | 11.29 BCD | 11.17 A–D | 0.76 NO | 0.93 B–G |
1 | 3 | 0.39 DEF | 0.39 C–F | 10.68 D–G | 10.97 A–D | 0.87 I–L | 0.93 B–G |
2 | 3 | 0.35 E–H | 0.35 D–H | 10.10 E–J | 10.97 A–D | 0.92 F–I | 1.01 A–E |
3 | 3 | 0.31 GH | 0.31 F–I | 9.96 F–J | 10.50 CDE | 0.98 C–F | 0.99 A–E |
0.36 C | 0.36 C | 10.51 CD | 10.90 B | 0.88 CD | 0.97 B | ||
0 | 4 | 0.42 CDE | 0.42 C–F | 11.28 BCD | 11.37 ABC | 0.71 OP | 0.84 E–I |
1 | 4 | 0.42 CD | 0.42 C–F | 10.91 CDE | 10.98 A–D | 0.83 KLM | 0.79 F–J |
2 | 4 | 0.36 D–H | 0.36 D–H | 10.42 D–H | 10.97 A–D | 0.90 G–J | 0.86 D–I |
3 | 4 | 0.32 FGH | 0.32 E–I | 10.09 E–J | 10.77 B–E | 0.99 CDE | 0.90 C–H |
0.38 C | 0.38 C | 10.68 BC | 11.02 B | 0.86 DE | 0.85 C | ||
0 | 5 | 0.54 B | 0.54 ABC | 11.90 AB | 12.00 A | 0.70 OP | 0.75 HIJ |
1 | 5 | 0.48 BC | 0.48 A–D | 11.29 BCD | 11.00 A–D | 0.81 LMN | 0.76 HIJ |
2 | 5 | 0.38 DEFG | 0.38 C–G | 10.57 D–G | 11.17 A–D | 0.89 H–K | 0.79 F–J |
3 | 5 | 0.40 DE | 0.40 C–F | 10.24 E–J | 11.00 A–D | 0.96 C–H | 0.79 F–J |
0.45 B | 0.45 B | 11.00 B | 11.29 AB | 0.84 E | 0.77 D | ||
0 | 6 | 0.61 A | 0.60 AB | 12.26 A | 11.93 A | 0.69 P | 0.63 J |
1 | 6 | 0.64 A | 0.63 A | 11.82 ABC | 11.83 A | 0.75 NOP | 0.70 IJ |
2 | 6 | 0.49 B | 0.50 A–D | 11.33 ABCD | 11.77 AB | 0.85 J–M | 0.77 G–J |
3 | 6 | 0.48 BC | 0.47 B–E | 10.76 DEF | 11.27 ABC | 0.88 IJK | 0.77 G–J |
0.56 A | 0.55 A | 11.54 A | 11.70 A | 0.79 F | 0.72 D | ||
LSD (p <0.05) | 0.07 | 0.16 | 0.94 | 1.06 | 0.07 | 0.18 | |
Concentration | ** | ** | ** | ||||
Storage period | ** | ** | ** | ||||
Concentration × storage period | NS | * | NS |
SA mM (Concentration) | Storage Period (Weeks) | TSS:TA | AA (mg/100 g FW) | Ethylene Biosynthesis | Electrolyte Leakage (%) | ||||
---|---|---|---|---|---|---|---|---|---|
1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | 1st Year | 2nd Year | ||
0 | 0 | 9.99 I–L | 8.47 IJ | 4.33 B–F | 4.93 BCD | 9.60 N | 7.33 N | 44.06 H–M | 35.7 E–I |
1 | 0 | 9.65 JKL | 8.30 J | 4.77 AB | 5.37 A–D | 8.87 N | 7.50 N | 41.81 I–M | 34.90 GHI |
2 | 0 | 8.61 KL | 8.17 J | 5.00 AB | 5.67 ABC | 8.90 N | 6.93 N | 38.75 LM | 35.30 F–I |
3 | 0 | 8.48 L | 8.13 J | 5.20 A | 6.13 A | 8.27 N | 6.83 N | 36.39 M | 29.50 I |
9.18 F | 8.27 F | 4.83 A | 5.53 A | 8.91 E | 7.15 E | 40.25 E | 33.87 D | ||
0 | 1 | 12.03 E–I | 10.83 F–J | 3.93 E–H | 4.65 B–F | 25.77 HIJ | 26.59 G–J | 49.53 E–J | 36.61 D–I |
1 | 1 | 11.00 G–J | 9.51 HIJ | 4.03 D–G | 4.78 B–E | 23.81 I–L | 24.60 IJK | 45.60 G–L | 35.22 F–I |
2 | 1 | 9.58 JKL | 9.78 G–J | 4.73 ABC | 4.65 B–F | 22.37 J–M | 23.12 K | 40.76 J–M | 34.89 GHI |
3 | 1 | 8.74 KL | 8.66 IJ | 4.93 AB | 5.70 AB | 19.56 M | 18.15 M | 39.21 KLM | 33.70 HI |
10.34 E | 9.69 E | 4.41 B | 4.95 B | 22.88 D | 23.12 D | 43.78 D | 35.11 D | ||
0 | 2 | 13.57 C–F | 10.73 F–J | 3.63 G–J | 4.38 D–I | 30.17 DEF | 30.39 DEF | 57.45 B–E | 46.33 A–H |
1 | 2 | 11.84 E–I | 10.06 G–J | 3.70 F–I | 4.30 D–I | 26.64 GHI | 29.21 EFG | 45.08 H–M | 39.06 C–I |
2 | 2 | 10.40 G–L | 9.81 G–J | 4.57 A–E | 4.55 B–H | 24.35 IJK | 24.45 JK | 39.87 KLM | 38.29 C–I |
3 | 2 | 9.53 JKL | 10.76 F–J | 4.70 A–D | 4.59 B–G | 20.42 LM | 20.14 LM | 39.80 KLM | 38.77 C–I |
11.34 D | 10.34 DE | 4.15 BC | 4.45 C | 25.39 C | 26.05 C | 45.55 CD | 40.61 C | ||
0 | 3 | 14.97 BCD | 12.48 D–H | 3.07 IJK | 4.28 D–I | 31.95 CD | 44.00 A | 59.54 A–D | 48.66 A–F |
1 | 3 | 12.37 EFG | 11.74 E–I | 3.53 G–J | 4.25 D–I | 31.40 CDE | 37.80 B | 47.35 F–L | 43.01 A–H |
2 | 3 | 10.98 G–J | 10.68 F–J | 4.37 B–F | 4.53 C–H | 28.20 E–H | 32.73 CD | 44.07 HM | 41.76 B–I |
3 | 3 | 10.16 H–L | 10.68 F–J | 4.57 A–E | 4.58 B–G | 22.11 KLM | 22.70 KL | 41.94 IM | 39.94 C–I |
12.12 CD | 11.40 D | 3.88 CD | 4.41 C | 28.41 B | 34.31 A | 48.23 C | 43.34 BC | ||
0 | 4 | 16.05 AB | 13.48 C–F | 2.97 JK | 3.35 IJK | 39.07 A | 39.36 B | 62.08 ABC | 51.19 ABC |
1 | 4 | 13.22 DEF | 13.96 B–F | 3.50 G–J | 3.75 E–J | 33.73 BC | 33.58 C | 54.19 C–G | 45.60 A–H |
2 | 4 | 11.64 F–J | 12.88 C–G | 3.80 FGH | 4.25 D–I | 31.35 CDE | 31.78 CDE | 48.70 E–J | 47.00 A–H |
3 | 4 | 10.27 G–L | 12.02 D–H | 4.07 C–G | 4.29 D–I | 27.32 F–I | 28.11 FG | 47.67 F–K | 44.41 A–H |
12.79 BC | 13.08 C | 3.58 DE | 3.91 D | 32.87 A | 33.21 A | 53.16 B | 47.05 AB | ||
0 | 5 | 17.18 A | 16.07 ABC | 3.03 IJK | 2.90 JK | 36.77 AB | 39.26 B | 64.42 AB | 50.02 A–D |
1 | 5 | 13.95 B–E | 15.01 B–E | 3.27 H–K | 3.00 JK | 30.07 D–G | 31.03 CDE | 54.54 C–F | 48.00 A–G |
2 | 5 | 11.89 E–I | 14.22 B–E | 3.70 F–I | 3.45 G–K | 26.21 HI | 27.41 GHI | 51.76 D–H | 45.92 A–H |
3 | 5 | 10.73 G–K | 13.87 B–F | 3.87 FGH | 3.60 F–J | 21.64 KLM | 23.21 K | 50.51 E–I | 44.17 A–H |
13.44 B | 14.79 B | 3.47 EF | 3.24 E | 28.67 B | 30.22 B | 55.31 AB | 47.03 B | ||
0 | 6 | 17.84 A | 19.03 A | 2.70 K | 2.33 K | 33.07 CD | 31.03 CDE | 66.43 A | 50.63 ABC |
1 | 6 | 15.74 ABC | 17.00 AB | 3.00 JK | 3.00 JK | 26.47 HI | 27.50 GH | 61.41 ABC | 55.83 A |
2 | 6 | 13.28 DEF | 15.23 BCD | 3.57 G–J | 3.03 JK | 24.03 IJK | 25.00 H–K | 56.03 B–F | 53.63 AB |
3 | 6 | 12.21 E–H | 14.57 B–E | 3.60 G–J | 3.40 H–K | 21.00 KLM | 24.00 JK | 50.79 D–H | 49.17 A–E |
14.77 A | 16.46 A | 3.22 F | 2.94 E | 26.14 C | 26.88 C | 58.66 A | 52.32 A | ||
LSD (p <0.05) | 2.19 | 3.32 | 0.67 | 1.15 | 3.52 | 2.88 | 8.7740 | 3.45 | |
Concentration | ** | ** | ** | ** | ** | ||||
Storage period | ** | ** | ** | ** | ** | ||||
Concentration × storage period | NS | NS | ** | ** | NS |
SA mM (Concentration) | Chilling Injury | Disease and Decay (%) | ||
---|---|---|---|---|
1st Year | 2nd Year | 1st Year | 2nd Year | |
Control | 0.2302 A | 0.4500 A | 50.67 A | 51.667 A |
SA 1 mM | 0.1190 B | 0.3917 A | 22.67 B | 31.667 B |
SA 2 mM | 0.1111 B | 0.1583 B | 20.00 B | 26.667 BC |
SA 3 mM | 0.0873 B | 0.0917 C | 14.67 B | 16.667 C |
LSD (p < 0.05) | 0.0645 | 0.0633 | 8.64 | 13.603 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Wang, X.; Tareen, M.J.; Wattoo, F.M.; Qayyum, A.; Hassan, M.U.; Shafique, M.; Liaquat, M.; Asghar, S.; Hussain, T.; et al. Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage. Plants 2021, 10, 1981. https://doi.org/10.3390/plants10101981
Ali I, Wang X, Tareen MJ, Wattoo FM, Qayyum A, Hassan MU, Shafique M, Liaquat M, Asghar S, Hussain T, et al. Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage. Plants. 2021; 10(10):1981. https://doi.org/10.3390/plants10101981
Chicago/Turabian StyleAli, Irfan, Xiukang Wang, Mohammad Javed Tareen, Fahad Masoud Wattoo, Abdul Qayyum, Mahmood Ul Hassan, Muhammad Shafique, Mehwish Liaquat, Sana Asghar, Tanveer Hussain, and et al. 2021. "Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage" Plants 10, no. 10: 1981. https://doi.org/10.3390/plants10101981
APA StyleAli, I., Wang, X., Tareen, M. J., Wattoo, F. M., Qayyum, A., Hassan, M. U., Shafique, M., Liaquat, M., Asghar, S., Hussain, T., Fiaz, S., & Ahmed, W. (2021). Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage. Plants, 10(10), 1981. https://doi.org/10.3390/plants10101981