Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenol Content (TPC) of Different Ecotypes of Scrophularia striata
2.2. HPLC Analysis of Phenolic Compounds in Scrophularia striata
2.3. Effects of Scrophularia striata Water Extracts on the Germination of Weeds
2.4. Effects of Scrophularia striata Hydroalcoholic Extracts on the Germination of Weeds
2.5. Effects of Water Extracts Obtained from Scrophularia striata on the Root Length and Stem Length of Weeds
2.6. Effects of Scrophularia striata Hydroalcoholic Extracts on the Root and Stem Length of Weeds
2.7. Effects of Scrophularia striata Water Extracts on the Fresh and Dry Weight of Weeds
2.8. Effects of Scrophularia striata Hydroalcoholic Extracts on the Fresh and Dry Weight of Weeds
3. Materials and Methods
3.1. Plant Collection Area
3.2. Plant Material
3.3. Preparation of Aqueous and Hydroalcoholic Extracts for Allelopathy Experiments
3.4. Extract Preparation for Phenolic Compounds Determination
3.5. Determining the Total Phenol and Phenolic Compounds Profile
3.6. Germination Bioassay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghashghaii, A.; Hashemnia, M.; Nikousefat, Z.; Zangeneh, M.M.; Zangeneh, A. Wound healing potential of methanolic extract of Scrophularia striata in rats. Pharm Sci. 2017, 23, 256–263. [Google Scholar] [CrossRef]
- Shahbazi, Y. Antibacterial and Antioxidant Properties of Scrophularia Striata Boiss. Methanolic Extract. J. Pure Appl. Microbiol. 2017, 11, 1435–1441. [Google Scholar] [CrossRef]
- Richman, A.D.; Broothaerts, W.; Kohn, J.R. Self-incompatibility RNases from three plant families: Homology or convergence? Am. J. Bot. 1997, 84, 912–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaie-Tavirani, M.; Mortazavi, S.A.; Barzegar, M.; Moghadamnia, S.H.; Rezaee, M.B. Study of anticancer property of Scrophularia striata extract on the human astrocytoma cell line (1321). IJPR. 2010, 9, 403. [Google Scholar]
- Falahi, H.; Sharifi, M.; Maivan, H.Z.; Chashmi, N.A. Phenylethanoid glycosides accumulation in roots of Scrophularia striata as a response to water stress. Environ. Exp. Bot. 2018, 147, 13–21. [Google Scholar] [CrossRef]
- Beshamgan, E.S.; Sharifi, M.; Zarinkamar, F. Crosstalk among polyamines, phytohormones, hydrogen peroxide, and phenylethanoid glycosides responses in Scrophularia striata to Cd stress. Plant Physiol. Biochem. 2019, 143, 129–141. [Google Scholar] [CrossRef]
- Tamri, P. A mini-review on phytochemistry and pharmacological activities of Scrophularia striata. J. Herbmed Pharm. 2019, 8, 85–89. [Google Scholar] [CrossRef]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Azadmehr, A.; Oghyanous, K.A.; Hajiaghaee, R.; Amirghofran, Z.; Azadbakht, M. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity. Cell. Mol. Neurobiol. 2013, 33, 1135–1141. [Google Scholar] [CrossRef]
- Farooq, N.; Abbas, T.; Tanveer, A.; Jabran, K. Allelopathy for weed management. Co-Evol. Second. Metab. 2020, 505–519. [Google Scholar] [CrossRef]
- Cullen, M.G.; Thompson, L.J.; Carolan, J.C.; Stout, J.C.; Stanley, D.A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE 2019, 14, e0225743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perveen, S.; Yousaf, M.; Mushtaq, M.N.; Sarwar, N.; Khan, M.Y.; Mahmood, S. Bioherbicidal potential of some allelopathic agroforestry and fruit plant species against Lepidium sativum. Plant Soil Environ. 2019, 38, 11–18. [Google Scholar]
- Aslam, F.; Khaliq, A.; Matloob, A.; Tanveer, A.; Hussain, S.; Zahir, Z.A. Allelopathy in agro-ecosystems: A critical review of wheat allelopathy-concepts and implications. Chemoecology 2017, 27, 1–24. [Google Scholar] [CrossRef]
- Yuan, Z.; Zheng, Z.; Zhao, Y.; Liu, Y.; Zhou, S.; Wei, C.; Hu, Y.; Shao, H. Phytotoxic compounds isolated from leaves of the invasive weed Xanthium spinosum. Molecules 2018, 23, 2840. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, H.; Aslam, M.; Muntaha, S.T. Effect of Solvent Polarity and Extraction Method on Phytochemical Composition and Antioxidant Potential of Corn Silk. Free Radic. Antioxid. 2019, 9, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, A.A.; Nawaz, A.; Farooq, M. Allelopathic Crop Water Extracts Application Improves the Wheat Productivity Under Low and High Fertilizer Inputs in a Semi-Arid Environment. Int. J. Plant Prod. 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Pouresmaeil, M.; Nojadeh, M.S.; Movafeghi, A.; Maggi, F. Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Ind. Crops Prod. 2020, 155, 112785. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El Gendy, A.E.N.G.; Assaeed, A.M. Chemical characterization of Euphorbia heterophylla L. essential oils and their antioxidant activity and allelopathic potential on Cenchrus echinatus L. Chem. Biodivers. 2019, 16, e1900051. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; Al-Rowaily, S.L.; El-Amier, Y.A. Habitat affects the chemical profile, allelopathy, and antioxidant properties of essential oils and phenolic enriched extracts of the invasive plant Heliotropium curassavicum. Plants 2019, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- John, J.; Sarada, S. Role of phenolics in allelopathic interactions. Allelopath. J. 2012, 29, 215–230. [Google Scholar]
- Davazdahemami, S.; Sefidkon, F.; Jahansooz, M.; Mazaheri, D. Chemical Composition of the Essential Oils from Foliages and Seeds of Ajowan (Trachyspermum ammi (L.) Sprague) in two planting dates (spring and summer). J. Essent. Oil Bear. Plants 2011, 14, 639–642. [Google Scholar] [CrossRef]
- Fratianni, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Nazzaro, F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
- Zhang, L.; Santos, J.S.; Cruz, T.M.; Marques, M.B.; do Carmo, M.A.V.; Azevedo, L.; Granato, D. Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities. Food Res. Int. 2019, 125, 108516. [Google Scholar] [CrossRef] [PubMed]
- Pedisić, S.; Zorić, Z.; Repajić, M.; Elez Garofulić, I.; Čosić, Z.; Dragović-Uzelac, V.; Levaj, B. Polyphenol content of Marasca sour cherry ecotypes (Prunus cerasus Marasca) and its stability during freezing storage. Glas. Zaštite Bilja 2019, 42, 94–102. [Google Scholar]
- Salomé-Abarca, L.F.; Mandrone, M.; Sanna, C.; Poli, F.; van der Hondel, C.A.; Klinkhamer, P.G.; Choi, Y.H. Metabolic variation in Cistus monspeliensis L. ecotypes correlated to their plant-fungal interactions. Phytochemistry 2020, 176, 112402. [Google Scholar]
- Niczad, A.; Sharafzadeh, S.; Alizadeh, A.; Amiri, B.; Bazrafshan, F. Variability in Essential Oil Constituent, Phenolic Content, Antioxidant and Antimicrobial Activities of Different Ecotypes of Zataria multiflora Boiss. from Iran. J. Essent. Oil-Bear. Plants 2019, 22, 1435–1449. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Rocchetti, G.; Blasi, F.; Montesano, D.; Ghisoni, S.; Marcotullio, M.C.; Sabatini, S.; Lucini, L. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 2019, 115, 319–327. [Google Scholar] [CrossRef]
- Odabaş, H.İ.; Koca, I. Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Ind. Crop. Prod. 2016, 91, 114–124. [Google Scholar] [CrossRef]
- Paz, J.E.W.; Contreras, C.R.; Munguía, A.R.; Aguilar, C.N.; Inungaray, M.L.C. Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Braz. J. Microbiol. 2018, 49, 656–661. [Google Scholar] [CrossRef]
- Celep, E.; Seven, M.; Akyüz, S.; İnan, Y.; Yesilada, E. Influence of extraction method on enzyme inhibition, phenolic profile and antioxidant capacity of Sideritis trojana Bornm. S. Afr. J. Bot. 2019, 121, 360–365. [Google Scholar] [CrossRef]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.Y.; Khatib, A.; Abdull Razis, A.F. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, A.P.; Petenuci, M.E.; Galuch, M.B.; Schneider, V.V.A.; Canesin, E.A.; Visentainer, J.V. Evaluation of effect of different solvent mixtures on the phenolic compound extraction and antioxidant capacity of bitter melon (Momordica charantia). Chem. Zvesti 2018, 72, 2945–2953. [Google Scholar] [CrossRef]
- Lou, S.N.; Lai, Y.C.; Hsu, Y.S.; Ho, C.T. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chem. 2016, 197, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Barua, B.; Sikdar, D. Phytochemical screening, phenolic content and antioxidant activity of wild date palm (Phoenix sylvestris Roxb.) fruit extracted with different solvents. Int. Food Res. J. 2017, 24, 2534–2542. [Google Scholar]
- Verma, M.; Rai, G.K.; Kaur, D. Effect of extraction solvents on phenolic content and antioxidant activities of Indian gooseberry and guava. Int. Food Res. J. 2018, 25, 762–768. [Google Scholar]
- Jonasson, S.; Bryant, J.P.; Chapin, F.S., III; Andersson, M. Plant phenols and nutrients in relation to variations in climate and rodent grazing. Am. Nat. 1986, 128, 394–408. [Google Scholar] [CrossRef]
- Guedes, M.N.S.; Pio, R.; Maro, L.A.C.; Lage, F.F.; Abreu, C.M.P.D.; Saczk, A.A. Antioxidant activity and total phenol content of blackberries cultivated in a highland tropical climate. Acta Sci. Agron. 2017, 39, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Souhir, K.; Dorra, S.; Bettaib, R.I.; Mattew, S.; Neila, T.F.; Marie-Laure, F.; Sonia, M. Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations. Sci. Rep. 2020, 10, 1–15. [Google Scholar]
- Sun, R.Z.; Cheng, G.; Li, Q.; He, Y.N.; Wang, Y.; Lan, Y.B.; Cui, X.D. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Yadav, A.; Yadav, M.; Yadav, J.P. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm. f. BMC Res. Notes 2017, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaouadi, R.; Cardoso, S.M.; Silva, A.M.; Yahia, I.B.H.; Boussaid, M.; Zaouali, Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018, 77, 10–15. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Barros, L.; Ferreira, I.C. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes. J. Sci. Food Agric. 2018, 98, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, A.; Sarfraz, M.; Sarwar, M.; Farooq, M. Ecological management of agricultural pests through allelopathy. Co-Evol. Second. Metab. 2020, 543–574. [Google Scholar] [CrossRef]
- Scognamiglio, M.; Esposito, A.; D’Abrosca, B.; Pacifico, S.; Fiumano, V.; Tsafantakis, N.; Fiorentino, A. Isolation, distribution and allelopathic effect of caffeic acid derivatives from Bellis perennis L. Biochem. Syst. Ecol. 2012, 43, 108–113. [Google Scholar] [CrossRef]
- Scavo, A.; Rial, C.; Molinillo, J.M.; Varela, R.M.; Mauromicale, G.; Macias, F.A. The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind. Crop. Prod. 2019, 128, 479–487. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Maggi, F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean. Prod. 2018, 198, 91–95. [Google Scholar] [CrossRef]
- Haghighi, T.M.; Saharkhiz, M.J.; Naddaf, F. Ontogenetic variability of Vitex pseudo-negundo essential oil and its phytotoxic activity. Sci. Hortic. 2019, 257, 108735. [Google Scholar] [CrossRef]
- Zolkeflee, N.K.Z.; Isamail, N.A.; Maulidiani, M.; Abdul Hamid, N.A.; Ramli, N.S.; Azlan, A.; Abas, F. Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR-based metabolomics. Phytochem. Anal. 2020. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Biondo, E.; Kolchinski, E.M.; da Silva, L.F.S.; Corrêa, A.P.F.; Bach, E.; Brandelli, A. Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste Biomass Valorization 2017, 8, 439–442. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; de Carvalho, M.G.; de Moraes, M.D.L.; Rossiello, R.O.P.; de Oliveira, D.R.; de Amorim, R.M.Q.; Junior, E.B. Chemical screening of Urochloa humidicola: Methods for characterizing secondary metabolites and allelopathic activity on forage legumes. Am. J. Plant Sci. 2018, 9, 1260–1278. [Google Scholar] [CrossRef] [Green Version]
- Pavliuchenko, N.; Grygorieva, O.; Klymenko, S. Allelochemicals from Castanea Sativa Mill.: Plant-Root Environment Interactions. Agrobiodivers. Improv. Nutr. Health Life Qual. 2019, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. Molecules 2017, 22, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, P.; Narkhede, S.S.; Rane, A.D.; Mhaiske, V.M.; Dalvi, V.V. Allelopathic effect of leaf leachates of solid bamboo Dendrocalamus stocksii (Munro.) on growth and yield of Eleusine coracana L.(Gaertn.). Indian J. 2017, 19, 79–82. [Google Scholar]
- Wang, R.L.; Liu, S.W.; Xin, X.W.; Chen, S.; Peng, G.X.; Su, Y.J.; Song, Z.K. Phenolic acids contents and allelopathic potential of 10-cultivars of alfalfa and their bioactivity. Allelopath. J. 2017, 40, 63–70. [Google Scholar] [CrossRef]
- Govêa, K.P.; Pereira, R.S.T.; de Assis, M.D.O.; Alves, P.I.; Brancaglion, G.A.; Toyota, A.E.; Trindade, L.D.O.R. Allelochemical activity of eugenol-derived coumarins on Lactuca sativa L. Plants 2020, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Costas-Gil, A.; Dı’az-Tielas, C.; Reigosa, M.J.; Sa´nchez-Moreiras, A.M. Algicide activity of rosmarinic acid on Phaeodactylum tricornutum. J. Allel. Inter. 2015, 1, 39–47. [Google Scholar]
- Ahuja, N.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. J. Pest Sci. 2015, 88, 209–218. [Google Scholar] [CrossRef]
- Kalinova, J.; Triska, J.; Vrchotova, N. Occurence of eugenol, coniferyl alcohol and 3, 4, 5-trimethoxyphenol in common buckwheat (Fagopyrum esculentum Moench) and their biological activity. Acta Physiol. Plant. 2011, 33, 1679–1685. [Google Scholar] [CrossRef]
- Hsueh, M.T.; Fan, C.; Chang, W.L. Allelopathic effects of Bidens pilosa L. var. radiata Sch. Bip. on the tuber sprouting and seedling growth of Cyperus rotundus L. Plants 2020, 9, 742. [Google Scholar]
- Cao, J.; Dong, Z.; Zhao, H.; Duan, S.; Cao, X.; Liu, H.; Yang, Z. Allelopathic effect of rhubarb extracts on the growth of Microcystis aeruginosa. Water Sci. Technol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Esmaeili, S.; Saharkhiz, M.J. Phytotoxic activity of Tecomella undulata (Sm.) Seem extracts on some ornamental plants. Biocatal. Agric. Biotechnol. 2017, 9, 177–182. [Google Scholar] [CrossRef]
- Poulin, R.X.; Hogan, S.; Poulson-Ellestad, K.L.; Brown, E.; Fernández, F.M.; Kubanek, J. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dar, B.A.; Al-Rowaily, S.L.; Assaeed, A.M.; El-Bana, M.I.; Hegazy, A.K.; Malik, J.A. Allelopathic potential of Argemone ochroleuca from different habitats on seed germination of native species and cultivated crops. Pak. J. Bot. 2017, 49, 1841–1848. [Google Scholar]
- Krenchinski, F.H.; Albrecht, L.P.; Albrecht, A.J.P.; Costa Zonetti, P.; Tessele, A.; Barroso, A.A.M.; Placido, H.F. Allelopathic potential of ‘Cymbopogon citratus’ over beggarticks (‘Bidens’ sp.) germination. Aust. J. Crop Sci. 2017, 11, 277. [Google Scholar] [CrossRef]
- Kapoor, D.; Tiwari, A.; Sehgal, A.; Landi, M.; Brestic, M.; Sharma, A. Exploiting the allelopathic potential of aqueous leaf extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a widespread weed in India. Plants 2019, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Baličević, R.; Ravlić, M.; Kleflin, J.; Tomić, M. Allelopathic activity of plant species from Asteraceae and Polygonaceae family on lettuce. Herbologia 2016, 16, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Pratap Chandran, R.; Deepak, V.; Krishna, S.; Fathima, S.; Ameena, T.; Raj, J. Allelopathic Activity of Leaf Extracts of Mimosa pudica on Growth Parameters of Brassica juncea Seeds. Baoj Biotech. 2018, 4, 33. [Google Scholar]
- Raoof, K.A.; Siddiqui, M.B. Allelopathic effect of aqueous extracts of different parts of Tinospora cordifolia (Willd.) Miers on some weed plants. J. Agric. Ext. Rural Dev. 2012, 4, 115–119. [Google Scholar]
- Huang, W.; Reddy, G.V.; Shi, P.; Huang, J.; Hu, H.; Hu, T. Allelopathic effects of Cinnamomum septentrionale leaf litter on Eucalyptus grandis saplings. Glob. Ecol. Conserv. 2020, 21, e00872. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J. Secondary metabolites of peppermint change the morphophysiological and biochemical characteristics of tomato. Biocatal. Agric. Biotechnol. 2016, 7, 127–133. [Google Scholar] [CrossRef]
- Biswas, K.; Das, A.P. Allelopathic effects of teak Tectona grandis Lf on germination and seedling growth of Plumbago zeylanica L. Pleione 2016, 10, 262–268. [Google Scholar]
- Ahmed, R.; Hoque, A.R.; Hossain, M.K. Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops. J. Res. 2008, 19, 19–24. [Google Scholar] [CrossRef]
- Choudhari, S.W.; Chopde, T.; Mane, A.P.; Shambharkar, A.B.; Konde, N.M.; Wahurwagh, S.R.; Walke, R.D. Allelopathic effects of Acacia nilotica (L.) Leaf leachate with emphasis on Trigonella foenum graceum L. (fenugreek). J. Pharm. Phytochem. 2019, 8, 500–506. [Google Scholar]
- Hussain, S.; Shehzad, M.; Siddiqui, M.; Awan, S. Allelopathic effect of Santa Maria (Parthenium hysterophrous) mulch on growth and yield of soybean (Glycine max). Planta Daninha 2016, 34, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, B.; Jiang, K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 2019, 28, 103–116. [Google Scholar] [CrossRef]
- Khang, D.T.; Anh, L.H.; Ha, T.; Tuyen, P.T.; Quan, N.V.; Minh, L.T.; Trung, K.H. Allelopathic activity of dehulled rice and its allelochemicals on weed germination. Int. Lett. Nat. Sci. 2016, 58, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Talab, Z.A.; Tavassoli, A. Effect of weed allelopathic of sorghum (Sorghum halepense) on germination and seedling growth of wheat, Alvand cultivar. Ann. Biol. Res. 2012, 3, 1283–1293. [Google Scholar]
- Al-Harbi, N.A. Allelopathic Effect of Leaf Extract of Two Wild Plants on Seed Germination, Shoot and Root Length of Two Weed Species; Portulaca Oleracea and Chenopodium Murale. Biosci. Biotechnol. Res. Asia 2018, 15, 929–935. [Google Scholar] [CrossRef]
- Delinac, A. Assessment of allelopathic effect of St. John’s wort (Hypericum perforatum L.) on lettuce. Ph.D. Thesis, Poljoprivredni fakultet u Osijeku, Sveučilište Josipa Jurja Strossmayera u Osijeku, Osijek, Croatia, 2017. [Google Scholar]
- Isik, D.; Mennan, H.; Cam, M.; Tursun, N.; Arslan, M. Allelopathic potential of some essential oil bearing plant extracts on Common Lambsquarters (Chenopodium album L.). Rev. Chim. 2016, 67, 455–459. [Google Scholar]
- Sadeghi, H.; Bazdar, M. Effects of Prangos ferulacea aqueous and hydroalcoholic extracts obtained from different organs on the regeneration of Trifolium resupinatum. Acta Physiol. Plant. 2018, 40, 50. [Google Scholar] [CrossRef]
- Alqarawi, A.A.; Hashem, A.; Kumar, A.; Al-Arjani, A.B.F.; Abd_Allah, E.F.; Dar, B.A.; Egamberdieva, D. Allelopathic effects of the aqueous extract of Rhazya stricta on growth and metabolism of Salsola villosa. Plant Biosyst. 2018, 152, 1263–1273. [Google Scholar] [CrossRef]
- Asrat, G.; Seid, A. Allelopathic effect of meskit (Prosopis juliflora (Sw.) DC) aqueous extracts on tropical crops tested under laboratory conditions. Momona Ethiop. J. Sci. 2017, 9, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, W.; Ain, Q.; Siddiqui, M.B.; Hakeem, K.R. Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: A weed versus weed allelopathy approach. Protoplasma 2019, 256, 857–871. [Google Scholar] [CrossRef]
- Franco, D.M.; Saldanha, L.L.; Silva, E.M.; Nogueira, F.T.S.; Dokkedal, A.L.; Santos, C.D.; Almeida, L.F. Effects of leaf extracts of Myrcia guianensis (Aubl.) DC.: On growth and gene expression during root development of Sorghum bicolor (L.) Moench. Allelopath. J. 2015, 35, 237–248. [Google Scholar]
- Yang, Y.; Wu, F.; Zhou, X. Protein expression in accessions of Chinese onion with different allelopathic potentials under monocropping and intercropping systems. Acta Physiol. Plant. 2013, 35, 2241–2250. [Google Scholar] [CrossRef]
- Mushtaq, W.; Siddiqui, M.B. Allelopathy in Solanaceae plants. J. Plant Prot. Res. 2018, 58, 1. [Google Scholar]
- Stanišić, M.; Ćosić, T.; Savić, J.; Krstić-Milošević, D.; Mišić, D.; Smigocki, A.; Banjac, N. Hairy root culture as a valuable tool for allelopathic studies in apple. Tree Physiol. 2019, 39, 888–905. [Google Scholar] [CrossRef]
- Ming, Y.; Zhu, Z.J.; Li, J.; Hu, G.X.; Fan, X.M.; Yuan, D.Y. Allelopathic Effects of Castanea henryi Aqueous Extracts on the Growth and Physiology of Brassica pekinensis and Zea mays. Chem. Biodivers. 2020, 17, e2000135. [Google Scholar] [CrossRef] [PubMed]
- Ben Gharbia, H.; Kéfi-Daly Yahia, O.; Cecchi, P.; Masseret, E.; Amzil, Z.; Herve, F.; Zmerli Triki, H. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. PLoS ONE 2017, 12, e0187963. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.R.; Overbeck, G.E.; Soares, G.L.G. Something old, something new in allelopathy review: What grassland ecosystems tell us. Chemoecology 2017, 27, 217–231. [Google Scholar] [CrossRef]
- Abdelmigid, H.M.; Morsi, M.M. Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max). J. Genet. Eng. Biotechnol. 2017, 15, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Khan, E.A.; Shah, H.; Ahmad, N.; Khan, J.; Sadozai, G.U. Allelopathic sorghum water extract helps to improve yield of sunflower (Helianthus annuus L.). Pak. J. Bot. 2016, 48, 1197–1202. [Google Scholar]
- Naeem, M.; Cheema, Z.A.; Ihsan, M.Z.; Hussain, Y.; Mazari, A.; Abbas, H.T. Allelopathic effects of different plant water extracts on yield and weeds of wheat. Planta Daninha 2018, 36. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.; Cheema, Z.A.; Farooq, M.; Hassan, A.U. Influence of foliage applied allelopathic water extracts on the grain yield, quality and economic returns of hybrid maize. Int. J. Agric. Biol. 2016, 18, 577–583. [Google Scholar] [CrossRef]
- Xiaobang, P.E.N.G. Allelopathic effects of water extracts of maize leaf on three chinese herbal medicinal plants. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 194–200. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Kamran, M.; Cheema, Z.A.; Farooq, M.; Ali, Q.; Anjum, M.Z.; Raza, A. Allelopathic Influence of Sorghum Aqueous Extract on Growth, Physiology and Photosynthetic Activity of Maize (Zea mays L.) Seedling. Philipp. Agric. Sci. 2019, 102, 33–41. [Google Scholar]
- Sekutowski, T.; Domaradzki, K.; Jezierska-Domaradzka, A.; Matkowski, A.; Stochmal, A. Ocena potencjału allelopatycznego Solidago gigantea Aiton w odniesieniu do suchej masy Echinochloa crus-galli (L.) Beauv. oraz Amaranthus retroflexus L. J. Cent. Eur. Agric. 2019, 20, 402–414. [Google Scholar] [CrossRef]
- D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Monaco, P.; Natale, A.; Oriano, P.; Zarrelli, A. Structural characterization of phytotoxic terpenoids from Cestrum parqui. Phytochemistry 2005, 66, 2681–2688. [Google Scholar] [CrossRef]
- Ravlić, M.; Baličević, R.; Visković, M.; Smolčić, I. Response of weed species on allelopathic potential of Aloe vera (L.) Burm. f. Herbologia 2017, 16, 49–55. [Google Scholar]
- Marinov-Serafimov, P.; Dimitrova, T.; Golubinova, I. Allelopathy: Element of an overall strategy for weed control. Acta Agric. Serb. 2013, 18, 23–37. [Google Scholar]
- Kerdar, T.; Moradkhani, S.; Dastan, D. Phytochemical and biological studies of Scrophularia striata from Ilam. Jundishapur J. Nat. Pharm. Prod. 2018, 13. [Google Scholar] [CrossRef]
- Macías, F.A.; Castellano, D.; Molinillo, J.M. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 2000, 48, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.S.; Kaminski, K.P.; Perret, J.L.; Leroy, P.; Mazurov, A.; Peitsch, M.C.; Hoeng, J. Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food Chem. Toxicol. 2019, 132, 110660. [Google Scholar] [CrossRef] [PubMed]
- Mouradi, M.; Bouizgaren, A.; Farissi, M.; Makoudi, B.; Kabbadj, A.; Very, A.A.; Ghoulam, C. Osmopriming improves seeds germination, growth, antioxidant responses and membrane stability during early stage of Moroccan alfalfa populations under water deficit. Chil. J. Agric. Res. 2016, 76, 265–272. [Google Scholar] [CrossRef] [Green Version]
Compound (mg/g) | Lizan | Pahleh |
---|---|---|
Caffeic acid | + | ND |
Vanillin | 0.12 ± 0.01 | ND |
trans-Ferulic acid | ND | 0.56 ± 0.05 |
Hesperedin | ND | 1.04 ± 0.04 |
Eugenol | 2.12 ± 0.06 | 1.88 ± 0.03 |
Hesperetin | 0.53 ± 0.02 | 1.27 ± 0.02 |
Rosmarinic acid | 0.88 ± 0.04 | 2.65 ± 0.04 |
Concentration | Treatment | Germination Percentage (%) | Root Length (cm) | Stem Length (cm) | Fresh Weight (mg) | Dry Weight (mg) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M. sylvestris | C. album | L. sativum | M. sylvestris | C. Album | L. sativum | M. sylvestris | C. album | L. sativum | M. sylvestris | C. album | L. sativum | M. sylvestris | C. album | L. sativum | ||
0 | Control-WE | 53.33 ± 5.8 de | 63.33 ± 5.8 cd | 86.67 ± 5.8 ab | 3.63 ± 0.25 b | 5.47 ± 0.66 ab | 7.25 ± 0.28 a | 4.43 ± 0.47 ab | 3.23 ± 0.62 ab | 5.21 ± 0.36 a | 1100 ± 205.02 ab | 870 ± 37.86 a−c | 1410 ± 305.67 a | 2.67 ± 1.15 b | 20 ± 1.53 a | 4.33 ± 2.31 b |
0.25 | Pahleh WE | 0 ± 0 l | 8.33 ± 5.8 h–l | 86.67 ± 12.6 ab | 0 ± 0 g | 2.51 ± 1.07 b–d | 2.28 ± 0.54 b–f | 0 ± 0 f | 2.65 ± 1.0 bc | 2.36 ± 0.95 b–e | 0 ± 0 f | 630 ± 160 b–f | 520 ± 30.55 b–f | 0 ± 0 b | 3.67 ± 2.08 b | 1.67 ± 0.58 b |
0.5 | 0 ± 0 l | 3.33 ± 2.9 j–l | 93.33 ± 2.9 a | 0 ± 0 g | 1.34 ± 1.16 c–g | 2.02 ± 0.31 b–g | 0 ± 0 f | 1.95 ± 1.69 b–f | 2.33 ± 0.66 b–f | 0 ± 0 f | 470 ± 430.62 b–f | 660 ± 275.38 b–f | 0 ± 0 b | 4.33 ± 3.78 b | 2.67 ± 2.08 b | |
0.75 | 0 ± 0 l | 6.67 ± 2.9 i–l | 95.00 ± 5.0 a | 0 ± 0 g | 0.60 ± 0.2 d–g | 1.85 ± 0.40 b–g | 0 ± 0 f | 1.35 ± 0.54 b–f | 1.94 ± 0.71 b–f | 0 ± 0 f | 50 ± 20 ef | 580 ± 55.07 b–f | 0 ± 0 b | 0.3 ± 0.17 b | 1.67 ± 0.58 b | |
1 | 10.00 ± 17.3 h–l | 3.33 ± 2.9 j–l | 73.33 ± 10.4 bc | 0.34 ± 0.59 d–g | 1.37 ± 1.18 c–g | 1.47 ± 0.56 c–g | 0.54 ± 0.94 b–f | 1.02 ± 0.88 b–f | 2.73 ± 0.92 ab | 160 ± 282.90 d–f | 320 ± 280 b–f | 720 ± 160.73 a–e | 0.67 ± 1.15 b | 1.67 ± 1.52 b | 3.33 ± 1.15 b | |
0.25 | Lizan WE | 21.67 ± 2.9 g–j | 13.33 ± 2.9 h–l | 90.00 ± 10.0 ab | 0.48 ± 0.15 d–g | 1.51 ± 0.31 c–g | 7.43 ± 0.02 a | 1.67 ± 0.53 b–f | 1.43 ± 0.61 b–f | 2.50 ± 0.11 b–d | 400 ± 162.89 b–f | 510 ± 109.70 b–f | 1150 ± 45.83 a | 2.07 ± 2.57 b | 1.43 ± 1.40 b | 90 ± 0.58 b |
0.5 | 6.67 ± 2.9 i–l | 11.67 ± 2.9 h–l | 88.33 ± 7.6 ab | 0.16 ± 0.04 fg | 2.00 ± 0.98 b–g | 6.47 ± 1.40 a | 0.09 ± 0.005 ef | 2.83 ± 0.86 ab | 2.00 ± 0.46 bf | 10 ± 0.63 f | 760 ± 283.61 b–d | 1140 ± 115.33 a | 0.1 ± 0.1 b | 3 ± 1.73 b | 80 ± 0.58 b | |
0.75 | 3.33 ± 2.9 j–l | 6.67 ± 2.9 i–l | 93.33 ± 7.6 a | 0.87 ± 1.03 cg | 2.84 ± 0.05 bc | 3.80 ± 1.03 b | 1.73 ± 1.58 bf | 2.09 ± 0.35 bf | 1.99 ± 0.68 b–f | 360 ± 558.24 b–f | 590 ± 219.32 b–f | 870 ± 70.24 a–c | 2.67 ± 3.79 b | 1.23 ± 1.53 b | 70 ± 0.58 b | |
1 | 3.33 ± 2.9 j–l | 6.67 ± 2.9 i–l | 95.00 ± 8.7 a | 1.43 ± 1.25 c–g | 1.12 ± 0.90 c–g | 3.80 ± 1.31 b | 2.03 ± 1.76 b–f | 2.63 ± 0.61 a–c | 2.50 ± 0.10 b–d | 590 ± 516.43 b–f | 610 ± 220.30 b–f | 670 ± 111.35 b–f | 4 ± 3.60 b | 2.67 ± 2.08 b | 3.67 ± 0.58 b | |
0 | Control-HAE | 20.00 ± 5.0 h–k | 36.67 ± 2.9 e–g | 70.00 ± 5.0 bc | 2.267 ± 0.45 b–f | 4.28 ± 0.54 b | 6.27 ± 0.34 a | 2.40 ± 0.17 bd | 2.16 ± 0.15 bf | 3.68 ± 0.09 ab | 560 ± 212.21 af | 300 ± 20.82 b–f | 1070 ± 66.58 a | 3 ± 1.73 b | 2.03 ± 0.91 b | 8.4 ± 1.04 b |
0.25 | Pahleh HAE | 0 ± 0 l | 6.67 ± 2.9 i–l | 66.67 ± 2.9 cd | 0 ± 0 g | 0.60 ± 0.1 d–g | 3.72 ± 0.13 b | 0 ± 0 f | 0.41 ± 0.10 b–f | 2.88 ± 0.18 ab | 0 ± 0 f | 3.33 ± 2.08 f | 960 ± 40 ab | 0 ± 0 b | 0.2 ± 0.1 b | 6 ± 1 b |
0.5 | 0 ± 0 l | 0 ± 0 l | 51.67 ± 12.6 de | 0 ± 0 g | 0 ± 0 g | 2.02 ± 1.47 b–g | 0 ± 0 f | 0 ± 0 f | 2.14 ± 1.60 b–f | 0 ± 0 f | 0 ± 0 f | 540 ± 471.03 b–f | 0 ± 0 b | 0 ± 0 b | 3.67 ± 2.31 b | |
0.75 | 0 ± 0 l | 0 ± 0 l | 8.33 ± 5.8 h–l | 0 ± 0 g | 0 ± 0 g | 0 ± 0.08 fg | 0 ± 0 f | 0 ± 0 f | 0 ± 0.09 ef | 0 ± 0 f | 0 ± 0 f | 1.67 ± 1.15 f | 0 ± 0 b | 0 ± 0 b | 0.1 ± 0 b | |
1 | 0 ± 0 l | 0 ± 0 l | 0 ± 0 l | 0 ± 0 g | 0 ± 0 g | 0 ± 0 g | 0 ± 0 f | 0 ± 0 f | 0 ± 0 f | 0 ± 0 f | 0 ± 0 f | 0 ± 0 f | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | |
0.25 | Lizan HAE | 26.67 ± 5.8 f–h | 43.33 ± 5.8 ef | 76.67 ± 2.9 a–c | 0.66 ± 0.19 c–g | 0.80 ± 0.35 c–g | 2.38 ± 0.24 b–e | 0.34 ± 0.06 c–f | 2.27 ± 0.21 b–f | 2.25 ± 0.40 b–f | 290 ± 100.17 b–f | 60 ± 15.82 ef | 770 ± 45.09 b–d | 3.23 ± 2.25 b | 1.33 ± 0.58 b | 6.67 ± 1.15 b |
0.5 | 16.67 ± 5.8 h–l | 40.00 ± 10.0 e–g | 46.67 ± 5.8 e | 0.51 ± 0.20 d–g | 0.78 ± 0.11 c–g | 0.48 ± 0.17 d–g | 0.24 ± 0.13 d–f | 0.52 ± 0.10 b–f | 2.71 ± 0.49 ab | 60 ± 51.12 ef | 3.8 ± 1.06 f | 640 ± 81.44 b–f | 0.23 ± 0.15 b | 0.27 ± 0.11 b | 3.57 ± 2.50 b | |
0.75 | 5.00 ± 5.0 i–l | 20.00 ± 0 h–k | 23.33 ± 5.8 g–i | 0.14 ± 0.16 fg | 0.42 ± 0.06 d–g | 1.38 ± 1.43 c–g | 0.07 ± 0.06 ef | 0.25 ± 0.08 df | 1.44 ± 1.19 b–f | 1.43 ± 2.23 f | 0.73 ± 0.30 f | 680 ± 581.74 bf | 0.1 ± 0.1 b | 0.27 ± 0.21 b | 30 ± 36.06 a | |
1 | 1.67 ± 2.9 kl | 6.67 ± 2.9 i–l | 6.67 ± 5.8 i–l | 0.53 ± 0.92 d–g | 0.11 ± 0.02 fg | 0.25 ± 0.22 e–g | 0.90 ± 1.56 b–f | 0.03 ± 0.06 ef | 0.17 ± 0.15 d–f | 210 ± 369.50 c–f | 0.23 ± 0.11 f | 50 ± 42.10 ef | 1 ± 1.73 b | 0.1 ± 0 b | 0.07 ± 0.11 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Alizadeh, S.; Maggi, F. Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. Plants 2021, 10, 135. https://doi.org/10.3390/plants10010135
Mousavi SS, Karami A, Haghighi TM, Alizadeh S, Maggi F. Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. Plants. 2021; 10(1):135. https://doi.org/10.3390/plants10010135
Chicago/Turabian StyleMousavi, Seyyed Sasan, Akbar Karami, Tahereh Movahhed Haghighi, Saeed Alizadeh, and Filippo Maggi. 2021. "Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata" Plants 10, no. 1: 135. https://doi.org/10.3390/plants10010135
APA StyleMousavi, S. S., Karami, A., Haghighi, T. M., Alizadeh, S., & Maggi, F. (2021). Phytotoxic Potential and Phenolic Profile of Extracts from Scrophularia striata. Plants, 10(1), 135. https://doi.org/10.3390/plants10010135