Optimal Kinematic Design of a 6-UCU Kind Gough-Stewart Platform with a Guaranteed Given Accuracy
Abstract
:1. Introduction
2. Differential Error Model
3. Optimal Design Method
4. Case Study
5. Conclusions
Conflicts of Interest
References
- Merlet, J.P. Parallel Robots, 2nd ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 77–78. ISBN 978-1-4020-4132-7. [Google Scholar]
- Huang, Z.; Kong, L.F.; Fang, Y.F. Mechanism Theory of Parallel Robotic Manipulator and Control; China Mechanical Press: Beijing, China, 1997; pp. 306–308. ISBN 7-111-05812-7. (In Chinese) [Google Scholar]
- Fichter, E.; Kerr, D.; Rees-Jones, J. The Gough—Stewart platform parallel manipulator: A retrospective appreciation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 243–281. [Google Scholar] [CrossRef]
- Gough, V.E.; Whitehall, S.G. Universal Tyre Testing Machine. In Proceedings of the 9th International Automobile Technical Congress, Bursa, Turkey, 7–8 May 2018. [Google Scholar]
- Stewart, D. A Platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Cappel, K.L. Motion Simulator. U.S. Patent 3,295,224, 3 January 1967. [Google Scholar]
- Ma, O. Mechanical Analysis of Parallel Manipulators with Simulation, Design and Control Applications. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1991. [Google Scholar]
- Cerda Salzmann, D.J. Ampelmann: Development of the Access System for Offshore Wind Turbines. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Blaise, J.; Bonev, I.; Monsarrat, B.; Briot, S.; Lambert, J.M.; Perron, C. Kinematic characterisation of hexapods for industry. Ind. Robot Int. J. 2010, 37, 79–88. [Google Scholar] [CrossRef]
- VARIAX: The Machine Tool of the Future-Today! Giddings & Lewis, Inc.: Fond Du Lac, WI, USA, 1994.
- Koch, P.M.; Kesteven, M.; Nishioka, H.; Jiang, H.; Lin, K.Y.; Umetsu, K.; Huang, Y.-D.; Raffin, P.; Chen, K.J.; Ibañez-Romano, F. The AMiBA hexapod telescope mount. Astrophys. J. 2009, 694, 1670–1684. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, S.; Ogbobe, P.; Han, J. Inverse kinematic and dynamic analyses of the 6-UCU parallel manipulator. Appl. Mech. Mater. 2012, 127, 172–180. [Google Scholar] [CrossRef]
- Liu, G.; Qu, Z.; Liu, X.; Han, J. Singularity analysis and detection of 6-UCU parallel manipulator. Robot Comput. Integr. Manuf. 2014, 30, 172–179. [Google Scholar] [CrossRef]
- Dai, X.; Huang, Q.; Han, J.; Li, H. Accuracy Synthesis of Stewart Platform used in Testing System for Spacecraft Docking Mechanism. In Proceedings of the International Conference on Measuring Technology and Mechatronics Automation, ICMTMA’09, Zhangjiajie, China, 11–12 April 2009; Volume 3, pp. 7–10. [Google Scholar] [CrossRef]
- Wang, J.; Masory, O. On the Accuracy of a Stewart Platform-Part I: The Effect of Manufacturing Tolerances. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 114–120. [Google Scholar] [CrossRef]
- Ropponen, T.; Arai, T. Accuracy Analysis of a Modified Stewart Platform Manipulator. In Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 521–525. [Google Scholar] [CrossRef]
- Patel, A.J.; Ehmann, K.F. Volumetric error analysis of a Stewart platform-based machine tool. CIRP Ann. Manuf. Technol. 1997, 46, 287–290. [Google Scholar] [CrossRef]
- Wang, S.M.; Ehmann, K.F. Error model and accuracy analysis of a six-DOF Stewart platform. J. Manuf. Sci. Eng. 2002, 124, 286–295. [Google Scholar] [CrossRef]
- Masory, O.; Wang, J.; Zhuang, H. On the Accuracy of a Stewart Platform—Part II: Kinematic Calibration and Compensation. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 725–731. [Google Scholar] [CrossRef]
- Cong, D.; Yu, D.; Han, J. Kinematics accuracy analysis and error compensation of Stewart platform. J. Eng. Des. 2006, 13, 162–165. (In Chinese) [Google Scholar]
- Merlet, J.P.; Daney, D. Dimensional Synthesis of Parallel Robots with a Guaranteed Given Accuracy over a Specific Workspace. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2005, Barcelona, Spain, 18–22 April 2005; pp. 942–947. [Google Scholar] [CrossRef] [Green Version]
- Merlet, J.-P.; Daney, D. Appropriate Design of Parallel Manipulators. In Smart Devices and Machines for Advanced Manufacturing; Wang, L., Xi, F., Eds.; Springer: London, UK, 2008; pp. 1–25. ISBN 978-1-84800-146-6. [Google Scholar]
- Merlet, J.P. Interval analysis and reliability in robotics. Int. J. Reliab. Saf. 2009, 3, 104–130. [Google Scholar] [CrossRef]
- Liu, G.; Qu, Z.; Han, J.; Liu, X. Systematic optimal design procedures for the Gough-Stewart platform used as motion simulators. Ind. Robot 2013, 40, 550–558. [Google Scholar] [CrossRef]
- Angeles, J.; Park, F.C. Design and performance evaluation. In Springer Handbook of Robotics, 2nd ed.; Siciliano, B., Khatib, O., Eds.; Springer: Berlin, Germany, 2016; pp. 399–418. ISBN 978-3-319-32550-7. [Google Scholar]
- Yu, X.; Gen, M. Introduction to Evolutionary Algorithms; Springer: London, UK, 2010; pp. 3–8. ISBN 978-1-84996-128-8. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1994, 9, 1–34. [Google Scholar]
- Deb, K.; Goyal, M. A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. Syst. 1996, 26, 30–45. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Method Appl. Mech. 2000, 186, 311–338. [Google Scholar] [CrossRef] [Green Version]
- Advani, S.K. The Kinematic Design of Flight Simulator Motion Bases. PhD. Dissertation, TU Delft, Delft, The Netherlands, 1998; pp. 103–191. [Google Scholar]
Number of Iterations | 1000 |
---|---|
Population size | 50 |
Crossover probability | 0.9 |
Mutation probability | 0.1 |
Distribution index for the simulated binary crossover (SBX) | 20 |
Distribution index for the polynomial mutation | 20 |
Payload | |||
---|---|---|---|
Degree of Freedom (DOF) | Maximum Excursion | Speed | Acceleration |
Roll | ±(°) | ±(°/s) | ±(°/s2) |
Pitch | ±(°) | ±(°/s) | ±(°/s2) |
Yaw | ±(°) | ±(°/s) | ±(°/s2) |
Surge | ±(m) | ±(m/s) | ±(m/s2) |
Sway | ±(m) | ±(m/s) | ±(m/s2) |
Heave | ±(m) | ±(m/s) | ±(m/s2) |
Payload | 10,000 kg | ||
---|---|---|---|
Maximum Position Errors | Linear Travel | 1 mm | |
Angular Travel | 0.1° | ||
DOF | Maximum Excursion | Speed | Acceleration |
Roll | ±25° | ±20°/s | ±210°/s2 |
Pitch | ±25° | ±20°/s | ±210°/s2 |
Yaw | ±30° | ±20°/s | ±210°/s2 |
Surge | ±1 m | ±0.7 m/s | ±10 m/s2 |
Sway | ±1 m | ±0.7 m/s | ±10 m/s2 |
Heave | ±0.8 m | ±0.6 m/s | ±10 m/s2 |
a | b | c | |
---|---|---|---|
(m) | 0.3409 | 0.3489 | 0.2500 |
(m) | 1.6915 | 0.5177 | 0.2200 |
(m) | 3.0000 | 2.9981 | 2.6552 |
(m) | 3.0000 | 2.4046 | 1.2128 |
(m) | 2.4002 | 2.4044 | 2.4363 |
−114.2709 | −64.5399 | −8.0017 | |
5.3615 | 4.0201 | 2.1464 | |
(mm) | 0.2 | 0.2 | 0.2 |
(mm) | 0.2 | 0.2 | 0.2 |
(mm) | 0.6 | 0.6 | 0.6 |
(°) | 0.0022 | 0.0025 | 0.0020 |
(°) | 0.0018 | 0.0027 | 0.0026 |
(°) | 0.0030 | 0.0029 | 0.0030 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G. Optimal Kinematic Design of a 6-UCU Kind Gough-Stewart Platform with a Guaranteed Given Accuracy. Robotics 2018, 7, 30. https://doi.org/10.3390/robotics7020030
Liu G. Optimal Kinematic Design of a 6-UCU Kind Gough-Stewart Platform with a Guaranteed Given Accuracy. Robotics. 2018; 7(2):30. https://doi.org/10.3390/robotics7020030
Chicago/Turabian StyleLiu, Guojun. 2018. "Optimal Kinematic Design of a 6-UCU Kind Gough-Stewart Platform with a Guaranteed Given Accuracy" Robotics 7, no. 2: 30. https://doi.org/10.3390/robotics7020030
APA StyleLiu, G. (2018). Optimal Kinematic Design of a 6-UCU Kind Gough-Stewart Platform with a Guaranteed Given Accuracy. Robotics, 7(2), 30. https://doi.org/10.3390/robotics7020030