A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
Abstract
:1. Introduction
2. Hardware: Energy-Saving Design and Technologies
2.1. Robot Type
2.2. Hardware Replacement
2.3. Hardware Addition: Energy Storing and Recovering
2.3.1. Energy-Storing-Devices Type
- Mechanical KERS (e.g., flywheels).
- Electric KERS (e.g., chemical batteries, capacitors, and supercapacitors).
- Hydraulic KERS (e.g., hydro-pneumatic accumulator).
- Hydro-electric KERS (e.g., a hydraulic motor coupled with an electric generator).
2.3.2. Energy-Sharing Devices
3. Software: Enhancement of the Motion Planning Phase
- Trajectory optimization: A modification of the path or the motion profile, or both, are performed.
- Operation scheduling: Re-scheduling of subsequent movements and operations is considered.
3.1. Trajectory Optimization
3.1.1. Point-to-Point Trajectory Optimization
3.1.2. Multi-Point Trajectory Optimization
3.2. Operations Scheduling
3.2.1. Time Scaling
3.2.2. Sequence Scheduling
4. Mixed Approaches
4.1. Natural Motion
- Natural dynamics modification (NDM), in which the mechatronic system body or parts of it are designed to perform a given periodic task efficiently; that is, the system’s natural frequency is adapted to the task.
- Natural dynamics exploitation (NDE), in which the mechatronic system motion is altered in order to exploit the system’s natural frequency; that is, the task is adapted to the system’s characteristics.
4.2. Optimized Sharing
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Albu-Schäffer, A.; Haddadin, S.; Ott, C.; Stemmer, A.; Wimböck, T.; Hirzinger, G. The DLR lightweight robot: Design and control concepts for robots in human environments. Ind. Robot 2007, 34, 376–385. [Google Scholar] [CrossRef]
- Aziz, M.; Zhanibek, M.; Elsayed, A.; Abdulrazic, M.; Yahya, S.; Almurib, H.; Moghavvemi, M. Design and analysis of a proposed light weight three DOF planar industrial manipulator. In Proceedings of the IAS IEEE 52nd Annual Meeting on Industry Application Society, Portland, OR, USA, 2–6 October 2016. [Google Scholar]
- Böhme, L.; Suchý, J. Development of the fragmented-motion-segment concept for flexible joint robots to raise energy efficiency in handling tasks. IFAC Proce. Vol. 2012, 45, 576–583. [Google Scholar] [CrossRef]
- Li, Y.; Bone, G. Are parallel manipulators more energy efficient? In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Banff, AB, Canada, 29 July–1 August 2001; pp. 41–46. [Google Scholar]
- Glodde, A.; Afrough, M. Energy efficiency evaluation of an underactuated robot in comparison to traditional robot kinematics. Procedia CIRP 2014, 23, 127–130. [Google Scholar] [CrossRef]
- Hagn, U.; Nickl, M.; Jörg, S.; Passig, G.; Bahls, T.; Nothhelfer, A.; Hacker, F.; Le-Tien, L.; Albu-Schäffer, A.; Konietschke, R.; et al. The DLR MIRO: A versatile lightweight robot for surgical applications. Ind. Robot 2008, 35, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Hirzinger, G.; Sporer, N.; Albu-Schäffer, A.; Hähnle, M.; Krenn, R.; Pascucci, A.; Schedl, M. DLR’s torque-controlled light weight robot III - Are we reaching the technological limits now? In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1710–1716. [Google Scholar]
- Izumi, T.; Li, Z.; Zhou, H. A reduction ratio for minimizing dissipated energy in a mechatronic system with a gear train. Mechatronics 2008, 18, 529–535. [Google Scholar] [CrossRef]
- Izumi, T.; Zhou, H.; Li, Z. Optimal design of gear ratios and offset for energy conservation of an articulated manipulator. IEEE Trans. Autom. Sci. Eng. 2009, 6, 551–557. [Google Scholar] [CrossRef]
- Kim, Y.J. Design of low inertia manipulator with high stiffness and strength using tension amplifying mechanisms. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 5850–5856. [Google Scholar]
- Lee, G.; Sul, S.K.; Kim, J. Energy-saving method of parallel mechanism by redundant actuation. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2, 345–351. [Google Scholar] [CrossRef]
- Ma, S.; Hirose, S.; Yoshinada, H. Design and experiments for a coupled tendon-driven manipulator. IEEE Control Syst. 1993, 13, 30–36. [Google Scholar] [CrossRef]
- Pratt, G.A.; Williamson, M.M. Series elastic actuators. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 5–9 August 1995; Volume 1, pp. 399–406. [Google Scholar]
- Roos, F.; Johansson, H.; Wikander, J. Optimal selection of motor and gearhead in mechatronic applications. Mechatronics 2006, 16, 63–72. [Google Scholar] [CrossRef]
- Saidur, R. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 2010, 14, 877–898. [Google Scholar] [CrossRef]
- Yahya, S.; Moghavvemi, M.; Almurib, H. Joint torque reduction of a three dimensional redundant planar manipulator. Sensors 2012, 12, 6869–6892. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Pu, J.; Wong, C.; Moore, P. By-pass valve control to improve energy efficiency of pneumatic drive system. Control Eng. Pract. 2009, 17, 623–628. [Google Scholar] [CrossRef]
- Yin, H.; Huang, S.; He, M.; Li, J. An overall structure optimization for a light-weight robotic arm. In Proceedings of the IEEE 11th Conference on Industrial Electronics and Applications, Hefei, China, 5–7 June 2016; pp. 1765–1770. [Google Scholar]
- Ruiz, A.; Fontes, J.; Da Silva, M. The influence of kinematic redundancies in the energy efficiency of planar parallel manipulators. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Gale, S.; Eielsen, A.; Gravdahl, J. Modelling and simulation of a flywheel based energy storage system for an industrial manipulator. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015; pp. 332–337. [Google Scholar]
- Xu, J.; Yang, J.; Gao, J. An integrated kinetic energy recovery system for peak power transfer in 3-DOF mobile crane robot. In Proceedings of the IEEE/SICE International Symposium on System Integration, Kyoto, Japan, 20–22 December 2011; pp. 330–335. [Google Scholar]
- Ho, T.; Ahn, K. Design and control of a closed-loop hydraulic energy-regenerative system. Autom. Constr. 2012, 22, 444–458. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q. An energy-saving pressure-compensated hydraulic system with electrical approach. IEEE/ASME Trans. Mechatron. 2014, 19, 570–578. [Google Scholar] [CrossRef]
- Luo, X.; Sun, H.; Wang, J. An energy efficient pneumatic-electrical system and control strategy development. In Proceedings of the American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 4743–4748. [Google Scholar]
- Wang, T.; Ren, H. Reduction of power consumption for fluidic soft robots using energy recovery technique. In Proceedings of the IEEE International Conference on Information and Automation, Ningbo, China, 1–3 August 2016; pp. 1403–1408. [Google Scholar]
- Kapoor, R.; Parveen, C. Comparative study on various KERS. Lect. Notes Eng. Comput. Sci. 2013, 3, 1969–1973. [Google Scholar]
- Yao, Z.; Wan, J.; Li, B.; Qian, J.; Wang, S. Research and application of elevator energy-saving devices with super capacitor to store energy. Lect. Notes Electr. Eng. 2011, 122, 429–436. [Google Scholar]
- Wijenayake, A.; Gilmore, T.; Lukaszewski, R.; Anderson, D.; Waltersdorf, G. Modeling and analysis of shared/common DC bus operation of AC drives (Part I). In Proceedings of the IEEE Industry Applications Society Annual Meeting, New Orleans, LA, USA, 5–9 October 1997; Volume 1, pp. 599–604. [Google Scholar]
- Meike, D.; Ribickis, L. Recuperated energy savings potential and approaches in industrial robotics. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Trieste, Italy, 24–27 August 2011; pp. 299–303. [Google Scholar]
- Meike, D.; Rankis, I. New type of power converter for common-ground DC bus sharing to increase the energy efficiency in drive systems. In Proceedings of the IEEE International Energy Conference and Exhibition, Florence, Italy, 9–12 September 2012; pp. 225–230. [Google Scholar]
- Meike, D.; Senfelds, A.; Ribickis, L. Power converter for DC bus sharing to increase the energy efficiency in drive systems. In Proceedings of the Industrial Electronics Conference, Vienna, Austria, 10–13 November 2013; pp. 7199–7204. [Google Scholar]
- Rankis, I.; Meike, D.; Senfelds, A. Utilization of regeneration energy in industrial robots system. Power Electr. Eng. 2013, 31, 95–100. [Google Scholar]
- Hunt, T.; Berthelette, C.; Popovic, M. Linear One-to-Many (OTM) system. In Proceedings of the IEEE Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 22–23 April 2013. [Google Scholar]
- Jeoung, H.; Choi, J. High efficiency energy conversion and drives of flywheel energy storage system using high temperature superconductive magnetic bearings. In Proceedings of the IEEE Conference on Power Engineering Society, Singapore, 23–27 January 2000; Volume 1, pp. 517–522. [Google Scholar]
- Khalaf, P.; Richter, H. Parametric optimization of stored energy in robots with regenerative drive systems. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Banff, AB, Canada, 12–15 July 2016; pp. 1424–1429. [Google Scholar]
- Richter, H.; Simon, D.; Van Den Bogert, A. Semiactive virtual control method for robots with regenerative energy-storing joints. IFAC Proc. Vol. 2014, 19, 10244–10250. [Google Scholar] [CrossRef]
- Paryanto; Brossog, M.; Kohl, J.; Merhof, J.; Spreng, S.; Franke, J. Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 2014, 23, 131–136. [Google Scholar]
- Abe, A. Minimum energy trajectory planning method for robot manipulator mounted on flexible base. In Proceedings of the 9th Asian Control Conference, Istanbul, Turkey, 23–26 June 2013. [Google Scholar]
- Abe, A. An effective trajectory planning method for simultaneously suppressing residual vibration and energy consumption of flexible structures. Case Stud. Mech. Syst. Signal Process. 2016, 4, 19–27. [Google Scholar] [CrossRef]
- Ayten, K.; Sahinkaya, M.; Dumlu, A. Optimum trajectory generation for redundant/hyper-redundant manipulators. IFAC Proc. Vol. 2016, 49, 493–500. [Google Scholar] [CrossRef]
- Bailón, W.; Cardiel, E.; Campos, I.; Paz, A. Mechanical energy optimization in trajectory planning for six DOF robot manipulators based on eighth-degree polynomial functions and a genetic algorithm. In Proceedings of the 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, Tuxtla Gutierrez, Mexico, 8–10 September 2010; pp. 446–451. [Google Scholar]
- Field, G.; Stepanenko, Y. Iterative dynamic programming: An approach to minimum energy trajectory planning for robotic manipulators. In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; Volume 3, pp. 2755–2760. [Google Scholar]
- Fung, R.F.; Cheng, Y.H. An minimum-energy-based high-degree polynomial trajectory planning and tracking control for an LCD glass-handling robot. Int. J. Intell. Eng. Syst. 2011, 4, 1–10. [Google Scholar] [CrossRef]
- Fung, R.F.; Cheng, Y.H. Minimum-energy trajectory planning for an LCD glass-handling robot. In Proceedings of the 4th International Conference on Intelligent Networks and Intelligent Systems, Kunming, China, 1–3 November 2011; pp. 61–64. [Google Scholar]
- Hsu, Y.L.; Huang, M.S.; Fung, R.F. Minimum-absolute-energy trajectory planning for a toggle mechanism driven by a PMSM. In Proceedings of the International Conference on System Science and Engineering, Dalian, Liaoning, China, 30 June–2 July 2012; pp. 193–198. [Google Scholar]
- Fung, R.F.; Cheng, Y.H. Trajectory planning based on minimum absolute input energy for an LCD glass-handling robot. Appl. Math. Model. 2014, 38, 2837–2847. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Huang, M.S.; Fung, R.F. Energy-saving trajectory planning for a toggle mechanism driven by a PMSM. Mechatronics 2014, 24, 23–31. [Google Scholar] [CrossRef]
- Hansen, C.; Oltjen, J.; Meike, D.; Ortmaier, T. Enhanced approach for energy-efficient trajectory generation of industrial robots. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Seoul, Korea, 20–24 August 2012; pp. 1–7. [Google Scholar]
- Hansen, C.; Kotlarski, J.; Ortmaier, T. Experimental validation of advanced minimum energy robot trajectory optimization. In Proceedings of the 16th International Conference on Advanced Robotics, Montevideo, Uruguay, 25–29 November 2013. [Google Scholar]
- Ho, P.; Uchiyama, N.; Sano, S.; Sawada, K.; Kato, A.; Yonezawa, T. Simple motion trajectory generation for energy saving of industrial machines. In Proceedings of the IEEE/SICE International Symposium on System Integration, Fukuoka, Japan, 16–18 December 2012; pp. 476–480. [Google Scholar]
- Hsu, Y.L.; Huang, M.S.; Fung, R.F. Trajectory planning and control for precision positioning table driven by a PMSM. In Proceedings of the 2nd International Conference on Intelligent Control and Information Processing, Harbin, China, 25–28 July 2011; pp. 26–31. [Google Scholar]
- Huang, M.S.; Hsu, Y.L.; Fung, R.F. Minimum-energy point-to-point trajectory planning of a simple mechatronic system. In Proceedings of the 8th Asian Control Conference, Kaohsiung, Taiwan, 15–18 May 2011; pp. 647–652. [Google Scholar]
- Huang, M.S.; Hsu, Y.L.; Fung, R.F. Minimum-energy point-to-point trajectory planning for a motor-toggle servomechanism. IEEE/ASME Trans. Mechatron. 2012, 17, 337–344. [Google Scholar] [CrossRef]
- Khoukhi, A.; Baron, L.; Balazinski, M.; Demirli, K. Fuzzy-neuro optimal time-energy control of a three degrees of freedom planar manipulator. In Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society, Montreal, QC, Canada, 3–6 June 2006; pp. 247–252. [Google Scholar]
- Park, J. Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions. Mechatronics 1996, 6, 649–663. [Google Scholar] [CrossRef]
- Sergaki, E.; Stavrakakis, G.; Pouliezos, A. Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses. J. Intell. Robot. Syst. Theory Appl. 2002, 33, 187–207. [Google Scholar] [CrossRef]
- Boscariol, P.; Carabin, G.; Gasparetto, A.; Lever, N.; Vidoni, R. Energy-efficient point-to-point trajectory generation for industrial robotic machines. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, 29 June –2 July 2015; pp. 1425–1433. [Google Scholar]
- Wang, Y.; Zhao, Y.; Bortoff, S.; Ueda, K. A real-time energy-optimal trajectory generation method for a servomotor system. IEEE Trans. Ind. Electron. 2015, 62, 1175–1188. [Google Scholar] [CrossRef]
- Wilson, D.; Robinett, R., III; Eisler, G. Discrete dynamic programming for optimized path planning of flexible robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2918–2923. [Google Scholar]
- Reiter, A.; Gattringer, H.; Müller, A. Real-time computation of inexact minimum-energy trajectories using parametric sensitivities. Mech. Mach. Sci. 2018, 49, 174–182. [Google Scholar]
- Wigstrom, O.; Lennartson, B. Energy optimization of trajectories for high level scheduling. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Trieste, Italy, 24–27 August 2011; pp. 654–659. [Google Scholar]
- Wigstrom, O.; Sundstrom, N.; Lennartson, B. Optimization of hybrid systems with known paths. IFAC Proc. Vol. 2012, 45, 39–45. [Google Scholar] [CrossRef]
- Wigstrom, O.; Lennartson, B.; Vergnano, A.; Breitholtz, C. High-level scheduling of energy optimal trajectories. IEEE Trans. Autom. Sci. Eng. 2013, 10, 57–64. [Google Scholar] [CrossRef]
- Wigstrom, O.; Lennartson, B. Sustainable production automation—Energy optimization of robot cells. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 252–257. [Google Scholar]
- Pellicciari, M.; Berselli, G.; Leali, F.; Vergnano, A. A minimal touch approach for optimizing energy efficiency in pick-and-place manipulators. In Proceedings of the IEEE 15th International Conference on Advanced Robotics: New Boundaries for Robotics, Tallinn, Estonia, 20–23 June 2011; pp. 100–105. [Google Scholar]
- Riazi, S.; Bengtsson, K.; Wigstrom, O.; Vidarsson, E.; Lennartson, B. Energy optimization of multi-robot systems. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Gothenburg, Sweden, 24–28 August 2015; pp. 1345–1350. [Google Scholar]
- Riazi, S.; Wigstrom, O.; Bengtsson, K.; Lennartson, B. Energy and peak power optimization of time-bounded robot trajectories. IEEE Trans. Autom. Sci. Eng. 2017, 14, 646–657. [Google Scholar] [CrossRef]
- Hirakawa, A.R.; Kawamura, A. Trajectory planning of redundant manipulators for minimum energy consumption without matrix inversion. In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 25–25 April 1997; Volume 3, pp. 2415–2420. [Google Scholar]
- Paes, K.; Dewulf, W.; Vander Elst, K.; Kellens, K.; Slaets, P. Energy efficient trajectories for an industrial ABB robot. Procedia CIRP 2014, 15, 105–110. [Google Scholar] [CrossRef]
- Sengupta, A.; Chakraborti, T.; Konar, A.; Nagar, A. Energy efficient trajectory planning by a robot arm using invasive weed optimization technique. In Proceedings of the 3rd World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; pp. 311–316. [Google Scholar]
- Chen, K.Y.; Huang, M.S.; Fung, R.F. Dynamic modelling and input-energy comparison for the elevator system. Appl. Math. Model. 2014, 38, 2037–2050. [Google Scholar] [CrossRef]
- Hansen, C.; Eggers, K.; Kotlarski, J.; Ortmaier, T. Task specific trajectory profile selection for energy efficient servo drive movements. In Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining, Sydney, Australia, 9–11 July 2014; pp. 514–522. [Google Scholar]
- Richiedei, D.; Trevisani, A. Analytical computation of the energy-efficient optimal planning in rest-to-rest motion of constant inertia systems. Mechatronics 2016, 39, 147–159. [Google Scholar] [CrossRef]
- Schulz, R.; Monecke, J.; Zadek, H. Der Einfluss kinematischer Parameter auf den Energiebedarf eines Regalbediengerätes. Logist. J. 2012, 8, 1–10. (In German) [Google Scholar] [CrossRef]
- Siegel, A.; Schulz, R.; Turek, K.; Schmidt, T.; Zadek, H. Modellierung des Energiebedarfs von Regalbediengeräten und Verschiedener Lagerbetriebsstrategien zur Reduzierung des Energiebedarfs. Logist. J. 2013, 2092, 1–18. (In German) [Google Scholar]
- Meike, D.; Pellicciari, M.; Berselli, G.; Vergnano, A.; Ribickis, L. Increasing the energy efficiency of multi-robot production lines in the automotive industry. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Seoul, Korea, 20–24 August 2012; pp. 700–705. [Google Scholar]
- Meike, D.; Pellicciari, M.; Berselli, G. Energy efficient use of multirobot production lines in the automotive industry: Detailed system modeling and optimization. IEEE Trans. Autom. Sci. Eng. 2014, 11, 798–809. [Google Scholar] [CrossRef]
- Pellicciari, M.; Berselli, G.; Leali, F.; Vergnano, A. A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics 2013, 23, 326–334. [Google Scholar] [CrossRef]
- Fenucci, A.; Indri, M.; Romanelli, F. An off-line robot motion planning approach for the reduction of the energy consumption. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, Berlin, Germany, 6–9 September 2016. [Google Scholar]
- He, T.; Zhang, Y.; Sun, F.; Shi, X. Immune optimization based multi-objective six-DOF trajectory planning for industrial robot manipulators. In Proceedings of the World Congress on Intelligent Control and Automation, Guilin, China, 12–15 June 2016; pp. 2945–2950. [Google Scholar]
- Mohammed, A.; Schmidt, B.; Wang, L.; Gao, L. Minimizing energy consumption for robot arm movement. Procedia CIRP 2014, 25, 400–405. [Google Scholar] [CrossRef]
- Hauf, D.; Kruck, J.; Paryanto; Franke, J. Energy consumption modeling of a turning table and standardized integration into virtual commissioning. Procedia Manuf. 2017, 11, 256–264. [Google Scholar] [CrossRef]
- Paryanto; Merhof, J.; Brossog, M.; Fischer, C. An integrated simulation approach to the development of assembly system components. Adv. Mater. Res. 2013, 769, 19–26. [Google Scholar]
- Paryanto; Brossog, M.; Bornschlegl, M.; Franke, J. Reducing the energy consumption of industrial robots in manufacturing systems. Int. J. Adv. Manuf. Technol. 2015, 78, 1315–1328. [Google Scholar]
- Paryanto; Brossog, M.; Merhof, J.; Franke, J. Mechatronic behavior analysis of a customized manufacturing cell. In Proceedings of the 7th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2014), Aalborg, Denmark, 4–7 February 2014; Brunoe, T.D., Nielsen, K., Joergensen, K.A., Taps, S.B., Eds.; Springer: Cham, Switzerland, 2014; pp. 389–399. [Google Scholar]
- Kaviani, A.; Hadley, B.; Mirafzal, B. Regenerative energy saving in multi-axis servo-motor-drives. In Proceedings of the IEEE Energy Conversion Congress and Exposition: Energy Conversion Innovation for a Clean Energy Future, Phoenix, AZ, USA, 17–22 September 2011; pp. 3450–3457. [Google Scholar]
- Moreno-Valenzuela, J. Time-scaling of trajectories for point-to-point robotic tasks. ISA Trans. 2006, 45, 407–418. [Google Scholar] [CrossRef]
- Kobetski, A.; Fabian, M. Velocity balancing in flexible manufacturing systems. In Proceedings of the 9th International Workshop on Discrete Event Systems, Goteborg, Sweden, 28–30 May 2008; pp. 358–363. [Google Scholar]
- Mukund Nilakantan, J.; Huang, G.; Ponnambalam, S. An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems. J. Clean. Prod. 2015, 90, 311–325. [Google Scholar] [CrossRef]
- Tang, H.Y.; Bao, D.; Qi, W.G.; Zhang, Y.M. Optimization of elevator group control scheduling with multi-strategy switch. In Proceedings of the 7th International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; Volume 4, pp. 2067–2072. [Google Scholar]
- Vergnano, A.; Thorstensson, C.; Lennartson, B.; Falkman, P.; Pellicciari, M.; Leali, F.; Biller, S. Modeling and optimization of energy consumption in cooperative multi-robot systems. IEEE Trans. Autom. Sci. Eng. 2012, 9, 423–428. [Google Scholar] [CrossRef]
- Vergnano, A.; Thorstensson, C.; Lennartson, B.; Falkman, P.; Pellicciari, M.; Yuan, C.; Biller, S.; Leali, F. Embedding detailed robot energy optimization into high-level scheduling. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, 21–24 August 2010; pp. 386–392. [Google Scholar]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. Mech. Mach. Sci. 2015, 29, 3–27. [Google Scholar]
- Barreto, J.; Schöler, F.F.; Corves, B. The concept of natural motion for pick and place operations. Mech. Mach. Sci. 2017, 46, 89–98. [Google Scholar]
- Goya, H.; Matsusaka, K.; Uemura, M.; Nishioka, Y.; Kawamura, S. Realization of high-energy efficient pick-and-place tasks of SCARA robots by resonance. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 2730–2735. [Google Scholar]
- Iwamura, M.; Imafuku, S.; Kawamoto, T.; Schiehlen, W. Design and control of an energy-saving robot using storage elements and reactionwheels. Comput. Methods Appl. Sci. 2016, 42, 277–297. [Google Scholar]
- Shushtari, M.; Nasiri, R.; Yazdanpanah, M.; Ahmadabadi, M. Compliance and frequency optimization for energy efficiency in cyclic tasks. Robotica 2017, 1–18. [Google Scholar] [CrossRef]
- Uemura, M.; Kawamura, S. An energy saving control method of robot motions based on adaptive stiffness optimization— Cases of multi-frequency components. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 551–557. [Google Scholar]
- Hansen, C.; Eggers, K.; Kotlarski, J.; Ortmaier, T. Concurrent energy efficiency optimization of multi-axis positioning tasks. In Proceedings of the 10th IEEE Conference on Industrial Electronics and Applications, Auckland, New Zealand, 15–17 June 2015; pp. 518–525. [Google Scholar]
Reference | Year | Document Type | Category | Subcategory | Case Study | |
---|---|---|---|---|---|---|
[4] | 2001 | Conference paper | Robot type | — | — | 3-DoFs parallel manipulator and serial manipulator |
[5] | 2014 | Conference paper | Robot type | — | — | Underactuated serial kinematics |
[11] | 2015 | Journal paper | Robot type | — | — | Parallel manipulator with redundant actuation |
[19] | 2015 | Conference paper | Robot type | — | — | Parallel manipulator with redundant actuation (3RRR) |
[15] | 2010 | Review | Replacement | Electric actuator | — | Generic mechatronic system |
[17] | 2009 | Journal paper | Replacement | Pneumatic | — | Generic pneumatic system |
[7] | 2002 | Conference paper | Replacement | Reduction of components weight | Lighter arms | Redundant serial robot (7 DoFs) |
[18] | 2016 | Conference paper | Replacement | Reduction of components weight | Lighter arms | Serial robot (5 DoFs) |
[1] | 2007 | Journal paper | Replacement | Reduction of components weight | Lighter joints | Redundant serial robot (7 DoFs) |
[6] | 2008 | Journal paper | Replacement | Reduction of components weight | Lighter joints | Redundant serial robot (7 DoFs) |
[2] | 2016 | Conference paper | Replacement | Moving the actuators at the base | — | Serial robot (3 DoFs) |
[10] | 2015 | Conference paper | Replacement | Moving the actuators at the base | — | Elbow joint (1 DoF) wrist joint (3 DoFs) |
[12] | 1993 | Journal paper | Replacement | Moving the actuators at the base | — | Redundant serial robot (7 DoFs) |
[16] | 2012 | Journal paper | Replacement | Moving the actuators at the base | — | Underactuated serial kinematics |
[20] | 2015 | Conference paper | Addition | Energy-storing devices | Flywheel | Serial robot (6 DoFs)– ABB IRB 140 |
[21] | 2011 | Conference paper | Addition | Energy-storing devices | Flywheel | Serial robot (3 DoFs)–crane |
[22] | 2012 | Conference paper | Addition | Energy-storing devices | Hydraulic | Generic hydraulic system |
[23] | 2014 | Journal paper | Addition | Energy-storing devices | Hydraulic | Generic hydraulic system |
[24] | 2011 | Conference paper | Addition | Energy-storing devices | Pneumatic | Hybrid pneumatic/electric system |
[25] | 2016 | Conference paper | Addition | Energy-storing devices | Pneumatic | Generic pneumatic system |
[26] | 2013 | Conference paper | Addition | Energy-storing devices | Several | Generic mechatronic system |
[27] | 2011 | Conference paper | Addition | Energy-storing devices | Supercapacitor | Mechatronic system (1 DoF)–elevator |
[28] | 1997 | Conference paper | Addition | DC-bus sharing | — | Mechatronic system–drives |
[29] | 2011 | Conference paper | Addition | DC-bus sharing | EnergyTeam | Generic mechatronic system–robot |
[30] | 2012 | Conference paper | Addition | DC-bus sharing | Single capacitor | Generic mechatronic system–robot |
[31] | 2013 | Conference paper | Addition | DC-bus sharing | Single capacitor | Generic mechatronic system–robot |
[32] | 2013 | Journal paper | Addition | DC-bus sharing | Single capacitor | Generic mechatronic system–robot |
Reference | Year | Document Type | Category | Subcategory | Case Study |
---|---|---|---|---|---|
[71] | 2014 | Journal paper | Trajectroy optimization | PTP–direct | Mechatronic system (1 DoF)–elevator |
[72] | 2014 | Conference paper | Trajectroy optimization | PTP–direct | Generic mechatronic system (1 DoF) |
[37] | 2010 | Conference paper | Trajectroy optimization | PTP–direct | Serial robot (6 DoFs) |
[84] | 2010 | Journal paper | Trajectroy optimization | PTP–direct | Serial robot (6 DoFs) |
[85] | 2014 | Journal paper | Trajectroy optimization | PTP–direct | Serial robot (6 DoFs) |
[73] | 2016 | Journal paper | Trajectroy optimization | PTP–direct | Mechatronic system (1 DoF)–constant inertia |
[74] | 2012 | Journal paper | Trajectroy optimization | PTP–direct | Storage and retrieval vehicle (2 DoFs) |
[75] | 2013 | Journal paper | Trajectroy optimization | PTP–direct | Storage and retrieval vehicle (2 DoFs) |
[38] | 2013 | Conference paper | Trajectroy optimization | PTP–inverse | Serial robot (1 DoF) mounted on a flexible base |
[39] | 2016 | Journal paper | Trajectroy optimization | PTP–inverse | Serial robot (1 DoF) mounted on a flexible base |
[40] | 2016 | Journal paper | Trajectroy optimization | PTP–inverse | Redundant serial robot (3 DoFs) |
[41] | 2010 | Conference paper | Trajectroy optimization | PTP–inverse | Serial robot (6 DoFs) |
[57] | 2015 | Conference paper | Trajectroy optimization | PTP–inverse | Mechatronic system (1 DoF)–linear axis |
[42] | 1996 | Conference paper | Trajectroy optimization | PTP–inverse | Serial robot (6 DoFs) |
[43] | 2011 | Journal paper | Trajectroy optimization | PTP–inverse | Underactuated serial kinematics |
[44] | 2011 | Conference paper | Trajectroy optimization | PTP–inverse | Underactuated serial kinematics |
[46] | 2014 | Journal paper | Trajectroy optimization | PTP–inverse | Underactuated serial kinematics |
[49] | 2013 | Conference paper | Trajectroy optimization | PTP–inverse | Generic mechatronic system (2 DoFs) |
[48] | 2012 | Conference paper | Trajectroy optimization | PTP–inverse | Serial robot (6 DoFs) |
[50] | 2012 | Conference paper | Trajectroy optimization | PTP–inverse | Generic mechatronic system (1 DoF) |
[51] | 2011 | Conference paper | Trajectroy optimization | PTP–inverse | Mechatronic system (1 DoF)–positoning table |
[45] | 2012 | Conference paper | Trajectroy optimization | PTP–inverse | Mechatronic system (1 DoF)–toggle mechanism |
[47] | 2014 | Journal paper | Trajectroy optimization | PTP–inverse | Mechatronic system (1 DoF)–toggle mechanism |
[52] | 2011 | Conference paper | Trajectroy optimization | PTP–inverse | Mechatronic system (1 DoF)–positioning table |
[53] | 2012 | Journal paper | Trajectroy optimization | PTP–inverse | Mechatronic system (1 DoF)–toggle mechanism |
[86] | 2011 | Conference paper | Trajectroy optimization | PTP–inverse | Generic mechatronic system (2 DoFs) |
[54] | 2006 | Conference paper | Trajectroy optimization | PTP–inverse | Redundant serial robot (3 DoFs) |
[55] | 1996 | Journal paper | Trajectroy optimization | PTP–inverse | Generic mechatronic system (1 DoF) |
[56] | 2002 | Conference paper | Trajectroy optimization | PTP–inverse | Generic mechatronic system (1 DoF) |
[58] | 2015 | Journal paper | Trajectroy optimization | PTP–inverse | Generic mechatronic system (1 DoF) |
[59] | 2004 | Conference paper | Trajectroy optimization | PTP–inverse | Flexible links robot (2 links) |
[60] | 2017 | Conference paper | Trajectroy optimization | PTP–inverse | Redundant serial robot (4 DoFs) |
[71] | 2016 | Conference paper | Trajectroy optimization | Multi-point | Serial robot (6 DoFs) |
[80] | 2016 | Conference paper | Trajectroy optimization | Multi-point | Serial robot (6 DoFs) |
[68] | 1997 | Conference paper | Trajectroy optimization | Multi-point | Redundant serial robot (3 DoFs) |
[81] | 2014 | Conference paper | Trajectroy optimization | Multi-point | Serial robot (6 DoFs) |
[69] | 2014 | Conference paper | Trajectroy optimization | Multi-point | Serial robot (6 DoFs) |
[70] | 2011 | Conference paper | Trajectroy optimization | Multi-point | Serial robot (2 DoFs) |
[77] | 2014 | Journal paper | Operation scheduling | Time scaling | Serial robot (6 DoFs) |
[76] | 2012 | Conference paper | Operation scheduling | Time scaling | Serial robot (6 DoFs) |
[87] | 2006 | Journal paper | Operation scheduling | Time scaling | Serial robot (2 DoFs) |
[65] | 2011 | Conference paper | Operation scheduling | Time scaling | Serial kinematics, parallel kinemaitcs |
[78] | 2013 | Journal paper | Operation scheduling | Time scaling | Serial kinematics, parallel kinemaitcs |
[64] | 2013 | Conference paper | Operation scheduling | Time scaling | Industrial robotized cell |
[61] | 2011 | Conference paper | Operation scheduling | Time scaling | Serial robot (2 DoFs) |
[63] | 2013 | Journal paper | Operation scheduling | Time scaling | Industrial robotized cell |
[62] | 2012 | Conference paper | Operation scheduling | Time scaling | Industrial robotized cell |
[88] | 2008 | Conference paper | Operation scheduling | Sequence scheduling | Flexible manufacturing system |
[89] | 2015 | Journal paper | Operation scheduling | Sequence scheduling | Industrial robotized cell |
[66] | 2015 | Conference paper | Operation scheduling | Sequence scheduling | Industrial robotized cell |
[67] | 2017 | Journal paper | Operation scheduling | Sequence scheduling | Industrial robotized cell |
[90] | 2008 | Conference paper | Operation scheduling | Sequence scheduling | Mechatronic system (1 DoF)–elevator |
[91] | 2012 | Journal paper | Operation scheduling | Sequence scheduling | Industrial robotized cell |
[92] | 2010 | Conference paper | Operation scheduling | Sequence scheduling | Industrial robotized cell |
Loss Type | Definition of Energy | Proportionality | |
---|---|---|---|
Load | Coulomb friction | ||
Viscous damping | |||
Motor | Resistive | ||
Core (hysteresis and eddy) | |||
Stray | |||
Coulomb friction | |||
Viscous damping | |||
Holding brake | const. | ||
Inverter | Resistive | ||
IGBT switching | const. | ||
PLC controller | const. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carabin, G.; Wehrle, E.; Vidoni, R. A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics 2017, 6, 39. https://doi.org/10.3390/robotics6040039
Carabin G, Wehrle E, Vidoni R. A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics. 2017; 6(4):39. https://doi.org/10.3390/robotics6040039
Chicago/Turabian StyleCarabin, Giovanni, Erich Wehrle, and Renato Vidoni. 2017. "A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems" Robotics 6, no. 4: 39. https://doi.org/10.3390/robotics6040039
APA StyleCarabin, G., Wehrle, E., & Vidoni, R. (2017). A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics, 6(4), 39. https://doi.org/10.3390/robotics6040039