Controlling Liquid Slosh by Applying Optimal Operating-Speed-Dependent Motion Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Data Evaluation
2.2. Process Modeling Taking into Account the Operating Speed
2.3. Motion Optimization with Optimal Control Theory Considering the Operating Speed Dependency
2.4. Implementation of Operating Speed Dependent Motion Profiles
- Step 1:
- Determine the index of the operating speed for which an optimal motion profile specification exists that is closest to the target operating speed:
- Step 2:
- Calculate the motion specification for the desired operating speed by scaling as follows:
- Step 1:
- Determine the index of the operating speed for which an optimal motion profile specification exists that is closest to the target operating speed:
- Step 2:
- Step 3:
- Otherwise, determine the index of the operating speed for which an optimal motion profile specification exists that is second closest to the target operating speed:
- Step 4:
- Derive the necessary values:
- Step 5:
- Calculate the motion specification for the desired operating speed by interpolation as follows:
3. Results
3.1. Experimental Results Applying Standard Motion Profiles
3.2. Determining a Suitable Distribution of Optimal Motion Profile Specifications
3.3. Simulative and Experimental Results Applying Optimal Characteristic Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BVP | Boundary value problem |
FR | Frame rate |
ODE | Ordinary differential equation |
PLC | Programmable logic controller |
Nomenclature | |
Damping ratio | |
Undamped natural angular frequency | |
Identifier for process model | |
Deflection of fluid surface | |
Time derivative of fluid surface’s deflection | |
Second time derivative of fluid surface’s deflection | |
t | Time |
State vector | |
First time derivative of state vector | |
Container’s conveyed stroke in one cycle | |
b | Ratio of motion time to cycle time |
Cycle time | |
J | Cost functional |
n | Operating speed |
Local horizontal coordinate | |
Measured fluid surface’s vertical displacement | |
Effective value of during the dwell phase | |
w | Fluid volume’s width |
h | Fluid volume’s height |
d | Fluid volume’s depth |
d | Damping constant |
g | Gravitational acceleration |
s | Motion profile’s stroke |
v | Motion profile’s velocity |
a | Motion profile’s acceleration |
u | Control variable |
References and Note
- DIN. DIN 8743: Packaging Machines and Packaging Installations, Time Related Definitions, Reference Factors and Calculation Fundamentals, 2007.
- Abramson, H.N.E. Dynamic Behavior of Liquids in Moving Containers with Applications to Propellants in Space Vehicle Fuel Tanks; Technical Report; NASA: Washington, DC, USA, 1966.
- Abramson, H.N.; Chu, W.H.; Kana, D.D. Some Studies of Nonlinear Lateral Sloshing in Rigid Containers. J. Appl. Mech. 1966, 33, 777–784. [Google Scholar] [CrossRef]
- Ibrahim, R.A. Liquid Sloshing Dynamics: Theory and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Kolaei, A. Dynamic Liquid Slosh in Moving Containers. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2014. [Google Scholar]
- Dietze, S.; Schmidt, F.J. Entwurf zur Optimalsteuerung offener Behälter zum Fördern von Fluiden in Verarbeitungsmaschinen. arXiv 1997, arXiv:MATH-NM-13-1997. [Google Scholar]
- Grundelius, M. Methods for Control of Liquid Slosh. Ph.D. Thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 2001. [Google Scholar]
- Terashima, K.; Schmidt, G. Motion control of a cart-based container considering suppression of liquid oscillations. In Proceedings of the 1994 IEEE International Symposium on Industrial Electronics (ISIE’94), Santiago, Chile, 25–27 May 1994; pp. 275–280. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Terashima, K.; Nomura, H. Optimal Control of Transferring a Liquid Container for Several Performance Specifications. Trans. Jpn. Soc. Mech. Eng. Ser. 1994, 60, 1668–1675. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Yoshida, T.; Hamaguchi, M.; Terashima, K. Liquid Container Transfer Considering the Suppression of Sloshing for the Change of Liquid Level. Ifac Proc. Vol. 1996, 29, 701–706. [Google Scholar] [CrossRef]
- Feddema, J.T.; Dohrmann, C.R.; Parker, G.G.; Robinett, R.; Romero, J.V.; Schmitt, J.D. Control for slosh-free motion of an open container. IEEE Control. Syst. 1997, 17, 29–36. [Google Scholar] [CrossRef]
- Moriello, L.; Biagiotti, L.; Melchiorri, C.; Paoli, A. Manipulating Liquids with Robots: A Sloshing-Free Solution. Control. Eng. Pract. 2018, 78. [Google Scholar] [CrossRef] [Green Version]
- Troll, C.; Tietze, S.; Majschak, J.P. Investigation on the Application of Operating Speed Dependent Motion Profiles in Processing Machines at the Example of Controlling Liquid Slosh. In Advances in Mechanism and Machine Science; Uhl, T., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1909–1918. [Google Scholar]
- Bosch Rexroth. How Adaptive Systems Unlock Big Producitivity Gains; Technical Report; Bosch Rexroth Group: Lohr am Main, Germany, 2014. [Google Scholar]
- Athans, M.; Falb, P.L. Optimal Control: An Introduction to the Theory and Its Applications; Dover Publications Inc.: McGraw-Hill, NY, USA, 2006. [Google Scholar]
- Pontryagin, L. Mathematical Theory of Optimal Processes; Classics of Soviet Mathematics; Taylor & Francis: Abingdon, UK, 1987. [Google Scholar]
- Bronstein, I.N.; Semendyayev, K.A.; Musiol, G.; Mühlig, H. Handbook of Mathematics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar]
- Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; Volume 19. [Google Scholar] [CrossRef]
- Wächter, A.; Biegler, L. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
- Holowenko, O.; Kauschinger, B.; Ihlenfeldt, S. Increasing the Performance of Processing Machines by Executing Output Rate Dependent Motion Profiles. Int. J. Autom. Technol. 2017, 11, 165–170. [Google Scholar] [CrossRef]
- Troll, C.; Schebitz, B.; Majschak, J.P.; Döring, M.; Holowenko, O.; Ihlenfeldt, S. Commissioning new applications on processing machines: Part II – implementation. Adv. Mech. Eng. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troll, C.; Tietze, S.; Majschak, J.-P. Controlling Liquid Slosh by Applying Optimal Operating-Speed-Dependent Motion Profiles. Robotics 2020, 9, 18. https://doi.org/10.3390/robotics9010018
Troll C, Tietze S, Majschak J-P. Controlling Liquid Slosh by Applying Optimal Operating-Speed-Dependent Motion Profiles. Robotics. 2020; 9(1):18. https://doi.org/10.3390/robotics9010018
Chicago/Turabian StyleTroll, Clemens, Sven Tietze, and Jens-Peter Majschak. 2020. "Controlling Liquid Slosh by Applying Optimal Operating-Speed-Dependent Motion Profiles" Robotics 9, no. 1: 18. https://doi.org/10.3390/robotics9010018
APA StyleTroll, C., Tietze, S., & Majschak, J. -P. (2020). Controlling Liquid Slosh by Applying Optimal Operating-Speed-Dependent Motion Profiles. Robotics, 9(1), 18. https://doi.org/10.3390/robotics9010018