Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review
Abstract
:1. Introduction
2. Vitamin C
3. Resveratrol
4. Coenzyme Q10
5. Melatonin
6. Vitamin A
7. Vitamin E
8. Carotenoids
9. Thiols
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prescott, C.; Bottle, S.E. Biological Relevance of Free Radicals and Nitroxides. Cell Biochem. Biophys. 2016, 75, 227–240. [Google Scholar] [CrossRef]
- Abd El-Aziz, A.; Mahrous, U.E.; Kamel, S.Z.; Sabek, A.A. Factors Influencing in vitro Production of Bovine Embryos: A Review. Asian J. Anim. Vet. Adv. 2016, 11, 737–756. [Google Scholar] [CrossRef]
- Prasad, V.; Ghonganne, B.; Ashutosh, C.; Kiran, V.; Kunkulol, R. Role of Antioxidants in Male Reproduction: Review. Int. J. Curr. Res. Physiol. Pharmacol 2018, 2, 1–6. [Google Scholar]
- Shahzadi, H.; Sheikh, M.A.; Hameed, A.; Jamil, A. Comparative Antioxidant Potential and Bioactivity of Maize (Zea mays) Ear Tissues from Different Genotypes. Int. J. Agric. Biol. 2015, 17, 539–546. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxi-dants. Oxidative Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Sechium edule var. nigrum spinosum (Chayote) on Oxidative Stress and Pro-Inflammatory Markers in Older Adults with Metabolic Syndrome: An Exploratory Study. Antioxidants 2019, 8, 146. [Google Scholar] [CrossRef]
- Hatırnaz, Ş.; Ata, B.; Hatırnaz, E.S.; Dahan, M.H.; Tannus, S.; Tan, J.; Tan, S.L. Oocyte in vitro maturation: A sytematic review. Turk. J. Obstet. Gynecol. 2018, 15, 112–125. [Google Scholar] [CrossRef]
- Bahrami, M.; Cottee, P.A. Culture conditions for in vitro maturation of oocytes—A review. Reprod. Breed. 2022, 2, 31–36. [Google Scholar] [CrossRef]
- Khazaei, M.; Aghaz, F. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. Int. J. Fertil. Steril. 2017, 11, 63–70. [Google Scholar] [CrossRef]
- Roth, K.; Streller, S. Vitamin C Deficiency—Part 4. Chem. Unserer Zeit 2009, 43, 38–54. [Google Scholar]
- Janda, K.; Kasprzak, M.; Wolska, K. Witamina C—budowa, właściwości, funkcje i występowanie. Pomeranian J. Life Sci. 2015, 61, 419–425. [Google Scholar] [CrossRef]
- Sovernigo, T.; Adona, P.; Monzani, P.; Guemra, S.; Barros, F.; Lopes, F.; Leal, C. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod. Domest. Anim. 2017, 52, 561–569. [Google Scholar] [CrossRef]
- Al-shimaa Al-H, E.N.; Mahmoud, K.M.; Sosa, G.A.; Abouel-Roos, M.E.; Ahmed, Y.F. Effect of using ascorbic acid and cysteamine supplementation on in-vitro development of buffalo embryos. Asian Pac. J. Reprod. 2017, 6, 85–88. [Google Scholar]
- Husamaalden, A.A.; Ihsan, A.H.; Haider, R.A. The Effect of Antioxidant Cysteamine with Ascorbic Acid On In Vitro Fertili-zation in Cows. Int. J. Pharm. Res. 2020, 12, 3815–3822. [Google Scholar]
- Aluyen, J.K.; Ton, Q.N.; Tran, T.; Yang, A.E.; Gottlieb, H.B.; Bellanger, R.A. Resveratrol: Potential as Anticancer Agent. J. Diet. Suppl. 2011, 9, 45–56. [Google Scholar] [CrossRef]
- Tomotaka, H.; Airi, K.; Sogo, A.; Shinsuke, N.; Koumei, S.; Takehito, K.; Hisataka, I. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS ONE 2018, 13, e0204571. [Google Scholar]
- Gutierrez-Castillo, E.; Diaz, F.A.; Talbot, S.A.; Bondioli, K.R. Effect of bovine oocyte vitrification with EGTA and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence. Theriogenology 2023, 196, 59–67. [Google Scholar] [CrossRef]
- Sprícigo, J.F.; Morató, R.; Arcarons, N.; Yeste, M.; Dode, M.A.; López-Bejar, M.; Mogas, T. Assessment of the effect of adding L-carnitine and/or resveratrol to maturation medium before vitrification on in vitro-matured calf oocytes. Theriogenology 2017, 89, 47–57. [Google Scholar] [CrossRef]
- Battino, M.; Ferreiro, M.-S.; Bompadre, S.; Leone, L.; Mosca, F.; Bullon, P. Elevated Hydroperoxide Levels and Antioxidant Patterns in Papillon-Lefèvre Syndrome. J. Periodontol. 2001, 72, 1760–1766. [Google Scholar] [CrossRef]
- Battino, M.; Bullon, P.; Wilson, M.; Newman, H. Oxidative Injury and Inflammatory Periodontal Diseases: The Challenge of Anti-Oxidants to Free Radicals and Reactive Oxygen Species. Crit. Rev. Oral Biol. Med. 1999, 10, 458–476. [Google Scholar] [CrossRef]
- Åberg, F.; Appelkvist, E.-L.; Dallner, G.; Ernster, L. Distribution and redox state of ubiquinones in rat and human tissues. Arch. Biochem. Biophys. 1992, 295, 230–234. [Google Scholar] [CrossRef]
- Ruiz-Conca, M.; Vendrell, M.; Sabés-Alsina, M.; Mogas, T.; Lopez-Bejar, M. Coenzyme Q10 supplementation during in vitro maturation of bovine oocytes (Bos taurus) helps to preserve oocyte integrity after vitrification. Reprod. Domest. Anim. 2017, 52, 52–54. [Google Scholar] [CrossRef]
- Popławski, P.T.; Derlacz, R.A. Jak działa melatonina? Postep. Biochem. 2003, 49, 9–17. [Google Scholar]
- Brzęczek, M.; Słonka, K.; Hyla-Klekot, L. Melatonina—Hormon o plejotropowym działaniu. Pediatria i Medycyna Rodzinna 2016, 12, 127–133. [Google Scholar] [CrossRef]
- Lima, P.H.; Souza, A.J.C.; Borges, A.A.M.; Lima, B.R.R.; Jasmin, C.J.; Leite, D.A.C.; Silva, B.E.B.M.; Faria, B.L.R.; Alves, N.G. Effects of melatonin in the maturation medium on developmental competence of bovine oocytes exposed to heat shock and on embryo quality. Anim. Prod. Sci. 2022, 62, 1573–1580. [Google Scholar] [CrossRef]
- Quanli, A.; Wei, P.; Yuyao, C.; Zhenzhen, L.; Chuan, Z.; Yong, Z.; Jianmin, S. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J. Cell. Physiol. 2019, 234, 17370–17381. [Google Scholar]
- Yang, M.; Tao, J.; Chai, M.; Wu, H.; Wang, J.; Li, G.; He, C.; Xie, L.; Ji, P.; Dai, Y.; et al. Melatonin Improves the Quality of Inferior Bovine Oocytes and Promoted Their Subsequent IVF Embryo Development: Mechanisms and Results. Molecules 2017, 22, 2059. [Google Scholar] [CrossRef]
- Hemken, R.; Bremel, D. Possible Role of Beta-Carotene in Improving Fertility in Dairy Cattle. J. Dairy Sci. 1982, 65, 1069–1073. [Google Scholar] [CrossRef]
- Hurley, W.; Doane, R. Recent Developments in the Roles of Vitamins and Minerals in Reproduction. J. Dairy Sci. 1989, 72, 784–804. [Google Scholar] [CrossRef]
- Zasada, M.; Adamczyk, A.; Witamina, A. Budowa i mechanizm działania. Kosmetol. Estet. 2018, 5, 517–521. [Google Scholar]
- Gad, A.; Hamed, S.A.; Khalifa, M.; Amin, A.; El-Sayed, A.; Swiefy, A.; El-Assald, S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo (Bubalus bubalis) oocytes. Int. J. Vet. Sci. Med. 2018, 6, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Machlin, L.J.; Gabriel, E. Interactions of vitamin E with vitamin C, vitamin B12, and zinc. Ann. N. Y. Acad. Sci. 1980, 355, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Nowak, I. Tokoferole i tokotrienole jako witamina E. Chemic 2014, 68, 585–591. [Google Scholar]
- Pérez, T.P.A. 46 Effect of the addition of α-tocopherol to in vitro maturation media of bovine oocytes. J. Anim. Sci. 2020, 98, 2–3. [Google Scholar] [CrossRef]
- Yashiro, I.; Tagiri, M.; Ogawa, H.; Tashima, K.; Takashima, S.; Hara, H.; Hirabayashi, M.; Hochi, S. High revivability of vitri-fied-warmed bovine mature oocytes after recovery culture with α-tocopherol. Reproduction 2015, 149, 347–355. [Google Scholar] [CrossRef]
- Singh, W.L.; Barua, P.M.; Sonowal, J. Influence of Media Supplementation with Alpha Tocopherol and/or Epigallocatechin Gallate on in vitro Maturation and Subsequent Fertilization of Bovine Oocytes. J. Anim. Res. 2019, 9, 863–868. [Google Scholar] [CrossRef]
- Juola, F.A.; McGraw, K.; Dearborn, D.C. Carotenoids and throat pouch coloration in the great frigatebird (Fregata minor). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 149, 370–377. [Google Scholar] [CrossRef]
- Kisała, J. Antyutleniacze pochodzenia roślinnego i syntetycznego-ich rola i własciwości. Zesz. Nauk. 2009, 11, 109–114. [Google Scholar]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef]
- Chowdhury, M.; Mesalam, A.; Khan, I.; Joo, M.-D.; Lee, K.-L.; Xu, L.; Afrin, F.; Kong, I.-K. Improved developmental competence in embryos treated with lycopene during in vitro culture system. Mol. Reprod. Dev. 2017, 85, 46–61. [Google Scholar] [CrossRef]
- Chelenga, M.; Sakaguchi, K.; Abdel-Ghani, M.A.; Yanagawa, Y.; Katagiri, S.; Nagano, M. Effect of increased oxygen availability and astaxanthin supplementation on the growth, maturation and developmental competence of bovine oocytes derived from early antral follicles. Theriogenology 2020, 157, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Campione, A.L.; Moore, M.K. Plasma thiols inhibit hemin-dependent oxidation of human low-density lipoprotein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2000, 1485, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Klatt, P.; Lamas, S. Regulation of protein function by S-glutathion in response to oxidative and nitrosative stress. Eur. J. Biochem. 2000, 267, 4928–4944. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.F. Thiol regulation in the lens. J. Ocul. Pharmacol. Ther. 2000, 16, 137–148. [Google Scholar] [CrossRef]
- De Mattos, K.; Pena-Bello, C.A.; Campagnolo, K.; de Oliveira, G.B.; Ticiani, E.; Pinzón-Osorio, C.A.; da Silva Feijó, A.L.; da Silva Ferreira, H.; Rodrigues, J.L.; Bertolini, M.; et al. β-Mercaptoethanol in culture medium improves cryotolerance of in vitro-produced bovine embryos. Zygote 2022, 30, 830–840. [Google Scholar] [CrossRef]
- Azlina, N.; Aziz, A. Effect of Cumulus Cells and β-mercaptoethanol Supplement during In Vitro Maturation on Bovine Oocyte Competency. Student’s Repository. Ph.D. Thesis, Universiti Malaya, Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Sandal, A.I.; Ozdas, O.B.; Baran, A. In vitro maturation of bovine oocytes: Beneficial effects of cysteamine. J. Dairy Vet. Anim. Res. 2018, 7, 64–65. [Google Scholar] [CrossRef]
- Maside, C.; Martinez, C.A.; Cambra, J.M.; Lucas, X.; Martinez, E.A.; Gil, M.A.; Rodriguez-Martinez, H.; Parrilla, I.; Cuello, C. Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reprod. Domest. Anim. 2019, 54 (Suppl. S4), 72–77. [Google Scholar] [CrossRef]
- Tripathi, S.; Nandi, S.; Gupta, P.; Mondal, S. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology 2023, 201, 41–52. [Google Scholar] [CrossRef]
- Livingston, T.; Eberhardt, D.; Edwards, J.L.; Godkin, J. Retinol improves bovine embryonic development in vitro. Reprod. Biol. Endocrinol. 2004, 2, 83. [Google Scholar] [CrossRef]
Antioxidant | Maturation Rate | Cleavage Rate | Blastocyst Rate | Reference | |||
---|---|---|---|---|---|---|---|
Control | With Antioxidant | Control | With Antioxidant | Control | With Antioxidant | ||
Resveratrol | 86.4 ± 2.7 | 91.8 ± 3.0 | 85.9 ± 4.1 | 88.7 ± 8.4 | 47.2 ± 2.7 | 54.2 ± 4.0 | [12] |
Coenzyme Q10 | 66.0 ± 10.6 | 76.4 ± 12.2 | 67.9 ± 9.8 | 74.4 ± 9.2 | 43.5 ± 7.1 | 45.1 ± 7.4 | [48] |
Melatonin | 81.2 ± 4.2 | 92.8 ± 2.3 | 53.1 ± 2.4 | 62.1 ± 2.8 | 14.1 ± 2.4 | 19.1 ± 1.1 | [49] |
Vitamin A | -- | -- | 66.7 ± 2.7 | 70.1 ± 3.9 | 21.9 ± 1.9 | 24.2 ± 2.7 | [50] |
Vitamin E | 81.1 ± 1.8 | 94.5 ± 5.2 | 54.9 ± 1.2 | 60.2 ± 4.1 | 14.6 ± 19.1 | 19.1 ± 1.9 | [49] |
Vitamin C | 80.2 ± 2.8 | 85.0 ± 2.3 | 56.5 ± 4.2 | 65.3 ± 3.1 | 12.3 ± 1.6 | 20.2 ± 1.1 | [49] |
Carotenoids | 66.3 ± 3.7 | 76.0 ± 1.9 | 54.2 ± 2.2 | 68.8 ± 2.0 | 28.0 ± 1.2 | 35.2 ± 1.5 | [40] |
Thiols | -- | -- | 61.8 ± 5.4 | 71.1 ± 5.2 | 15.7 ± 5.7 | 23.8 ± 5.9 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naspinska, R.; Moreira da Silva, M.H.; Moreira da Silva, F. Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review. J. Dev. Biol. 2023, 11, 36. https://doi.org/10.3390/jdb11030036
Naspinska R, Moreira da Silva MH, Moreira da Silva F. Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review. Journal of Developmental Biology. 2023; 11(3):36. https://doi.org/10.3390/jdb11030036
Chicago/Turabian StyleNaspinska, Roksana, Maria Helena Moreira da Silva, and Fernando Moreira da Silva. 2023. "Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review" Journal of Developmental Biology 11, no. 3: 36. https://doi.org/10.3390/jdb11030036
APA StyleNaspinska, R., Moreira da Silva, M. H., & Moreira da Silva, F. (2023). Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review. Journal of Developmental Biology, 11(3), 36. https://doi.org/10.3390/jdb11030036