A High-Fidelity Energy Efficient Path Planner for Unmanned Airships
Abstract
:1. Introduction
2. Wind Vector Fields
3. Vehicle Model
4. Cost Wavefront Expansion Planner
5. Trajectory Objectives
5.1. Arrival Time
5.2. Energy Consumption
5.3. Collision Avoidance
6. Numerical Simulations
6.1. Trajectory Planning and Test Setup
6.2. Test Environment
6.3. Results and Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
A | Reference area [m] |
Cost | |
C | Constant |
Density [kg/m] | |
d | Distance [m] |
E | Energy [J] |
F | Force [N] |
Efficiency | |
n | Node identifier |
N | Number of nodes |
o | Orientation ratio |
Pressure [Pa] | |
P | Power [W] |
Q | Volume flow rate [m/s] |
t | Time [s] |
Velocity [m/s] | |
V | Volume [m] |
W | Weight |
z | Elevation [m] |
a | Avoidance |
c | Constant |
d | Drag |
e | Energy |
g | Goal |
l | Terrain |
m | Pressure ceiling |
o | Obstacle |
Optimal for time | |
Optimal for energy | |
r | Remaining |
T | Thrust |
w | Wind |
v | Vehicle |
Vehicle with respect to ground | |
Vehicle with respect to wind | |
‖ | Parallel |
⊥ | Perpendicular |
CFD | Computational fluid dynamics |
DEM | Digital elevation map |
ETA | Estimated time of arrival |
MSZ | Minimum separation zone |
UAV | Unmanned aerial vehicle |
WVF | Wind vector field |
References
- Kong, Z.; Korukanti, V.; Mettler, B. Mapping 3D guidance performance using approximate optimal cost-to-go function. In Proceedings of the AIAA Navigation, Guidance and Control Conference, Chicago, IL, USA, 10–13 August 2009; pp. 1–21. [Google Scholar]
- Goerzen, C.; Kong, Z.; Mettler, B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 2010, 57, 65–100. [Google Scholar] [CrossRef]
- Sawaragi, Y.; Nakayama, H.; Tanino, T. Theory of Multiobjective Optimization; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Guivant, J.; Nebot, E.; Nieto, J.; Masson, F. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar]
- Wu, P.P.Y.; Campbell, D.; Merz, T. On-board multi-objective mission planning for unmanned aerial vehicles. In Proceedings of the IEEE Aerospace conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–10. [Google Scholar]
- Soulignac, M. Feasible and optimal path planning in strong current fields. IEEE Trans. Robot. 2011, 27, 89–98. [Google Scholar] [CrossRef]
- Masoud, A.A. A harmonic potential field approach for planning motion of a UAV in a cluttered environment with a drift field. In Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, USA, 12–15 December 2011; pp. 7665–7671. [Google Scholar]
- Al-Sabban, W.H.; Gonzalez, L.F.; Smith, R.N.; Wyeth, G.F. A wind-energy based path planning for unmanned aerial vehicles using markov decision processes. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 1–6. [Google Scholar]
- Lawrance, N.R.J.; Sukkarieh, S. A guidance and control strategy for dynamic soaring with a gliding UAV. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3632–3637. [Google Scholar]
- Rubio, J.; Kragelund, S. The trans-pacific crossing: Long range adaptive path planning for UAVs through variable wind fields. In Proceedings of the 22nd Digital Avionics Systems Conference, Indianapolis, IN, USA, 12–16 October 2003; pp. 1–12. [Google Scholar]
- Langelaan, J.W.; Spletzer, J.; Montella, C.; Grenestedt, J. Wind field estimation for autonomous dynamic soaring. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 16–22. [Google Scholar]
- Chakrabarty, A.; Langelaan, J. UAV flight path planning in time varying complex wind-fields. In Proceedings of the American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 2568–2574. [Google Scholar]
- Chakrabarty, A.; Langelaan, J.W. Energy maps for long-range path planning for small-and micro-UAVs. In Proceedings of the Guidance, Navigation and Control Conference, Chicago, IL, USA, 10–13 August 2009; pp. 1–13. [Google Scholar]
- Pasquill, P. Aerodynamic Characteristics of Atmospheric Boundary Layers; US Department of Energy: Southwest Washington, DC, USA, 1971; pp. 622–623.
- Besada-Portas, E.; de la Torre, L.; De La Cruz, J.M.; Andres-Toro, B. Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 2010, 26, 619–634. [Google Scholar] [CrossRef]
- McManus, I.A. A Multidisciplinary Approach to Highly Autonomous UAV Mission Planning and Piloting for Civilian Airspace. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2001. [Google Scholar]
- Sarma, A.; Hochstetler, R.; Wait, T. Optimization of airship routes for weather. In Proceedings of the AIAA Aviation Technology, Integration and Operations Conference, Belfast, Ireland, 18–20 September 2007; pp. 1–6. [Google Scholar]
- Chen, J.; Xie, S.; Li, H.; Feng, K. Robot path planning based on adaptive integrating of Genetic and Ant Colony Algorithm. Int. J. Innov. Comput. Inf. Control 2016, 11, 833–850. [Google Scholar]
- Cekmez, U.; Ozsiginan, M.; Sahingoz, O.K. Multi-UAV path planning with parallel genetic algorithms on CUDA architecture. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Denver, CO, USA, 20–24 July 2016; pp. 1079–1086. [Google Scholar]
- Yang, Z.; Fang, Z.; Li, P. Decentralized 4D trajectory generation for UAVs based on improved intrinsic tau guidance strategy. Int. J. Adv. Robot. Syst. 2016, 13, 1–13. [Google Scholar] [CrossRef]
- Nelson, D.R.; Barber, D.B.; McLain, T.W.; Beard, R.W. Vector field path following for miniature air vehicles. Proc. IEEE Trans. Robot. 2007, 23, 519–529. [Google Scholar] [CrossRef]
- Sjanic, Z. On-Line Mission Planning Based on Model Predictive Control. Master’s Thesis, Division of Automatic Control, Department of Electrical Engineering, Linkoping University, Linkoping, Sweden, 2001. [Google Scholar]
- Techy, L.; Woolsey, C.A. Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. J. Guid. Control Dyn. 2009, 32, 1736–1746. [Google Scholar] [CrossRef]
- Doshi, A.A.; Singh, S.P.N.; Postula, A.J. Towards reduced-order models for online motion planning and control of UAVs in the presence of wind. In Proceedings of the Australasian Conference on Robotics and Automation, Wellington, New Zealand, 3–5 December 2012; pp. 1–7. [Google Scholar]
- Selecký, M.; Ván̆a, P.; Rollo, M.; Meiser, T. Wind corrections in flight path planning. Int. J. Adv. Robot. Syst. 2013, 10. Available online: http://arx.sagepub.com/content/10/5/248.full.pdf+html (accessed on 17 October 2017). [CrossRef]
- McNeely, R.L.; Iyer, R.V.; Chandler, P.R. Tour planning for an unmanned air vehicle under wind conditions. J. Guid. Control Dyn. 2007, 30, 1299–1306. [Google Scholar] [CrossRef]
- Soulignac, M.; Taillibert, P.; Rueher, M. Time-minimal path planning in dynamic current fields. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2473–2479. [Google Scholar]
- Liu, C.; McAreet, O.; Chen, W.H. Path following for small UAVs in the presence of wind disturbance. In Proceedings of the UKACC International Conference on Control, Cardiff, UK, 3–5 September 2012; pp. 613–618. [Google Scholar]
- Kuroki, Y.; Young, G.S.; Haupt, S.E. UAV navigation by an expert system for contaminant mapping with a genetic algorithm. Expert Syst. Appl. 2010, 37, 4687–4697. [Google Scholar] [CrossRef]
- Chang, S.R.; Huh, U.Y. Curvature-continuous 3D path-planning using QPMI method. Int. J. Adv. Robot. Syst. 2015, 12, 1–8. [Google Scholar] [CrossRef]
- Lee, S.; Bang, H. Three-dimensional ascent trajectory optimization for stratospheric airship platforms in the jet stream. J. Guid. Control Dyn. 2007, 30, 1341–1352. [Google Scholar] [CrossRef]
- Mueller, J.B.; Zhao, Y.J.; Garrad, W.L. Optimal ascent trajectories for stratospheric airships using wind energy. J. Guid. Control Dyn. 2009, 32, 1232–1245. [Google Scholar] [CrossRef]
- Stengel, R.F. Flight Dynamics; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Beard, R.W.; McLain, T. Small Unmanned Aircraft; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- US Air Force. Military Specification: Flying Qualities of Piloted Airplanes MIL-F-8785C; Technical Report; US Department of Defense: Washington, DC, USA, 1980.
- National Oceanic and Atmospheric Administration. Available online: http://graphical.weather.gov/sectors/ (accessed on 17 October 2017).
- Harmat, A.; Sharf, I.; Trentini, M. A hybrid particle/grid wind model for realtime small UAV flight simulation. In Proceedings of the International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 3780–3785. [Google Scholar]
- Recoskie, S.; Fahim, A.; Gueaieb, W.; Lanteigne, E. Hybrid power plant design for a long-range dirigible UAV. IEEE/ASME Trans. Mechatron. 2013, 19, 606–614. [Google Scholar] [CrossRef]
- Recoskie, S.; Fahim, A.; Gueaieb, W.; Lanteigne, E. Experimental testing of a hybrid power plant for a dirigible UAV. J. Intell. Robot. Syst. 2013, 69, 69–81. [Google Scholar] [CrossRef]
- Recoskie, S. Autonomous Hybrid Powered Long Ranged Airship for Surveillance and Guidance. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2014. [Google Scholar]
- Soulignac, M.; Taillibert, P.; Rueher, M. Adapting the wavefront expansion in presence of strong currents. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1352–1358. [Google Scholar]
- Ferguson, D.; Likhachev, M.; Stentz, T. A guide to heuristic-based path planning. In Proceedings of the International Workshop on Planning under Uncertainty for Autonomous Systems, International Conference on Automated Planning and Scheduling, Monterey, CA, USA, 5–10 June 2005; pp. 1–10. [Google Scholar]
- Behnke, S. Local multiresolution path planning. In RoboCup 2003: Robot Soccer World Cup VII; Polani, D., Browning, B., Bonarini, A., Yoshida, K., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp. 332–343. [Google Scholar]
- Likhachev, M.; Ferguson, D. Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. 2009, 28, 933–945. [Google Scholar] [CrossRef]
- Cocaud, C. Autonomous Tasks Allocation and Path Generation of UAVs. Master’s Thesis, Ottawa-Carleton Institute for Mechanical and Aerospace Engineering, University of Ottawa, Ottawa, ON, Canada, 2006. [Google Scholar]
- Demiryurek, U.; Banaei-Kashani, F.; Shahabi, C. A case for time-dependent shortest path computation in spatial networks. In Proceedings of the International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 474–477. [Google Scholar]
- Wellman, M.P.; Ford, M.; Larson, K. Path planning under time-dependent uncertainty. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–20 August 2013; pp. 532–539. [Google Scholar]
- Khoury, G.A.; Gillett, J.D. Airship Technology; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Hoerner, S.F. Fluid Dynamic Drag; Hoerner Fluid Dynamics: Vancouver, WA, Canada, 1993. [Google Scholar]
- Jones, S.P.; DeLaurier, J.D. Aerodynamic estimation techniques for aerostats and airships. In Proceedings of the AIAA Lighter-than-Air Systems Conference, Annapolis, MD, USA, 8–10 July 1981; pp. 120–126. [Google Scholar]
- Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Canadian Council on Geomatics. Available online: http://www.geobase.ca/ (accessed on 17 October 2017).
- Garcia, A.; Torres, J.L.; Prieto, E.; De Francisco, A. Fitting wind speed distributions: A case study. Sol. Energy 1998, 62, 139–144. [Google Scholar] [CrossRef]
- Environment Canada. Wind Speed over the Last Year (Monthly Data) for Vancouver. Available online: http://vancouver.weatherstats.ca/ (accessed on 17 October 2017).
- Moore, G.; Paine, R.; Lopes, A. Practical uses of the windstation computational fluid dynamics (CFD) model in air quality dispersion studies. In Proceedings of the Guideline on air quality models; Guideline on Air Quality Models 2013 the Path Forward, Raleigh, NC, USA, 19–21 March 2013; pp. 1053–1079. [Google Scholar]
Parameter | Value |
---|---|
Mean altitude | 600 m |
Altitude standard deviation | 600 m |
Water table altitude | 0 m |
Mean grade | 18.4% |
Max grade | 306% |
Average number of blocks | 20 |
Min block height | 15 m |
Max block height | 200 m |
Block length | 100 m |
(a) | ||||
Planner | Convergence | Avg. comp. time | Avg. flight time | Avg. energy |
(%) | (s) | (s) | (Wh) | |
Low terrain resolution | 57 | 15.2 | 388.9 | 181.7 |
Complete planner | 94 | 41.7 | 206.9 | 43.9 |
Change | % | % | % | % |
(b) | ||||
Planner | Convergence | Avg. comp. time | Avg. flight time | Avg. energy |
(%) | (s) | (s) | (Wh) | |
Constant velocity | 74 | 43.6 | 325.2 | 94.0 |
Complete planner | 94 | 41.7 | 206.9 | 43.9 |
Change | % | % | % | % |
(c) | ||||
Planner | Convergence | Avg. comp. time | Avg. flight time | Avg. energy |
(%) | (s) | (s) | (Wh) | |
Uniform WVF | 83 | 44.4 | 185.2 | 114.8 |
Complete planner | 94 | 41.7 | 206.9 | 43.9 |
Change | % | % | % | % |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recoskie, S.; Lanteigne, E.; Gueaieb, W. A High-Fidelity Energy Efficient Path Planner for Unmanned Airships. Robotics 2017, 6, 28. https://doi.org/10.3390/robotics6040028
Recoskie S, Lanteigne E, Gueaieb W. A High-Fidelity Energy Efficient Path Planner for Unmanned Airships. Robotics. 2017; 6(4):28. https://doi.org/10.3390/robotics6040028
Chicago/Turabian StyleRecoskie, Steven, Eric Lanteigne, and Wail Gueaieb. 2017. "A High-Fidelity Energy Efficient Path Planner for Unmanned Airships" Robotics 6, no. 4: 28. https://doi.org/10.3390/robotics6040028
APA StyleRecoskie, S., Lanteigne, E., & Gueaieb, W. (2017). A High-Fidelity Energy Efficient Path Planner for Unmanned Airships. Robotics, 6(4), 28. https://doi.org/10.3390/robotics6040028