A Supra-Physiological Dose of 2-Hydroxyestradiol Impairs Meiotic Progression and Developmental Competence of Mouse Antral Oocytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Reagents
2.2. Cumulus-Oocyte-Complexes Isolation and In Vitro Maturation
2.3. Morphology and Size of PB-I
2.4. In Vitro Fertilization
2.5. Immunofluorescence and Analyses of Oocyte Geometrical Parameters
2.6. Time-Lapse Recording and Analyses
2.7. Statistical Analysis
3. Results
3.1. The Presence of 5.00 µM 2-OHE2 During IVM Reduces Both Oocyte Meiotic and Developmental Competence
3.2. The Presence of 5.00 µM 2-OHE2 Alters Cellular Features of Cell Division and Meiotic Spindle Organization in MI and MII Oocytes
3.2.1. MTOC Dynamics
3.2.2. Shape of the Meiotic Spindle
3.2.3. F-Actin Cap Angle Extension
3.2.4. Volume of the First Polar Body
3.3. Cytoplasmic Movement Velocity Profiles During the GV-to-MII Transition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanczyk, F.Z. Metabolism of endogenous and exogenous estrogens in women. J. Steroid Biochem. Mol. Biol. 2024, 242, 106539. [Google Scholar] [CrossRef]
- Spicer, L.J.; Hammond, J.M. Regulation of ovarian function by catecholestrogens: Current concepts. J. Steroid Biochem. 1989, 33, 489–501. [Google Scholar] [CrossRef]
- Roselli, M.; Dubey, R.K. Estrogen metabolism and reproduction-is there a relationship? J. Fertil. Reprod. 2006, 16, 19–23. [Google Scholar]
- Kohen, P.; Henríquez, S.; Rojas, C.; Gerk, P.M.; Palomino, W.A.; Strauss, J.F.; Devoto, L. 2-Methoxyestradiol in the human corpus luteum throughout the luteal phase and its influence on lutein cell steroidogenesis and angiogenic activity. Fertil. Steril. 2013, 100, 1397–1404. [Google Scholar] [CrossRef]
- Henríquez, S.; Kohen, P.; Xu, X.; Veenstra, T.D.; Muñoz, A.; Palomino, W.A.; Strauss, J.F., 3rd; Devoto, L. Estrogen metabolites in human corpus luteum physiology: Differential effects on angiogenic activity. Fertil. Steril. 2016, 106, 230–237. [Google Scholar] [CrossRef]
- Henriquez, S.; Kohen, P.; Villarroel, C.; Muñoz, A.; Godoy, A.; Strauss, J.F., 3rd; Devoto, L. Significance of pro-angiogenic estrogen metabolites in normal follicular development and follicular growth arrest in Polycystic Ovary Syndrome (PCOS). Hum. Reprod. 2020, 35, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Henríquez, S.; Valdivia, M.J.; Mainigi, M.; Villarroel, C.; Velasquez, L.; Strauss, J.F., III; Devoto, L. The role of estrogen metabolites in human ovarian function. Steroids 2024, 203, 109368. [Google Scholar] [CrossRef] [PubMed]
- Devoto, L.; Henríquez, S.; Kohen, P.; Strauss, J.F., 3rd. The significance of estradiol metabolites in human corpus luteum physiology. Steroids 2017, 123, 50–54. [Google Scholar] [CrossRef]
- Berg, D.; Thaler, F.; Kuss, E. Concentrations of 2-hydroxyoestrogens in human sera measured by a heterologous immunoassay with an 125I-labelled ligand. Acta Endocrinol. 1982, 100, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Bozzolino, C.; Vaglio, S.; Amante, E.; Alladio, E.; Gerace, E.; Salomone, A.; Vincenti, M. Individual and cyclic estrogenic profile in women: Structure and variability of the data. Steroids 2019, 150, 108432. [Google Scholar] [CrossRef]
- Salih, S.; Xu, X.; Veenstra, T.D.; Duleba, A.J.; Fouad, H.; Nagamani, M.; Al-Hendy, A. Lower levels of urinary 2-hydroxyestrogens in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 3285–3291. [Google Scholar] [CrossRef]
- Othman, E.R.; Markeb, A.; Khashbah, M.Y.; Abdelaal, I.; ElMelegy, I.; Fetih, A.N.; Van der Houwen, L.; Lambalk, C.B.; Mijatovic, V. Markers of Local and Systemic Estrogen Metabolism in Endometriosis. Reprod. Sci. 2021, 28, 1001–1011. [Google Scholar] [CrossRef]
- Spicer, L.J.; Tucker, W.B.; Adams, G.D. Insulin-like growth factor-I in dairy cows: Relationships among energy balance, body condition, ovarian activity, and estrous behavior. J. Dairy. Sci. 1990, 73, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Tekpetey, F.R.; Armstrong, D.T. Catecholestrogen modulation of steroid production by rat luteal cells: Mechanism of action. Mol. Cell. Endocrinol. 1994, 101, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Merico, V.; Zanoni, M.; Parada-Bustamante, A.; Garagna, S.; Zuccotti, M. In Vitro Maturation of Fully Grown Mouse Antral Follicles in the Presence of 1 nM 2-Hydroxyestradiol Improves Oocytes’ Developmental Competence. Reprod. Sci. 2021, 28, 121–133. [Google Scholar] [CrossRef]
- Lattanzi, M.L.; Santos, C.B.; Mudry, M.D.; Baranao, J.L. Exposure of bovine oocytes to the endogenous metabolite 2-methoxyestradiol during in vitro maturation inhibits early embryonic development. Biol. Reprod. 2003, 69, 1793–1800. [Google Scholar] [CrossRef]
- Eichenlaub-Ritter, U.; Winterscheidt, U.; Vogt, E.; Shen, Y.; Tinneberg, H.R.; Sorensen, R. 2-methoxyestradiol induces spindle aberrations, chromosome congression failure, and nondisjunction in mouse oocytes. Biol. Reprod. 2007, 76, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Park, S.A.; Na, H.K.; Kim, E.H.; Cha, Y.N.; Surh, Y.J. 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: Potential role of reactive oxygen species. Cancer Res. 2009, 69, 2416–2424. [Google Scholar] [CrossRef]
- Fussell, K.C.; Udasin, R.G.; Smith, P.J.; Gallo, M.A.; Laskin, J.D. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis 2011, 32, 1285–1293. [Google Scholar] [CrossRef]
- Singh, B.; Bhat, H.K. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis 2012, 33, 2601–2610. [Google Scholar] [CrossRef]
- Rosselli, M.; Reinhart, K.; Imthurn, B. Cellular and biochemical mechanisms by which environmental oestrogens influence reproductive function. Hum. Reprod. Update 2000, 6, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.P.; Medina, R.A.; Owen, G.I. 2-methoxyestradiol and disorders of female reproductive tissues. Horm. Cancer 2014, 5, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Vigone, G.; Merico, V.; Redi, C.A.; Garagna, S.; Zuccotti, M. Time-lapse dynamics of the mouse oocyte chromatin organisation during meiotic resumption. Biomed. Res. Int. 2014, 2014, 207357. [Google Scholar] [CrossRef]
- Bui, T.T.H.; Belli, M.; Fassina, L.; Vigone, G.; Merico, V.; Garagna, S.; Zuccotti, M. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption. Mol. Reprod. Dev. 2017, 84, 356–362. [Google Scholar] [CrossRef]
- Nogueira, D.; Cortvrindt, R.; Everaerdt, B.; Smitz, J. Effects of long term in vitro exposure to phosphodiesterase type-3 inhibitors on follicle and oocyte development. Reproduction 2005, 130, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Zuccotti, M.; Giorgi Rossi, P.; Martinez, A.; Garagna, S.; Forabosco, A.; Redi, C.A. Meiotic and developmental competence of mouse antral oocytes. Biol. Reprod. 1998, 58, 700–704. [Google Scholar] [CrossRef]
- Ajduk, A.; Ilozue, T.; Windsor, S.; Yu, Y.; Seres, K.B.; Bomphrey, R.J.; Tom, B.D.; Swann, K.; Thomas, A.; Graham, C.; et al. Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat. Commun. 2011, 2, 417. [Google Scholar] [CrossRef]
- Swann, K.; Windsor, S.; Campbell, K.; Elgmati, K.; Nomikos, M.; Zernicka-Goetz, M.; Amso, N.; Lai, F.A.; Thomas, A.; Graham, C. Phospholipase C-ζ-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil. Steril. 2012, 97, 742–747. [Google Scholar] [CrossRef]
- Cavalera, F.; Zanoni, M.; Merico, V.; Sacchi, L.; Bellazzi, R.; Garagna, S.; Zuccotti, M. Chromatin organization and timing of polar body I extrusion identify developmentally competent mouse oocytes. Int. J. Dev. Biol. 2019, 63, 245–251. [Google Scholar] [CrossRef]
- Ge, L.; Han, D.; Lan, G.C.; Zhou, P.; Liu, Y.; Zhang, X.; Sui, H.S.; Tan, J.H. Factors affecting the in vitro action of cumulus cells on the maturing mouse oocytes. Mol. Reprod. Dev. 2008, 75, 136–142. [Google Scholar] [CrossRef]
- Londoño-Vásquez, D.; Rodriguez-Lukey, K.; Behura, S.K.; Balboula, A.Z. Microtubule organizing centers regulate spindle positioning in mouse oocytes. Dev. Cell. 2022, 57, 197–211.e3. [Google Scholar] [CrossRef]
- Ganesh, A.; Chattopadhyay, R.; Narendra Babu, K.; Chakravarty, B.; Chaudhury, K. Analysis of spindle characteristics and embryo quality in mice stimulated with letrozole using Polscope imaging. Fertil. Steril. 2010, 93, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Fluks, M.; Milewski, R.; Tamborski, S.; Szkulmowski, M.; Ajduk, A. Spindle shape and volume differ in high- and low-quality metaphase II oocytes. Reproduction 2024, 167, e230281. [Google Scholar] [CrossRef]
- Duan, X.; Sun, S.C. Actin cytoskeleton dynamics in mammalian oocyte meiosis. Biol. Reprod. 2019, 100, 15–24. [Google Scholar] [CrossRef]
- Levi, M.; Kaplan-Kraicer, R.; Shalgi, R. Regulation of division in mammalian oocytes: Implications for polar body formation. Mol. Hum. Reprod. 2011, 17, 328–334. [Google Scholar] [CrossRef]
- Schuh, M.; Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 2007, 130, 484–498. [Google Scholar] [CrossRef]
- Clift, D.; Schuh, M. A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat. Commun. 2015, 6, 7217. [Google Scholar] [CrossRef]
- Szollosi, D.; Calarco, P.; Donahue, R.P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 1972, 11, 521–541. [Google Scholar] [CrossRef]
- Luksza, M.; Queguigner, I.; Verlhac, M.H.; Brunet, S. Rebuilding MTOCs upon centriole loss during mouse oogenesis. Dev. Biol. 2013, 382, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Balboula, A.Z.; Nguyen, A.L.; Gentilello, A.S.; Quartuccio, S.M.; Drutovic, D.; Solc, P.; Schindler, K. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J. Cell Sci. 2016, 129, 3648–3660. [Google Scholar] [CrossRef] [PubMed]
- Breuer, M.; Kolano, A.; Kwon, M.; Li, C.C.; Tsai, T.F.; Pellman, D.; Brunet, S.; Verlhac, M.H. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J. Cell Biol. 2010, 191, 1251–1260. [Google Scholar] [CrossRef]
- FitzHarris, G.; Marangos, P.; Carroll, J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev. Biol. 2007, 305, 133–144. [Google Scholar] [CrossRef]
- Schuh, M.; Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 2008, 18, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Kincade, J.N.; Hlavacek, A.; Akera, T.; Balboula, A.Z. Initial spindle positioning at the oocyte center protects against incorrect kinetochore-microtubule attachment and aneuploidy in mice. Sci. Adv. 2023, 9, eadd7397. [Google Scholar] [CrossRef] [PubMed]
- Desaulniers, D.; Leingartner, K.; Pelletier, G.; Xiao, G.H.; Bowers, W.J. Effects of developmental exposure to mixtures of environmental contaminants on the hepatic metabolism of estradiol-17β in immature female Sprague Dawley rats. Int. J. Toxicol. 2012, 31, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, S.M.; Gore, A.C. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev. Endocr. Metab. Disord. 2007, 8, 143–159. [Google Scholar] [CrossRef]
- Malik, P.; Mukherjee, T.K. Exogenous Estrogens as Breast Cancer Risk Factors: A Perspective. Cancers 2025, 17, 2680. [Google Scholar] [CrossRef]
- Longo, F.J.; Chen, D.Y. Development of cortical polarity in mouse eggs: Involvement of the meiotic apparatus. Dev. Biol. 1985, 107, 382–394. [Google Scholar] [CrossRef]
- Choi, T.; Fukasawa, K.; Zhou, R.; Tessarollo, L.; Borror, K.; Resau, J.; Vande Woude, G.F. The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proc. Natl. Acad. Sci. USA 1996, 93, 7032–7035. [Google Scholar] [CrossRef]
- Ebner, T.; Moser, M.; Sommergruber, M.; Yaman, C.; Pfleger, U.; Tews, G. First polar body morphology and blastocyst formation rate in ICSI patients. Hum. Reprod. 2002, 17, 2415–2418. [Google Scholar] [CrossRef]
- Azoury, J.; Lee, K.W.; Georget, V.; Rassinier, P.; Leader, B.; Verlhac, M.H. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 2008, 18, 1514–1519. [Google Scholar] [CrossRef]
- Li, H.; Guo, F.; Rubinstein, B.; Li, R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat. Cell Biol. 2008, 10, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, X.; Zhang, Y.; Ruan, H.; Xu, X.; Wu, C.; Ding, Z.; Cao, Y. Sirtuin 5-driven meiotic spindle assembly and actin-based migration in mouse oocyte meiosis. Heliyon 2024, 10, e32466. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, L.; Zhao, H.; Bai, Q.; Fan, Y.; Zhu, X.; Yu, Y.; Li, R.; Liang, X.; Sun, Q.Y.; et al. Poly(ADP-ribose) mediates asymmetric division of mouse oocyte. Cell Res. 2018, 28, 462–475. [Google Scholar] [CrossRef]
- Chaigne, A.; Campillo, C.; Gov, N.S.; Voituriez, R.; Sykes, C.; Verlhac, M.H.; Terret, M.E. A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat. Commun. 2015, 6, 6027. [Google Scholar] [CrossRef]
- Yi, K.; Unruh, J.R.; Deng, M.; Slaughter, B.D.; Rubinstein, B.; Li, R. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell Biol. 2011, 13, 1252–1258. [Google Scholar] [CrossRef]
- Namgoong, S.; Kim, N.H. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016, 15, 1830–1843. [Google Scholar] [CrossRef]
- Tomari, H.; Honjo, K.; Kunitake, K.; Aramaki, N.; Kuhara, S.; Hidaka, N.; Nishimura, K.; Nagata, Y.; Horiuchi, T. Meiotic spindle size is a strong indicator of human oocyte quality. Reprod. Med. Biol. 2018, 17, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Soto-Moreno, E.J.; Ali, N.N.; Küllmer, F.; Nasufovic, V.; Frolikova, M.; Tepla, O.; Masata, J.; Trauner, D.; Patterson, A.A.; Arndt, H.D.; et al. Spindle-localized F-actin regulates polar MTOC organization and the fidelity of meiotic spindle formation. Nat. Commun. 2025, 16, 8323. [Google Scholar] [CrossRef]
- Yagi, E.; Barrett, J.C.; Tsutsui, T. The ability of four catechol estrogens of 17β-estradiol and estrone to induce DNA adducts in Syrian hamster embryo fibroblasts. Carcinogenesis 2001, 22, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Hurh, Y.J.; Chen, Z.H.; Na, H.K.; Han, S.Y.; Surh, Y.J. 2-hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. J. Toxicol. Environ. Health Part A 2004, 67, 1939–1953. [Google Scholar] [CrossRef]
- Demond, H.; Trapphoff, T.; Dankert, D.; Heiligentag, M.; Grümmer, R.; Horsthemke, B.; Eichenlaub-Ritter, U. Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS ONE 2016, 11, e0162722. [Google Scholar] [CrossRef]
- Huang, X.; Tong, J.S.; Wang, Z.B.; Yang, C.R.; Qi, S.T.; Guo, L.; Ouyang, Y.C.; Quan, S.; Sun, Q.Y.; Qi, Z.Q.; et al. JNK2 participates in spindle assembly during mouse oocyte meiotic maturation. Microsc. Microanal. 2011, 17, 197–205. [Google Scholar] [CrossRef]
- D’Amato, R.J.; Lin, C.M.; Flynn, E.; Folkman, J.; Hamel, E. 2-Methoxyes tradiol, an endogenous mammalian metabolite, inhibits tubulin poly merization by interacting at the colchicine site. Proc. Natl. Acad. Sci. USA 1994, 91, 3964–3968. [Google Scholar] [CrossRef] [PubMed]
- Wasielak-Politowska, M.; Kordowitzki, P. Chromosome Segregation in the Oocyte: What Goes Wrong during Aging. Int. J. Mol. Sci. 2022, 23, 2880. [Google Scholar] [CrossRef] [PubMed]
- De Santis, L.; Cino, I.; Rabellotti, E.; Calzi, F.; Persico, P.; Borini, A.; Coticchio, G. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod. Biomed. Online 2005, 11, 36–42. [Google Scholar] [CrossRef] [PubMed]
Treatment | % ± SEM (Number) of Oocytes During IVM | |||
---|---|---|---|---|
COC | Blocked at GV or GVBD | Fragmented or Pyknotic | MII | |
CTR | 100 (416) | 6.13 ± 0.67 (25) | 1.46 ± 0.51 (6) | 92.41 ± 0.61 (385) |
2-OHE2 (µM) | ||||
0.05 | 100 (155) | 5.58 ± 1.61 (10) | 1.46 ± 0.60 (3) | 92.98 ± 1.04 (166) |
0.50 | 100 (315) | 8.34 ± 0.65 (13) | 4.64 ± 0.79 * (7) | 87.04 ± 0.79 ** (135) |
5.00 | 100 (330) | 11.14 ± 1.42 * (39) | 10.70 ± 0.96 ** (33) | 78.16 ± 1.40 ** (258) |
Treatment | % ± SEM (Number) of Preimplantation Embryos | |||
---|---|---|---|---|
Inseminated MII | 2-Cell | 4-Cell ** | Blastocyst ** | |
CTR | 100 (223) | 61.71 ± 3.86 (130) | 53.82 ± 6.02 (69) | 31.41 ± 1.60 (41) |
2-OHE2 (µM) | ||||
0.05 | 100 (144) | 66.66 ± 3.18 (93) | 53.96 ± 2.72 (50) | 36.62 ± 2.08 (33) |
0.50 | 100 (133) | 64.72 ± 4.76 (83) | 45.50 ± 7.21 (36) | 28.88 ± 2.06 (24) |
5.00 | 100 (118) | 36.64 ± 2.83 * (42) | 38.58 ± 5.69 (15) | 5.00 ± 5.00 * (2) |
MI | MII | |||
---|---|---|---|---|
CTR | 2-OHE2 | CTR | 2-OHE2 | |
Barrel spindle | ||||
% (N) | 72.7 (32) | 56.4 (22) | 61.7 (21) | 55.8 (25) |
Equatorial width (µm) | 13.8 ± 0.9 | 14.9 ± 0.9 | 11.1 ± 0.3 | 14.0 ± 0.5 ** |
Pole width (µm) | 7.0 ± 0.3 | 8.4 ± 0.5 * | 4.5 ± 0.2 | 4.8 ± 0.3 |
Area (µm2 ± SEM) | 363.2 ± 15.5 | 423.2 ± 38.8 | 143.0 ± 4.4 | 255.4 ± 15.9 ** |
Rectangular spindle | ||||
% (N) | 27.3 (12) | 43.6 (17) | 38.3 (13) | 44.2 (19) |
Equatorial width (µm) | 11.6 ± 0.9 | 14.7 ± 1.2 | 11.0 ± 0.2 | 13.5 ± 0.7 ** |
Pole width (µm) | 6.6 ± 0.5 | 11.2 ± 0.7 ** | 6.0 ± 0.3 | 7.8 ± 0.4 ** |
Area (µm2 ± SEM) | 283.7 ± 13.2 | 398.8 ± 31.6 ** | 144.2 ± 16.5 | 278.6 ± 45.7 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merico, V.; Rebuzzini, P.; Zanoni, M.; Zuccotti, M.; Garagna, S. A Supra-Physiological Dose of 2-Hydroxyestradiol Impairs Meiotic Progression and Developmental Competence of Mouse Antral Oocytes. J. Dev. Biol. 2025, 13, 37. https://doi.org/10.3390/jdb13040037
Merico V, Rebuzzini P, Zanoni M, Zuccotti M, Garagna S. A Supra-Physiological Dose of 2-Hydroxyestradiol Impairs Meiotic Progression and Developmental Competence of Mouse Antral Oocytes. Journal of Developmental Biology. 2025; 13(4):37. https://doi.org/10.3390/jdb13040037
Chicago/Turabian StyleMerico, Valeria, Paola Rebuzzini, Mario Zanoni, Maurizio Zuccotti, and Silvia Garagna. 2025. "A Supra-Physiological Dose of 2-Hydroxyestradiol Impairs Meiotic Progression and Developmental Competence of Mouse Antral Oocytes" Journal of Developmental Biology 13, no. 4: 37. https://doi.org/10.3390/jdb13040037
APA StyleMerico, V., Rebuzzini, P., Zanoni, M., Zuccotti, M., & Garagna, S. (2025). A Supra-Physiological Dose of 2-Hydroxyestradiol Impairs Meiotic Progression and Developmental Competence of Mouse Antral Oocytes. Journal of Developmental Biology, 13(4), 37. https://doi.org/10.3390/jdb13040037