Motion Investigation of a Snake Robot with Different Scale Geometry and Coefficient of Friction
Abstract
:1. Introduction
2. The Experimental SETUP and Data Acquisition
3. The Effect of the Surface Properties on Motion
4. The Effect of the Surface on Directional Stability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casper, J.; Murphy, R.R. Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2003, 33, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Brown, H.B.; Casciola, R.; Costa, A.; Schwerin, M.; Shamas, E.; Choset, H. A mobile hyper redundant mechanism for search and rescue tasks. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2889–2895. [Google Scholar]
- Liljeback, P.; Stavdahl, O.; Beitnes, A. SnakeFighter-development of a water hydraulic firefighting snake robot. In Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision, ICARCV’06, Singapore, 5–8 December 2006; pp. 1–6. [Google Scholar]
- Cai, L.; Zhang, R. Design and Research of Intelligent Fire-Fighting Robot. Adv. Mater. Res. 2013, 823, 358–362. [Google Scholar] [CrossRef]
- Ho, C.; Chen, M.; Lien, C. Machine Vision-Based Intelligent Fire Fighting Robot. Key Eng. Mater. 2010, 450, 312–315. [Google Scholar] [CrossRef]
- Degani, A.; Choset, H.; Wolf, A.; Zenati, M.A. Highly articulated robotic probe for minimally invasive surgery. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 4167–4172. [Google Scholar]
- Tully, S.; Kantor, G.; Zenati, M.A.; Choset, H. Shape estimation for image-guided surgery with a highly articulated snake robot. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011; pp. 1353–1358. [Google Scholar]
- Granosik, G.; Hansen, M.G.; Borenstein, J. The OmniTread serpentine robot for industrial inspection and surveillance. Ind. Robot 2005, 32, 139–148. [Google Scholar] [CrossRef]
- Granosik, G.; Borenstein, J.; Hansen, M.G. Serpentine robots for industrial inspection and surveillance. In Industrial Robotics: Programming, Simulation and Applications; I-Tech Publ.: London, UK, 2007; pp. 633–662. [Google Scholar]
- Gray, J. The mechanism of locomotion in snakes. J. Exp. Biol. 1946, 23, 101–120. [Google Scholar] [PubMed]
- Hu, D.L.; Nirody, J.; Scott, T.; Shelley, M.J. The mechanics of slithering locomotion. Proc. Natl. Acad. Sci. USA 2009, 106, 10081–10085. [Google Scholar] [CrossRef] [PubMed]
- Jayne, B.C. Muscular mechanisms of snake locomotion: An electromyographic study of the sidewinding and concertina modes of Crotaluscerastes, Nerodiafasciata and Elapheobsoleta. J. Exp. Biol. 1988, 140, 1–33. [Google Scholar] [PubMed]
- Jayne, B.C. Muscular mechanisms of snake locomotion: An electromyographic study of lateral undulation of the Florida banded water snake (Nerodiafasciata) and the yellow rat snake (Elapheobsoleta). J. Morphol. 1988, 197, 159–181. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.S. The motion dynamics of snakes and worms. In Proceedings of the ACM Siggraph Computer Graphics and Interactive Techniques, Atlanta, GA, USA, 1–5 August 1988; Volume 22, pp. 169–173. [Google Scholar]
- Jayne, B.C.; Davis, J.D. Kinematics and performance capacity for the concertina locomotion of a snake (Coluber constrictor). J. Exp. Biol. 1991, 156, 539–556. [Google Scholar]
- Marvi, H.; Hu, D.L. Friction enhancement in concertina locomotion of snakes. J. R. Soc. Interface 2012, 9, 3067–3080. [Google Scholar] [CrossRef] [PubMed]
- Hirose, S. Biologically Inspired Robots; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Wang, X.; Osborne, M.T.; Alben, S. Optimizing snake locomotion on an inclined plane. Phys. Rev. E 2014, 89. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Alben, S. Optimization of two-and three-link snakelike locomotion. Phys. Rev. E 2013, 87. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, K.J.; Migadis, G.; Sarrigeorgidis, K. The NTUA snake: Design, planar kinematics, and motion planning. J. Robot. Syst. 1999, 16, 37–72. [Google Scholar] [CrossRef]
- Prautsch, P.; Mita, T. Control and analysis of the gait of snake robots. In Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, HI, USA, 22–27 August 1999; Volume 1, pp. 502–507. [Google Scholar]
- Khan, R.; Watanabe, M.; Shafie, A.A. Kinematics model of snake robot considering snake scale. Am. J. Appl. Sci. 2010, 7, 669. [Google Scholar] [CrossRef]
- Marvi, H.; Gong, C.; Gravish, N.; Astley, H.; Travers, M.; Hatton, R.L.; Mendelson, J.R., III; Choset, H.; Hu, D.L.; Goldman, D.I. Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science 2014, 346, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Billah, M.; Huq, N.; Helmi, M.; Ahmmed, S. Investigation on Data Extraction Trends for Snake Robot. Procedia Comput. Sci. 2014, 42, 145–152. [Google Scholar] [CrossRef]
- Varesis, O.; Diamantopoulos, C.; Tzes, A. Experimental studies of serpentine motion control of snake robots at inclined planes. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 737–742. [Google Scholar]
Fiction Coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|
Scale/Surface | Surface 1 | Surface 2 | Surface 3 | ||||||
Tangential | Normal | Friction Ratio | Tangential | Normal | Friction Ratio | Tangential | Normal | Friction Ratio | |
Designed Scale | - | - | - | 0.244 | 0.303 | 1.243 | 0.273 | 0.318 | 1.166 |
Half Shell | 0.265 | 0.293 | 1.103 | 0.273 | 0.318 | 1.166 | 0.303 | 0.382 | 1.261 |
Threaded cylinder_1 | 0.310 | 0.399 | 1.286 | 0.187 | 0.273 | 1.460 | 0.201 | 0.288 | 1.433 |
Threaded cylinder_2 | 0.270 | 0.310 | 1.150 | 0.201 | 0.288 | 1.433 | 0.303 | 0.366 | 1.207 |
Scale and Surface | High | Medium | Low | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle/s | Dis/Cy (cm) | V (cm/s) | θ (°) | Cycle/s | Dis/Cy (cm) | V (cm/s) | θ (°) | Cycle/s | Dis/Cy (cm) | V (cm/s) | θ (°) | |
Designed Scale on Surface 1 | X | X | X | X | X | X | X | X | X | X | X | X |
Designed Scale on Surface 2 | 0.483 | 3.667 | 1.770 | 2.471 | 0.437 | 3.066 | 1.338 | 0.620 | 0.348 | 2.521 | 0.878 | 1.986 |
Designed Scale on Surface 3 | 0.403 | 6.127 | 2.470 | 5.730 | 0.424 | 4.000 | 1.697 | 4.158 | 0.428 | 3.880 | 1.662 | 1.210 |
Half Shell on Surface 1 | 0.455 | 1.368 | 0.622 | 2.174 | 0.429 | 1.986 | 0.853 | 5.265 | 0.306 | 1.997 | 0.611 | 6.457 |
Half Shell on Surface 2 | 0.455 | 2.678 | 1.218 | 2.381 | 0.429 | 2.433 | 1.043 | 1.673 | 0.307 | 2.163 | 0.663 | 2.710 |
Half Shell on Surface 3 | 0.455 | 2.710 | 1.234 | 0.762 | 0.427 | 2.184 | 0.932 | 5.508 | 0.306 | 1.087 | 0.333 | 1.035 |
Thread Cylinder_1 on Surface 1 | 0.457 | 6.381 | 2.918 | 5.638 | 0.429 | 5.607 | 2.403 | 8.607 | 0.333 | 4.455 | 1.483 | 0.533 |
Thread Cylinder_1on Surface 2 | 0.479 | 3.561 | 1.707 | 0.634 | 0.429 | 3.041 | 1.306 | 1.719 | 0.333 | 3.300 | 1.099 | 5.330 |
Thread Cylinder_1on Surface 3 | 0.484 | 5.298 | 2.567 | 6.437 | 0.429 | 4.245 | 1.819 | 5.989 | 0.332 | 3.366 | 1.116 | 2.178 |
Thread Cylinder_2 on Surface 1 | 0.483 | 5.046 | 2.435 | 2.411 | 0.429 | 3.614 | 1.549 | 7.666 | 0.305 | 3.394 | 1.036 | 4.181 |
Thread Cylinder_2 on Surface 2 | 0.483 | 3.656 | 1.765 | 0.816 | 0.428 | 3.112 | 1.333 | 4.098 | 0.349 | 3.079 | 1.076 | 5.207 |
Thread Cylinder_2 on Surface 3 | 0.482 | 4.139 | 1.996 | 5.600 | 0.428 | 2.358 | 1.008 | 0.818 | 0.349 | 2.400 | 0.837 | 3.757 |
Thread Cylinder_2 at Center on Surface 2 | 0.484 | 0.622 | 0.301 | 5.398 | - | - | - | - | - | - | - | - |
Thread Cylinder_2 at Center on Surface 3 | - | - | - | - | - | - | - | - | - | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huq, N.M.L.; Khan, M.R.; Shafie, A.A.; Billah, M.M.; Ahmmad, S.M. Motion Investigation of a Snake Robot with Different Scale Geometry and Coefficient of Friction. Robotics 2018, 7, 18. https://doi.org/10.3390/robotics7020018
Huq NML, Khan MR, Shafie AA, Billah MM, Ahmmad SM. Motion Investigation of a Snake Robot with Different Scale Geometry and Coefficient of Friction. Robotics. 2018; 7(2):18. https://doi.org/10.3390/robotics7020018
Chicago/Turabian StyleHuq, Naim Md Lutful, Md Raisuddin Khan, Amir Akramin Shafie, Md Masum Billah, and Syed Masrur Ahmmad. 2018. "Motion Investigation of a Snake Robot with Different Scale Geometry and Coefficient of Friction" Robotics 7, no. 2: 18. https://doi.org/10.3390/robotics7020018
APA StyleHuq, N. M. L., Khan, M. R., Shafie, A. A., Billah, M. M., & Ahmmad, S. M. (2018). Motion Investigation of a Snake Robot with Different Scale Geometry and Coefficient of Friction. Robotics, 7(2), 18. https://doi.org/10.3390/robotics7020018