Super-Enhancers in Placental Development and Diseases
Abstract
:1. Introduction
2. Super-Enhancers
3. Placental Development
4. Role of Super-Enhancers in Placental Development
4.1. Super-Enhancers in Trophectoderm Development and Trophoblast Differentiation
4.2. Super-Enhancers in Trophoblast Invasion
4.3. Super-Enhancers in Placental Vascular Remodeling
Trophoblast-Specific TFs | SE Association | Trophoblast Placental Sub-Cell Types | Species | Functions | References |
---|---|---|---|---|---|
CDX2 | Intra-regulatory network with OCT4 TF. | Trophoblast progenitor cells | Mouse | Trophoblast self-renewal and early lineage specification. Inner cell mass (ICM) segregation and trophectoderm differentiation. | [1,17,37,39,40,41,43] |
ELF5 | Recruitment of TFAP2C protein to double/single- (Interaction with TFAP2C) or triple-occupancy sites (Interaction with EOMES) in genes for TS cell identity or differentiation. | TS cells, Villous cytotrophoblast cells | Human and mouse | TSC self-renewal and trophoblast differentiation. | [44] |
EOMES | Interacts with ELF5 to recruit TFAP2C to triple-occupancy sites in TS cell identity genes. | TS cells | Mouse and human | TS cell identity. | [44,45,46,47] |
TFAP2C (human) or TCFAP2c (mouse) | Interacts with TFAP2C to recruit TFAP2C to double- or single-occupancy sites in differentiation genes in TS cells. | TS cells, Invasive trophoblast cells | Mouse and human | Involved in trophectoderm lineage determination, placental development, and trophoblast differentiation. | [13,44,45,46,47] |
Trophoblast-Specific TFs | SE Association | Trophoblast/Placental Sub-Cell Types | Species | Functions | References |
FOSLI | Binds to migration enhancers during trophoblast invasion. Dimerizes with JUN to form AP-1 complex. | Extravillous trophoblast cells | Mouse and human | Involved in trophoblast differentiation and migration. | [1,13,56,57] |
TFAP2C (human) or Tcfap2c (mouse) | Interacts with TFAP2C to recruit TFAP2C to double- or single-occupancy sites in differentiation genes in TS cells. | TS cells, Invasive trophoblast cells | Mouse and human | Involved in trophectoderm lineage determination, placental development, and trophoblast differentiation. | [13,15,44,45,46,47] |
Trophoblast-Specific TFs | SE Association | Trophoblast/Placental Sub-Cell Types | Species | Functions | References |
ERG | Regulates CDH5, ANGP2, DLL4, CLDN5, and VW for vascular development and angiogenesis. | Endothelial cells | Mouse and human | Involved in vascular development and angiogenesis. | [1,21,56,66,69,70,71] |
GATA-2 and GATA-3 | Regulates the expression of hormone PLF along with GATA 3. | Murine trophoblast giant cells, Cytotrophoblast progenitors | Mouse and human | Involved in endothelial cell migration, neovascularization, and angiogenesis. | [51,73,74,75,76,77] |
ETS2 | Regulates TS cell renewal by regulating CDX2 and trophoblast invasion via MMP-3, MMP-9, and MMP-13. | TS cells | Mouse and human | Regulates trophoblast differentiation and invasion. | [13,53] |
5. Role of Super-Enhancers in Placental Diseases
5.1. Super-Enhancers in Disease Pathogenesis
5.2. Super-Enhancers in Placental Diseases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SE | Super-enhancers |
TS cells/TSC | Trophoblast stem cells |
ICM | Inner cell mass |
TFs | Transcription factors |
TGCs | Trophoblast giant cells |
CDX2 | Caudal-type homeobox 2 |
EOMES | Eomesodermin |
TCFAP2C | Transcription factor AP-2 gamma |
GATA3 | GATA-binding protein 3 |
ETS2 | ETS proto-oncogene 2, transcription factor |
ELF5 | E74-like ETS transcription factor 5 |
ESSRB | Estrogen-related receptor beta |
SOX2 | SRY-box transcription factor 2 |
ID1 | Inhibitor of DNA binding 1 |
TEAD4 | TEA domain transcription factor 4 |
SATB1 | SATB homeobox 1 |
TP63 | Tumor protein P63 |
OCT4 | POU class 5 homeobox 1 |
NANOG | SOX2, and Nanog homeobox |
PIM1 | Pim-1 proto-oncogene, serine/threonine kinase |
FGFR2 | Fibroblast growth factor receptor 2 |
CBP | Creb-binding protein |
SMC | Cohesion structural maintenance of chromosomes |
HUVECs | human umbilical vein endothelial cells |
CDH5 | Cadherin 5 |
ANGP2 | Angiopoietin |
DLL4 | Delta like canonical notch ligand 4 |
CLDN5 | Claudin 5 |
VWR | Von Willebrand factor (VWF) |
FOSLI | Fos proto-oncogene, AP-1 transcription factor subunit 1 |
JUM | Jun proto-oncogene |
MMP9 | Matrix metalloproteinase 9 |
MYC | MYC proto-oncogene, BHLH transcription factor |
BRD4 | Bromodomain containing 4 |
MAFK | MAF BZIP transcription factor K |
References
- Lee, B.K.; Jang, Y.J.; Kim, M.; LeBlanc, L.; Rhee, C.; Lee, J.; Beck, S.; Shen, W.; Kim, J. Super-enhancer-guided mapping of regulatory networks controlling mouse trophoblast stem cells. Nat. Commun. 2019, 10, 4749. [Google Scholar] [CrossRef] [PubMed]
- Soncin, F.; Natale, D.; Parast, M.M. Signaling pathways in mouse and human trophoblast differentiation: A comparative review. Cell Mol. Life Sci. 2015, 72, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cairns, M.J.; Yan, J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res. 2019, 47, 11481–11496. [Google Scholar] [CrossRef] [PubMed]
- Scifres, C.M.; Nelson, D.M. Intrauterine growth restriction, human placental development and trophoblast cell death. J. Physiol. 2009, 587, 3453–3458. [Google Scholar] [CrossRef]
- Jena, M.K.; Sharma, N.R.; Petitt, M.; Maulik, D.; Nayak, N.R. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020, 10, 953. [Google Scholar] [CrossRef]
- Stevenson, D.K.; Wong, R.J.; Nayak, N.R. Molecular Mechanisms of Pregnancy-Related Vascular Remodeling and Pregnancy Complications. Int. J. Mol. Sci. 2023, 24, 3712. [Google Scholar] [CrossRef]
- Lawless, L.; Qin, Y.; Xie, L.; Zhang, K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023, 15, 3564. [Google Scholar] [CrossRef]
- Hayder, H.; Shan, Y.; Chen, Y.; O’Brien, J.A.; Peng, C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front. Cell Dev. Biol. 2022, 10, 995462. [Google Scholar] [CrossRef]
- Nayak, N.R.; Srivastava, A.; Jena, M.K.; Odibo, A.; Sutkin, G. Genetic and Epigenetic Insights into Pregnancy-Related Complications. Genes 2024, 16, 1. [Google Scholar] [CrossRef]
- Fan, X.; Rai, A.; Kambham, N.; Sung, J.F.; Singh, N.; Petitt, M.; Dhal, S.; Agrawal, R.; Sutton, R.E.; Druzin, M.L.; et al. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J. Clin. Investig. 2014, 124, 4941–4952. [Google Scholar] [CrossRef]
- Marzioni, D.; Quaranta, A.; Lorenzi, T.; Morroni, M.; Crescimanno, C.; De Nictolis, M.; Toti, P.; Muzzonigro, G.; Baldi, A.; De Luca, A.; et al. Expression pattern alterations of the serine protease HtrA1 in normal human placental tissues and in gestational trophoblastic diseases. Histol. Histopathol. 2009, 24, 1213–1222. [Google Scholar] [CrossRef]
- Cardaropoli, S.; Paulesu, L.; Romagnoli, R.; Ietta, F.; Marzioni, D.; Castellucci, M.; Rolfo, A.; Vasario, E.; Piccoli, E.; Todros, T. Macrophage migration inhibitory factor in fetoplacental tissues from preeclamptic pregnancies with or without fetal growth restriction. Clin. Dev. Immunol. 2012, 2012, 639342. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, G.; Chung, T.; Bejerano, G. Changes in the enhancer landscape during early placental development uncover a trophoblast invasion gene-enhancer network. Placenta 2016, 37, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, G.; Cheng, E.; Papadakis, H.; Bejerano, G. PESNPdb: A comprehensive database of SNPs studied in association with pre-eclampsia. Placenta 2012, 33, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Asanoma, K.; Kubota, K.; Chakraborty, D.; Renaud, S.J.; Wake, N.; Fukushima, K.; Soares, M.J.; Rumi, M.A. SATB homeobox proteins regulate trophoblast stem cell renewal and differentiation. J. Biol. Chem. 2012, 287, 2257–2268. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Gong, Y.G.; Khoo, S.K.; Leach, R. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells. Biochem. Biophys. Res. Commun. 2013, 431, 197–202. [Google Scholar] [CrossRef]
- Soncin, F.; Khater, M.; To, C.; Pizzo, D.; Farah, O.; Wakeland, A.; Arul Nambi Rajan, K.; Nelson, K.K.; Chang, C.W.; Moretto-Zita, M.; et al. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development 2018, 145, dev156273. [Google Scholar] [CrossRef]
- Sakabe, N.J.; Savic, D.; Nobrega, M.A. Transcriptional enhancers in development and disease. Genome Biol. 2012, 13, 238. [Google Scholar] [CrossRef]
- Spitz, F.; Furlong, E.E. Transcription factors: From enhancer binding to developmental control. Nat. Rev. Genet. 2012, 13, 613–626. [Google Scholar] [CrossRef]
- Pott, S.; Lieb, J.D. What are super-enhancers? Nat. Genet. 2015, 47, 8–12. [Google Scholar] [CrossRef]
- Li, Q.; Meissner, T.B.; Wang, F.; Du, Z.; Ma, S.; Kshirsagar, S.; Tilburgs, T.; Buenrostro, J.D.; Uesugi, M.; Strominger, J.L. ELF3 activated by a superenhancer and an autoregulatory feedback loop is required for high-level HLA-C expression on extravillous trophoblasts. Proc. Natl. Acad. Sci. USA 2021, 118, e2025512118. [Google Scholar] [CrossRef]
- Whyte, W.A.; Orlando, D.A.; Hnisz, D.; Abraham, B.J.; Lin, C.Y.; Kagey, M.H.; Rahl, P.B.; Lee, T.I.; Young, R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153, 307–319. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Y.; Yue, W.; Zhu, Z.; Wu, X.; Yu, S.; Shen, Q.; Pan, Q.; Xu, W.; Zhang, R.; et al. Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc. Natl. Acad. Sci. USA 2022, 119, e2204716119. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Chen, S.; Tan, Y.; Li, Y.; Tang, F. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Exp. Mol. Med. 2020, 52, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Kagey, M.H.; Newman, J.J.; Bilodeau, S.; Zhan, Y.; Orlando, D.A.; van Berkum, N.L.; Ebmeier, C.C.; Goossens, J.; Rahl, P.B.; Levine, S.S.; et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010, 467, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Hnisz, D.; Abraham, B.J.; Lee, T.I.; Lau, A.; Saint-André, V.; Sigova, A.A.; Hoke, H.A.; Young, R.A. Super-enhancers in the control of cell identity and disease. Cell 2013, 155, 934–947. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, W.; Zhou, Y.; Liao, M.; Chen, X.; Hua, J. Super enhancers-Functional cores under the 3D genome. Cell Prolif. 2021, 54, e12970. [Google Scholar] [CrossRef]
- Woods, L.; Perez-Garcia, V.; Hemberger, M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front. Endocrinol. (Lausanne) 2018, 9, 570. [Google Scholar] [CrossRef]
- Martin Knöfler, S.H.; Saleh, L.; Pollheimer, J.; Gamage, T.K.J.B.; James, J. Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell Mol. Life Sci. 2019, 76, 3479–3496. [Google Scholar] [CrossRef]
- Fan, X.; Muruganandan, S.; Shallie, P.D.; Dhal, S.; Petitt, M.; Nayak, N.R. VEGF Maintains Maternal Vascular Space Homeostasis in the Mouse Placenta through Modulation of Trophoblast Giant Cell Functions. Biomolecules 2021, 11, 1062. [Google Scholar] [CrossRef]
- Rossant, J.; Cross, J.C. Placental development: Lessons from mouse mutants. Nat. Rev. Genet. 2001, 2, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Panja, S.; Paria, B.C. Development of the Mouse Placenta. Adv. Anat. Embryol. Cell Biol. 2021, 234, 205–221. [Google Scholar] [CrossRef]
- Hu, D.; Cross, J.C. Development and function of trophoblast giant cells in the rodent placenta. Int. J. Dev. Biol. 2010, 54, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Shokati, A.; Naser Moghadasi, A.; Ghashghaei, A.; Sahraian, M.A.; Chahardouli, B.; Mousavi, S.A.; Ai, J.; Nikbakht, M. Good manufacturing practices production of human placental derived mesenchymal stem cells for therapeutic applications: Focus on multiple sclerosis. Mol. Biol. Rep. 2024, 51, 460. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Xiao, Z.; Yan, L.; Guo, S.; Wang, Y.; Wu, H.; Zhao, X.; Lu, X.; Wang, H. A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov. 2023, 9, 30. [Google Scholar] [CrossRef]
- Furukawa, S.; Hayashi, S.; Usuda, K.; Abe, M.; Hagio, S.; Ogawa, I. Toxicological pathology in the rat placenta. J. Toxicol. Pathol. 2011, 24, 95–111. [Google Scholar] [CrossRef]
- Strumpf, D.; Mao, C.A.; Yamanaka, Y.; Ralston, A.; Chawengsaksophak, K.; Beck, F.; Rossant, J. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005, 132, 2093–2102. [Google Scholar] [CrossRef]
- Niakan, K.K.; Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 2013, 375, 54–64. [Google Scholar] [CrossRef]
- Matsumoto, S.; Okamura, E.; Muto, M.; Ema, M. Similarities and differences in placental development between humans and cynomolgus monkeys. Reprod. Med. Biol. 2023, 22, e12522. [Google Scholar] [CrossRef]
- Genbacev, O.; Lamb, J.D.; Prakobphol, A.; Donne, M.; McMaster, M.T.; Fisher, S.J. Human trophoblast progenitors: Where do they reside? Semin. Reprod. Med. 2013, 31, 56–61. [Google Scholar] [CrossRef]
- Yagi, R.; Kohn, M.J.; Karavanova, I.; Kaneko, K.J.; Vullhorst, D.; DePamphilis, M.L.; Buonanno, A. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 2007, 134, 3827–3836. [Google Scholar] [CrossRef]
- Niwa, H.; Toyooka, Y.; Shimosato, D.; Strumpf, D.; Takahashi, K.; Yagi, R.; Rossant, J. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005, 123, 917–929. [Google Scholar] [CrossRef]
- Seita, Y.; Su, J.; Wang, B.; Treff, N.; Lu, C.-W. CDX2 Expression Marks Trophoblast Progenitors from Differentiating Human Pluripotent Stem Cells. Biol. Reprod. 2012, 87, 53. [Google Scholar] [CrossRef]
- Latos, P.A.; Sienerth, A.R.; Murray, A.; Senner, C.E.; Muto, M.; Ikawa, M.; Oxley, D.; Burge, S.; Cox, B.J.; Hemberger, M. Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks. Genes. Dev. 2015, 29, 2435–2448. [Google Scholar] [CrossRef]
- Hemberger, M.; Udayashankar, R.; Tesar, P.; Moore, H.; Burton, G.J. ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum. Mol. Genet. 2010, 19, 2456–2467. [Google Scholar] [CrossRef]
- Hemberger, M. Epigenetic landscape required for placental development. Cell Mol. Life Sci. 2007, 64, 2422–2436. [Google Scholar] [CrossRef]
- Kong, S.; Liang, G.; Tu, Z.; Chen, D.; Wang, H.; Lu, J. Generation of Elf5-Cre knockin mouse strain for trophoblast-specific gene manipulation. Genesis 2018, 56, e23101. [Google Scholar] [CrossRef]
- Rosario, G.X.; Konno, T.; Soares, M.J. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev. Biol. 2008, 314, 362–375. [Google Scholar] [CrossRef]
- Chakraborty, D.; Cui, W.; Rosario, G.X.; Scott, R.L.; Dhakal, P.; Renaud, S.J.; Tachibana, M.; Rumi, M.A.; Mason, C.W.; Krieg, A.J.; et al. HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc. Natl. Acad. Sci. USA 2016, 113, E7212–E7221. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Guerrini, M.M.; Yamamoto, K. Functional genomics of autoimmune diseases. Ann. Rheum. Dis. 2021, 80, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.T.; Roth, M.E.; Groskopf, J.C.; Tsai, F.Y.; Orkin, S.H.; Grosveld, F.; Engel, J.D.; Linzer, D.I. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 1997, 124, 907–914. [Google Scholar] [CrossRef]
- Varberg, K.M.; Dominguez, E.M.; Koseva, B.; Varberg, J.M.; McNally, R.P.; Moreno-Irusta, A.; Wesley, E.R.; Iqbal, K.; Cheung, W.A.; Schwendinger-Schreck, C.; et al. Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape. Nat. Commun. 2023, 14, 4826. [Google Scholar] [CrossRef]
- Wen, F.; Tynan, J.A.; Cecena, G.; Williams, R.; Múnera, J.; Mavrothalassitis, G.; Oshima, R.G. Ets2 is required for trophoblast stem cell self-renewal. Dev. Biol. 2007, 312, 284–299. [Google Scholar] [CrossRef]
- Yamamoto, H.; Flannery, M.L.; Kupriyanov, S.; Pearce, J.; McKercher, S.R.; Henkel, G.W.; Maki, R.A.; Werb, Z.; Oshima, R.G. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes. Dev. 1998, 12, 1315–1326. [Google Scholar] [CrossRef]
- Paquette, A.; Ahuna, K.; Hwang, Y.M.; Pearl, J.; Liao, H.; Shannon, P.; Kadam, L.; Lapehn, S.; Bucher, M.; Roper, R.; et al. A genome scale transcriptional regulatory model of the human placenta. Sci. Adv. 2024, 10, eadf3411. [Google Scholar] [CrossRef]
- Kalna, V.; Yang, Y.; Peghaire, C.R.; Frudd, K.; Hannah, R.; Shah, A.V.; Osuna Almagro, L.; Boyle, J.J.; Göttgens, B.; Ferrer, J.; et al. The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program. Circ. Res. 2019, 124, 1337–1349. [Google Scholar] [CrossRef]
- Kent, L.N.; Rumi, M.A.; Kubota, K.; Lee, D.S.; Soares, M.J. FOSL1 is integral to establishing the maternal-fetal interface. Mol. Cell Biol. 2011, 31, 4801–4813. [Google Scholar] [CrossRef]
- Chandra, S.; Ehrlich, K.C.; Lacey, M.; Baribault, C.; Ehrlich, M. Epigenetics and expression of key genes associated with cardiac fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF and AGT. Epigenomics 2021, 13, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Pang, Z.J.; Yu, Y.H. Regulation of trophoblast invasion: The role of matrix metalloproteinases. Rev. Obstet. Gynecol. 2012, 5, e137–e143. [Google Scholar]
- Alexander, C.M.; Hansell, E.J.; Behrendtsen, O.; Flannery, M.L.; Kishnani, N.S.; Hawkes, S.P.; Werb, Z. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 1996, 122, 1723–1736. [Google Scholar] [CrossRef]
- Shokry, M.; Omran, O.M.; Hassan, H.I.; Elsedfy, G.O.; Hussein, M.R. Expression of matrix metalloproteinases 2 and 9 in human trophoblasts of normal and preeclamptic placentas: Preliminary findings. Exp. Mol. Pathol. 2009, 87, 219–225. [Google Scholar] [CrossRef]
- Kaiser, S.; Koch, Y.; Kühnel, E.; Sharma, N.; Gellhaus, A.; Kuckenberg, P.; Schorle, H.; Winterhager, E. Reduced Gene Dosage of Tfap2c Impairs Trophoblast Lineage Differentiation and Alters Maternal Blood Spaces in the Mouse Placenta. Biol. Reprod. 2015, 93, 31. [Google Scholar] [CrossRef]
- Demir, R.; Seval, Y.; Huppertz, B. Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem. 2007, 109, 257–265. [Google Scholar] [CrossRef]
- Zygmunt, M.; Herr, F.; Münstedt, K.; Lang, U.; Liang, O.D. Angiogenesis and vasculogenesis in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110 (Suppl. 1), S10–S18. [Google Scholar] [CrossRef]
- Harris, L.K.; Keogh, R.J.; Wareing, M.; Baker, P.N.; Cartwright, J.E.; Aplin, J.D.; Whitley, G.S. Invasive trophoblasts stimulate vascular smooth muscle cell apoptosis by a fas ligand-dependent mechanism. Am. J. Pathol. 2006, 169, 1863–1874. [Google Scholar] [CrossRef]
- Pereira, R.D.; De Long, N.E.; Wang, R.C.; Yazdi, F.T.; Holloway, A.C.; Raha, S. Angiogenesis in the placenta: The role of reactive oxygen species signaling. Biomed. Res. Int. 2015, 2015, 814543. [Google Scholar] [CrossRef]
- Fantone, S.; Tossetta, G.; Di Simone, N.; Tersigni, C.; Scambia, G.; Marcheggiani, F.; Giannubilo, S.R.; Marzioni, D. CD93 a potential player in cytotrophoblast and endothelial cell migration. Cell Tissue Res. 2022, 387, 123–130. [Google Scholar] [CrossRef]
- Shah, A.V.; Birdsey, G.M.; Randi, A.M. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol. 2016, 86, 3–13. [Google Scholar] [CrossRef]
- Birdsey, G.M.; Shah, A.V.; Dufton, N.; Reynolds, L.E.; Osuna Almagro, L.; Yang, Y.; Aspalter, I.M.; Khan, S.T.; Mason, J.C.; Dejana, E.; et al. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev. Cell 2015, 32, 82–96. [Google Scholar] [CrossRef]
- Vijayaraj, P.; Le Bras, A.; Mitchell, N.; Kondo, M.; Juliao, S.; Wasserman, M.; Beeler, D.; Spokes, K.; Aird, W.C.; Baldwin, H.S.; et al. Erg is a crucial regulator of endocardial-mesenchymal transformation during cardiac valve morphogenesis. Development 2012, 139, 3973–3985. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Abe, M.; Yamazaki, T.; Niizeki, O.; Shiiba, K.; Sasaki, I.; Sato, Y. Transcriptional regulation of human angiopoietin-2 by transcription factor Ets-1. Biochem. Biophys. Res. Commun. 2004, 316, 52–58. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Leach, R. GATA Transcription Factors in Pregnancy. Med. J. Obstet. Gynecol. 2013, 1, 1013. [Google Scholar]
- Kanki, Y.; Nakaki, R.; Shimamura, T.; Matsunaga, T.; Yamamizu, K.; Katayama, S.; Suehiro, J.I.; Osawa, T.; Aburatani, H.; Kodama, T.; et al. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation. Nucleic Acids Res. 2017, 45, 4344–4358. [Google Scholar] [CrossRef]
- Fraineau, S.; Palii, C.G.; Allan, D.S.; Brand, M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J. 2015, 282, 1605–1629. [Google Scholar] [CrossRef]
- Paul, S.; Home, P.; Bhattacharya, B.; Ray, S. GATA factors: Master regulators of gene expression in trophoblast progenitors. Placenta 2017, 60 (Suppl. 1), S61–S66. [Google Scholar] [CrossRef]
- Ghosh, A.; Kumar, R.; Kumar, R.P.; Ray, S.; Saha, A.; Roy, N.; Dasgupta, P.; Marsh, C.; Paul, S. The GATA transcriptional program dictates cell fate equilibrium to establish the maternal-fetal exchange interface and fetal development. Proc. Natl. Acad. Sci. USA 2024, 121, e2310502121. [Google Scholar] [CrossRef]
- Moriguchi, T. Development and Carcinogenesis: Roles of GATA Factors in the Sympathoadrenal and Urogenital Systems. Biomedicines 2021, 9, 299. [Google Scholar] [CrossRef]
- Claringbould, A.; Zaugg, J.B. Enhancers in disease: Molecular basis and emerging treatment strategies. Trends Mol. Med. 2021, 27, 1060–1073. [Google Scholar] [CrossRef]
- Lovén, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013, 153, 320–334. [Google Scholar] [CrossRef]
- Taniguchi, Y. The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. Int. J. Mol. Sci. 2016, 17, 1849. [Google Scholar] [CrossRef]
- Donati, B.; Lorenzini, E.; Ciarrocchi, A. BRD4 and Cancer: Going beyond transcriptional regulation. Mol. Cancer 2018, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension 2008, 51, 970–975. [Google Scholar] [CrossRef]
- Shallie, P.D.; Naicker, T.; Nayak, N.R. Stress-Sensitive Regulators of Fetal Neurodevelopment in HIV and Preeclampsia: An Immunocytochemical Appraisal of Placental OGT and T4 Levels. Arch. Immunol. Ther. Exp. 2023, 71, 3. [Google Scholar] [CrossRef]
- Sung, J.F.; Fan, X.; Dhal, S.; Dwyer, B.K.; Jafari, A.; El-Sayed, Y.Y.; Druzin, M.L.; Nayak, N.R. Decreased circulating soluble Tie2 levels in preeclampsia may result from inhibition of vascular endothelial growth factor (VEGF) signaling. J. Clin. Endocrinol. Metab. 2011, 96, E1148–E1152. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Chaemsaithong, P.; Yeo, L.; Romero, R. Pre-eclampsia part 1: Current understanding of its pathophysiology. Nat. Rev. Nephrol. 2014, 10, 466–480. [Google Scholar] [CrossRef]
- Andronikidi, P.E.; Orovou, E.; Mavrigiannaki, E.; Athanasiadou, V.; Tzitiridou-Chatzopoulou, M.; Iatrakis, G.; Grapsa, E. Placental and Renal Pathways Underlying Pre-Eclampsia. Int. J. Mol. Sci. 2024, 25, 2741. [Google Scholar] [CrossRef]
- Yara, N.; Kinjyo, Y.; Chinen, Y.; Kinjo, T.; Mekaru, K. Placenta Accreta Spectrum with Ureteral Invasion due to Progression of Cesarean Scar Pregnancy. Case Rep. Obstet. Gynecol. 2023, 2023, 9065978. [Google Scholar] [CrossRef]
- Morlando, M.; Collins, S. Placenta Accreta Spectrum Disorders: Challenges, Risks, and Management Strategies. Int. J. Womens Health 2020, 12, 1033–1045. [Google Scholar] [CrossRef]
- Sheibak, N.; Mahmoudzadeh-Sagheb, H.; Moudi, B.; Heidari, Z. Elevated immunoexpression of interferon-gamma in placenta tissue samples from pregnancies complicated with preeclampsia compared to the placenta previa. Pregnancy Hypertens. 2020, 22, 175–180. [Google Scholar] [CrossRef]
- Pinton, A.; Deneux-Tharaux, C.; Seco, A.; Sentilhes, L.; Kayem, G. Incidence and risk factors for severe postpartum haemorrhage in women with anterior low-lying or praevia placenta and prior caesarean: Prospective population-based study. BJOG 2023, 130, 1653–1661. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Li, W.; Li, W.; Wang, Y.; Zhang, S.; Zhu, C. Iatrogenic vs. Spontaneous Preterm Birth: A Retrospective Study of Neonatal Outcome Among Very Preterm Infants. Front. Neurol. 2021, 12, 649749. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.A.; Schlitt, J.M.; Jackson, D.L.; Schulz, L.C.; Schust, D.J. Preeclampsia: Multiple approaches for a multifactorial disease. Dis. Model. Mech. 2012, 5, 9–18. [Google Scholar] [CrossRef]
- Gatford, K.L.; Andraweera, P.H.; Roberts, C.T.; Care, A.S. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020, 75, 1363–1381. [Google Scholar] [CrossRef]
- Chau, K.; Welsh, M.; Makris, A.; Hennessy, A. Progress in preeclampsia: The contribution of animal models. J. Hum. Hypertens. 2022, 36, 705–710. [Google Scholar] [CrossRef]
- Zadora, J.; Singh, M.; Herse, F.; Przybyl, L.; Haase, N.; Golic, M.; Yung, H.W.; Huppertz, B.; Cartwright, J.E.; Whitley, G.; et al. Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker. Circulation 2017, 136, 1824–1839. [Google Scholar] [CrossRef]
- Liu, C.; Xing, F.; He, Y.; Zong, S.; Luo, C.; Li, C.; Duan, T.; Wang, K.; Zhou, Q. Elevated HTRA1 and HTRA4 in severe preeclampsia and their roles in trophoblast functions. Mol. Med. Rep. 2018, 18, 2937–2944. [Google Scholar] [CrossRef]
- Jeyarajah, M.J.; Jaju Bhattad, G.; Kops, B.F.; Renaud, S.J. Syndecan-4 regulates extravillous trophoblast migration by coordinating protein kinase C activation. Sci. Rep. 2019, 9, 10175. [Google Scholar] [CrossRef]
- Kim, M.; Adu-Gyamfi, E.A.; Kim, J.; Lee, B.K. Super-enhancer-associated transcription factors collaboratively regulate trophoblast-active gene expression programs in human trophoblast stem cells. Nucleic Acids Res. 2023, 51, 3806–3819. [Google Scholar] [CrossRef]
- Davies, E.L.; Bell, J.S.; Bhattacharya, S. Preeclampsia and preterm delivery: A population-based case-control study. Hypertens. Pregnancy 2016, 35, 510–519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosario, G.X.; Brown, S.; Karmakar, S.; Rumi, M.A.K.; Nayak, N.R. Super-Enhancers in Placental Development and Diseases. J. Dev. Biol. 2025, 13, 11. https://doi.org/10.3390/jdb13020011
Rosario GX, Brown S, Karmakar S, Rumi MAK, Nayak NR. Super-Enhancers in Placental Development and Diseases. Journal of Developmental Biology. 2025; 13(2):11. https://doi.org/10.3390/jdb13020011
Chicago/Turabian StyleRosario, Gracy X., Samuel Brown, Subhradip Karmakar, Mohammad A. Karim Rumi, and Nihar R. Nayak. 2025. "Super-Enhancers in Placental Development and Diseases" Journal of Developmental Biology 13, no. 2: 11. https://doi.org/10.3390/jdb13020011
APA StyleRosario, G. X., Brown, S., Karmakar, S., Rumi, M. A. K., & Nayak, N. R. (2025). Super-Enhancers in Placental Development and Diseases. Journal of Developmental Biology, 13(2), 11. https://doi.org/10.3390/jdb13020011