Evaluation of Cotton (Gossypium hirsutum L.) Leaf Abscission Sensitivity Triggered by Thidiazuron through Membership Function Value
Abstract
:1. Introduction
2. Results
2.1. Comprehensive Evaluation of Principal Component Weighting
2.2. Genotypic Variation and Optimum TDZ Concentration under Leaf Abscission Induced by TDZ Treatment
2.3. Evaluation of Leaf Abscission Sensitivity and Screening of Reliable Indexes
2.4. Effects of Different TDZ Concentrations on Leaf Abscission and Photosynthetic Characteristics
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Experimental Design
4.3. Wilting Incidence, Purple Spot Incidence, and Abscission Rate in the Leaf
4.4. Leaf Relative Water Content and Natural Water-Saturated Deficit
4.5. Soluble Sugar and Amino Acid Content in the Leaf
4.6. Photosynthetic Pigment Content of Leaves
4.7. Photosynthetic Parameters of Leaves
4.8. Data Processing and Analysis
4.8.1. Comprehensive Evaluation of MFV by Principal Component Weighting Analyses
- (1)
- Weight of indexes by PCA:
- (2)
- MFV calculation in fuzzy mathematics:
4.8.2. Correlation Analysis
- (1)
- The Pearson correlation between 13 physiological indexes and the MV was analyzed.
- (2)
- The correlation of all morpho-physiological characters was analyzed by Pearson correlation analysis.
4.8.3. Variance Analysis and Cluster Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patharkar, O.R.; Gassmann, W.; Walker, J.C. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genet. 2017, 13, e1007132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichardt, S.; Piepho, H.P.; Stintzi, A.; Schaller, A. Peptide signaling for drought-induced tomato flower drop. Science 2020, 367, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, M.; Ait Barka, E.; Clement, C.; Vaillant-Gaveau, N.; Jacquard, C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J. Exp. Bot. 2015, 66, 1707–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patharkar, O.R.; Walker, J.C. Advances in abscission signaling. J. Exp. Bot. 2018, 69, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Patharkar, O.R.; Walker, J.C. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. Plant Sci. 2019, 284, 25–29. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Sun, H.; Wusiman, N.; Sun, W.N.; Li, B.Q.; Gao, Y.; Kong, J.; Zhang, D.W.; Zhang, X.L.; et al. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J. Exp. Bot. 2019, 70, 1525–1538. [Google Scholar] [CrossRef] [Green Version]
- Du, M.W.; Li, Y.; Tian, X.L.; Duan, L.S.; Zhang, M.C.; Tan, W.M.; Xu, D.Y.; Li, Z.H. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton. PLoS ONE 2014, 9, e97652. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liang, Z.; Zeng, Y.; Jing, Y.; Wu, K.; Liang, J.; He, S.; Wang, G.; Mo, Z.; Tan, F.; et al. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.). BMC Genom. 2016, 17, 195. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liang, Z.; He, S.; Zeng, Y.; Jing, Y.; Fang, W.; Wu, K.; Wang, G.; Ning, X.; Wang, L.; et al. Genome-wide identification of leaf abscission associated microRNAs in sugarcane (Saccharum officinarum L.). BMC Genom. 2017, 18, 754. [Google Scholar] [CrossRef]
- Xin, F.; Zhao, J.; Zhou, Y.T.; Wang, G.B.; Han, X.Q.; Fu, W.; Deng, J.Z.; Lan, Y.B. Effects of Dosage and Spraying Volume on Cotton Defoliants Efficacy: A Case Study Based on Application of Unmanned Aerial Vehicles. Agronomy 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.M.; Gao, K.; Fang, S.; Zhou, Z.G. Cotton Yield and Defoliation Efficiency in Response to Nitrogen and Harvest Aids. Agron. J. 2019, 111, 250–256. [Google Scholar] [CrossRef]
- Du, M.W.; Ren, X.M.; Tian, X.L.; Duan, L.S.; Zhang, M.C.; Tan, W.M.; Li, Z.H. Evaluation of Harvest Aid Chemicals for the Cotton-Winter Wheat Double Cropping System. J. Integr. Agric. 2013, 12, 273–282. [Google Scholar] [CrossRef]
- Suttle, J.C. Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol. 1985, 78, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Suttle, J.C. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron. Plant Physiol. 1988, 86, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttle, J.C.; Hultstrand, J.F. Ethylene-induced leaf abscission in cotton seedlings: The physiological bases for age-dependent differences in sensitivity. Plant Physiol. 1991, 95, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Khare, S.; Trivedi, P.K.; Nath, P. Ethylene induced cotton leaf abscission is associated with higher expression of cellulase (GhCell) and increased activities of ethylene biosynthesis enzymes in abscission zone. Plant Physiol. Biochem. 2008, 46, 54–63. [Google Scholar] [CrossRef]
- Jin, D.; Wang, X.; Xu, Y.; Gui, H.; Zhang, H.; Dong, Q.; Sikder, R.K.; Yang, G.; Song, M. Chemical Defoliant Promotes Leaf Abscission by Altering ROS Metabolism and Photosynthetic Efficiency in Gossypium hirsutum. Int. J. Mol. Sci. 2020, 21, 2738. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Yang, Z.Y.; Hu, Y.G. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crop. Res. 2015, 179, 103–112. [Google Scholar] [CrossRef]
- Vaezi, H.; Mohammadi-Nejad, G.; Majidi-Heravan, E.; Nakhoda, B.; Darvish-Kajouri, F. Effective Selection Indices for Improving Tolerance to Water Stress in Millet Germplasm. Int. J. Plant Prod. 2020, 14, 93–105. [Google Scholar] [CrossRef]
- Wu, H.; Guo, J.R.; Wang, C.F.; Li, K.L.; Zhang, X.W.; Yang, Z.; Li, M.T.; Wang, B.S. An Effective Screening Method and a Reliable Screening Trait for Salt Tolerance of Brassica napus at the Germination Stage. Front. Plant Sci. 2019, 10, 530. [Google Scholar] [CrossRef]
- Sikder, R.K.; Wang, X.; Jin, D.; Zhang, H.; Gui, H.; Dong, Q.; Pang, N.; Zhang, X.; Song, M. Screening and evaluation of reliable traits of upland cotton (Gossypium hirsutum L.) genotypes for salt tolerance at the seedling growth stage. J. Cotton Res. 2020, 3, 25–37. [Google Scholar] [CrossRef]
- Ding, T.; Yang, Z.; Wei, X.; Yuan, F.; Yin, S.; Wang, B. Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Funct. Plant Biol. 2018, 45, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Min, D.; Yasir, T.A.; Hu, Y.-G. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crop. Res. 2012, 137, 195–201. [Google Scholar] [CrossRef]
- Ha, S.T.T.; Lim, J.H.; In, B.C. Differential Expression of Ethylene Signaling and Biosynthesis Genes in Floral Organs Between Ethylene-Sensitive and -Insensitive Rose Cultivars. Hortic. Sci. Technol. 2019, 37, 227–237. [Google Scholar]
- Sharma, S.; Ritenour, M.; Ebel, R.C. The role of ethylene in abscission of sweet orange promoted by exogenous application of the abscission agent 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). J. Hortic. Sci. Biotechnol. 2017, 92, 120–129. [Google Scholar] [CrossRef]
- Rinne, P.L.H.; Paul, L.K.; van der Schoot, C. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus. BMC Plant Biol. 2018, 18, 220. [Google Scholar] [CrossRef]
- Domingos, S.; Fino, J.; Cardoso, V.; Sanchez, C.; Ramalho, J.C.; Larcher, R.; Paulo, O.S.; Oliveira, C.M.; Goulao, L.F. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L. BMC Plant Biol. 2016, 16, 38. [Google Scholar] [CrossRef] [Green Version]
- Greer, D.H.; Weston, C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 2010, 37, 206–214. [Google Scholar] [CrossRef]
- Lebon, G.; Wojnarowiez, G.; Holzapfel, B.; Fontaine, F.; Vaillant-Gaveau, N.; Clement, C. Sugars and flowering in the grapevine (Vitis vinifera L.). J. Exp. Bot. 2008, 59, 2565–2578. [Google Scholar] [CrossRef] [Green Version]
- Sikder, R.K.; Wang, X.; Zhang, H.; Gui, H.; Dong, Q.; Jin, D.; Song, M. Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in Gossypium hirsutum. Plants 2020, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Yang, J.S.; Meng, Y.L.; Wang, Y.H.; Chen, B.L.; Zhao, W.Q.; Oosterhuis, D.M.; Zhou, Z.G. Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass. Field Crop. Res. 2015, 179, 120–131. [Google Scholar] [CrossRef]
- Garcia-Jimenez, A.; Gomez-Merino, F.C.; Tejeda-Sartorius, O.; Trejo-Tellez, L.I. Lanthanum Affects Bell Pepper Seedling Quality Depending on the Genotype and Time of Exposure by Differentially Modifying Plant Height, Stem Diameter and Concentrations of Chlorophylls, Sugars, Amino Acids, and Proteins. Front. Plant Sci. 2017, 8, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.; Stein, W.H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [PubMed]
- Perez-Patricio, M.; Camas-Anzueto, J.L.; Sanchez-Alegria, A.; Aguilar-Gonzalez, A.; Gutierrez-Miceli, F.; Escobar-Gomez, E.; Voisin, Y.; Rios-Rojas, C.; Grajales-Coutino, R. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves. Sensors 2018, 18, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PCA | PC 1 | PC 2 | PC 3 | PC 4 | PC 5 | W |
---|---|---|---|---|---|---|
Proportion of Variance | 0.51 | 0.22 | 0.08 | 0.05 | 0.05 | - |
Cumulative Proportion | 0.51 | 0.73 | 0.82 | 0.87 | 0.91 | - |
AR 3 | −0.12 | 0.03 | −0.01 | −0.02 | −0.01 | 0.12 |
AR 4 | −0.12 | 0.01 | −0.01 | −0.02 | −0.01 | 0.13 |
AR 5 | −0.13 | 0.01 | −0.02 | −0.01 | −0.01 | 0.14 |
AR 8 | −0.14 | 0.02 | −0.02 | 0.00 | 0.00 | 0.12 |
AR 9 | −0.14 | 0.03 | −0.01 | 0.00 | 0.01 | 0.09 |
AR 10 | −0.14 | 0.03 | −0.01 | 0.00 | 0.00 | 0.10 |
Chl a | −0.03 | −0.09 | −0.01 | −0.01 | 0.00 | 0.13 |
Chl b | −0.04 | −0.10 | −0.01 | −0.01 | 0.00 | 0.14 |
Car | −0.12 | −0.05 | 0.01 | 0.00 | 0.00 | 0.14 |
T Chl | −0.04 | −0.10 | −0.01 | −0.01 | 0.00 | 0.13 |
Chl a/b | 0.08 | 0.07 | 0.00 | −0.01 | 0.00 | −0.12 |
LRWC | 0.10 | 0.05 | 0.02 | −0.02 | 0.00 | −0.13 |
NWSD | −0.10 | −0.05 | −0.02 | 0.02 | 0.00 | 0.13 |
SS | 0.10 | 0.00 | −0.02 | 0.01 | 0.01 | −0.09 |
AA | −0.02 | −0.06 | 0.04 | 0.00 | −0.01 | 0.04 |
WI | −0.14 | 0.01 | 0.02 | 0.00 | 0.00 | 0.09 |
PSI | −0.14 | 0.02 | 0.02 | 0.01 | 0.01 | 0.08 |
Tr | 0.14 | −0.02 | −0.02 | 0.00 | 0.00 | −0.09 |
Pn | 0.14 | −0.02 | −0.02 | 0.00 | −0.01 | −0.09 |
Ci | −0.02 | 0.03 | −0.01 | 0.02 | −0.04 | 0.02 |
Gs | 0.14 | −0.02 | −0.02 | 0.00 | 0.00 | −0.09 |
Index | CRI 49 | CRI 12 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | C1 | C2 | C3 | C4 | C5 | C6 | C0 | C1 | C2 | C3 | C4 | C5 | C6 | |
AR3 | 0.00 | 0.06 | 0.06 | 0.05 | 0.10 | 0.04 | 0.03 | 0.00 | 0.06 | 0.05 | 0.08 | 0.11 | 0.12 | 0.07 |
AR4 | 0.00 | 0.05 | 0.04 | 0.04 | 0.07 | 0.02 | 0.03 | 0.00 | 0.07 | 0.08 | 0.06 | 0.07 | 0.13 | 0.09 |
AR5 | 0.00 | 0.07 | 0.05 | 0.03 | 0.09 | 0.03 | 0.05 | 0.00 | 0.11 | 0.09 | 0.10 | 0.14 | 0.12 | 0.10 |
AR8 | 0.00 | 0.10 | 0.06 | 0.06 | 0.08 | 0.03 | 0.07 | 0.00 | 0.11 | 0.12 | 0.10 | 0.12 | 0.08 | 0.10 |
AR9 | 0.00 | 0.08 | 0.06 | 0.06 | 0.08 | 0.03 | 0.05 | 0.00 | 0.08 | 0.08 | 0.08 | 0.09 | 0.05 | 0.06 |
AR10 | 0.00 | 0.08 | 0.06 | 0.07 | 0.09 | 0.03 | 0.06 | 0.00 | 0.09 | 0.08 | 0.10 | 0.10 | 0.06 | 0.07 |
Chl a | 0.11 | 0.11 | 0.12 | 0.13 | 0.12 | 0.06 | 0.11 | 0.08 | 0.12 | 0.10 | 0.10 | 0.06 | 0.10 | 0.00 |
Chl b | 0.12 | 0.12 | 0.13 | 0.14 | 0.13 | 0.08 | 0.12 | 0.10 | 0.13 | 0.12 | 0.12 | 0.08 | 0.12 | 0.00 |
Car | 0.00 | 0.07 | 0.04 | 0.07 | 0.05 | 0.08 | 0.07 | 0.02 | 0.05 | 0.04 | 0.07 | 0.10 | 0.04 | 0.14 |
T Chl | 0.11 | 0.11 | 0.12 | 0.13 | 0.12 | 0.07 | 0.11 | 0.09 | 0.12 | 0.11 | 0.11 | 0.07 | 0.11 | 0.00 |
Chl a/b | −0.10 | −0.09 | −0.12 | −0.08 | −0.05 | −0.08 | −0.09 | −0.11 | −0.07 | −0.11 | −0.08 | −0.09 | −0.11 | 0.00 |
LRWC | −0.02 | −0.06 | −0.05 | −0.02 | −0.01 | −0.02 | −0.03 | 0.00 | −0.09 | −0.06 | −0.04 | −0.06 | −0.02 | −0.13 |
NWSD | 0.02 | 0.06 | 0.05 | 0.02 | 0.01 | 0.02 | 0.03 | 0.00 | 0.09 | 0.06 | 0.04 | 0.06 | 0.02 | 0.13 |
SS | −0.04 | −0.01 | −0.05 | 0.00 | −0.05 | −0.02 | −0.05 | −0.09 | −0.03 | −0.05 | 0.00 | −0.02 | −0.01 | −0.02 |
AA | 0.02 | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.04 | 0.02 | 0.00 |
WI | 0.00 | 0.07 | 0.08 | 0.09 | 0.08 | 0.09 | 0.07 | 0.00 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | 0.09 |
PSI | 0.00 | 0.07 | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.00 | 0.07 | 0.08 | 0.07 | 0.06 | 0.06 | 0.08 |
Tr | −0.01 | −0.08 | −0.08 | −0.08 | −0.08 | −0.08 | −0.08 | 0.00 | −0.08 | −0.08 | −0.08 | −0.08 | −0.09 | −0.08 |
Pn | −0.01 | −0.09 | −0.08 | −0.08 | −0.08 | −0.09 | −0.09 | 0.00 | −0.08 | −0.08 | −0.08 | −0.08 | −0.09 | −0.09 |
Ci | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.01 |
Gs | −0.01 | −0.08 | −0.08 | −0.08 | −0.08 | −0.08 | −0.09 | 0.00 | −0.09 | −0.08 | −0.08 | −0.08 | −0.09 | −0.08 |
MV | 0.19 | 0.67 | 0.53 | 0.63 | 0.77 | 0.29 | 0.46 | 0.12 | 0.78 | 0.67 | 0.81 | 0.77 | 0.70 | 0.52 |
Index | Correlation | p-Value | Location of Correlation |
---|---|---|---|
Chl a | −0.271 | 0.349 | 10 |
Chl b | −0.183 | 0.530 | 13 |
Car | 0.352 | 0.217 | 5 |
T Chl | −0.240 | 0.408 | 11 |
Chl a/b | −0.200 | 0.492 | 12 |
LRWC | −0.343 | 0.230 | 6 |
NWSD | 0.343 | 0.230 | 7 |
SS | −0.553 * | 0.040 | 4 |
AA | −0.266 | 0.358 | 9 |
Tr | −0.769 ** | 0.001 | 2 |
Pn | −0.760 ** | 0.002 | 3 |
Ci | 0.291 | 0.313 | 8 |
Gs | −0.770 ** | 0.001 | 1 |
Provinces | Cultivars | CK | TDZ | Relative Leaf Abscission Rate |
---|---|---|---|---|
Xinjiang | CRI 12 | 49.0 b | 74.1 a | 1.5 |
CRI 49 | 63.3 b | 71.3 a | 1.1 | |
Henan | CRI 12 | 21.6 b | 83.0 a | 3.8 |
CRI 49 | 35.5 b | 81.4 a | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Xu, Y.; Gui, H.; Zhang, H.; Dong, Q.; Sikder, R.K.; Wang, X.; Yang, G.; Song, M. Evaluation of Cotton (Gossypium hirsutum L.) Leaf Abscission Sensitivity Triggered by Thidiazuron through Membership Function Value. Plants 2021, 10, 49. https://doi.org/10.3390/plants10010049
Jin D, Xu Y, Gui H, Zhang H, Dong Q, Sikder RK, Wang X, Yang G, Song M. Evaluation of Cotton (Gossypium hirsutum L.) Leaf Abscission Sensitivity Triggered by Thidiazuron through Membership Function Value. Plants. 2021; 10(1):49. https://doi.org/10.3390/plants10010049
Chicago/Turabian StyleJin, Dingsha, Yanchao Xu, Huiping Gui, Hengheng Zhang, Qiang Dong, Ripon Kumar Sikder, Xiangru Wang, Guozheng Yang, and Meizhen Song. 2021. "Evaluation of Cotton (Gossypium hirsutum L.) Leaf Abscission Sensitivity Triggered by Thidiazuron through Membership Function Value" Plants 10, no. 1: 49. https://doi.org/10.3390/plants10010049