A Survey of Wall Climbing Robots: Recent Advances and Challenges
Abstract
:1. Introduction
2. Wall Climbing Method
2.1. Suction Cup Adhesion
2.2. Suction Cup Crawler Adhesion
2.3. Vacuum Pump Adhesion
2.4. Magnetic Adhesion
2.5. Rope and/or Rail Gripping
2.6. Bio-Inspired Adhesion
2.7. Discussion
2.8. Desirable Design Attributes
- Navigating over the defined area.
- Adapting to window shapes.
- Washing/brushing windows.
- Wiping washing liquid.
- Minimize total time to cover a given wall area
- Maximize the total wall area covered
- Minimize the wall area cleaned multiple times
- Minimize wall slippage
- Minimize energy consumption
- Maximize fault tolerance
- Maximize perceptible information
- Minimize noise
- Maximize dust removal
- Maximize safety
- Maximize user interaction
- Minimize infrastructure changes needed for robot deployment
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frey, C.B.; Osborne, M.A. The future of employment: How susceptible are jobs to computerisation. Retriev. Sept. 2013, 7, 2013. [Google Scholar]
- International Federation of Robotics. Service Robot Statistics. Available online: http://www.ifr.org/service-robots/statistics/ (accessed on 28 June 2016).
- Aldred, J. Burj Khalifa—A new high for high-performance concrete. Proc. Inst. Civ. Eng. 2010, 163, 66–73. [Google Scholar] [CrossRef]
- Baker, W.F. The World’s tallest building. Available online: http://www.structuremag.org/wp-content/uploads/2014/08/D-Spotlight-Burj-June111.pdf (accessed on 28 June 2016).
- Baker, W.F.; Korista, D.S.; Novak, L.C. Burj Dubai: Engineering the world’s tallest building. Struct. Des. Tall Spec. Build. 2007, 16, 361–375. [Google Scholar] [CrossRef]
- Weismantle, P.A.; Smith, G.L.; Sheriff, M. Burj Dubai: An architectural technical design case study. Struct. Des. Tall Spec. Build. 2007, 16, 335–360. [Google Scholar] [CrossRef]
- ZELJIC, A.S. Shanghai Tower Façade Design Process. International Conference of Building Envelope Systems. Available online: http://www.gensler.com/uploads/documents/Shanghai_Tower_Facade_Design_Process_11_10_2011.pdf (accessed on 28 June 2016).
- Xia, J.; Poon, D.; Mass, D. Case study: Shanghai Tower. CTBUH J. 2010, 2, 12–18. [Google Scholar]
- Zhaoa, X.; Ding, J.; Suna, H. Structural design of shanghai tower for wind loads. Procedia Eng. 2011, 14, 1759–1767. [Google Scholar] [CrossRef]
- BBC. Shanghai Window Cleaning Cradle Swings Out of Control. Available online: http://www.bbc.com/news/world-asia-china-32176401 (accessed on 28 June 2016).
- BBC. Window Washers Rescued from High up World Trade Center. Available online: http://www.bbc.com/news/world-us-canada-30028969 (accessed on 28 June 2016).
- Zhang, H.; Zhang, J.; Zong, G.; Wang, W.; Liu, R. Sky cleaner 3: A real pneumatic climbing robot for glass-wall cleaning. Robot. Autom. Mag. IEEE 2006, 13, 32–41. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zong, G. Effective nonlinear control algorithms for a series of pneumatic climbing robots. In Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO’06, Pisa, Italy, 20–22 February 2006; pp. 994–999.
- Zhang, H.; Zhang, J.; Zong, G. Requirements of glass cleaning and development of climbing robot systems. In Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation, Chengdu, China, 26–31 August 2004; pp. 101–106.
- Zhang, H.; Zhang, J.; Liu, R.; Zong, G. A novel approach to pneumatic position servo control of a glass wall cleaning robot. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, 28 September–2 October 2004; Volume 1, pp. 467–472.
- Tokhi, O.; Zhang, H.; Zhang, J.; Wang, W.; Liu, R.; Zong, G. A series of pneumatic glass-wall cleaning robots for high-rise buildings. Ind. Robot Int. J. 2007, 34, 150–160. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zong, G. Realization of a service climbing robot for glass-wall cleaning. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, ROBIO 2004, Shenyang, China, 22–26 August 2004; pp. 395–400.
- Zhang, H.; Zhang, J.; Liu, R.; Wang, W.; Zong, G. Pneumatic Climbing Robots for Glass Wall Cleaning. In Climbing and Walking Robots; Springer: Berlin, Germany, 2005; pp. 1061–1069. [Google Scholar]
- Zhang, H.; Wang, W.; Zhang, J.; Zong, G. Control Hierarchy Realization and Cleaning Trajectory Evaluation of a Wall Cleaning Robot. In Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 7–9 June 2006; pp. 1–6.
- Zhang, H.; Zhang, J.; Zong, G. Cleaning Trajectory Evaluation of a Wall Cleaning Robot Based on Synthesis Standards. In Proceedings of the IMACS Multiconference on Computational Engineering in Systems Applications, Beijing, China, 4–6 October 2006; Volume 2, pp. 1695–1700.
- Wang, W.; Wang, K.; Zong, G.H.; Li, D.Z. Principle and experiment of vibrating suction method for wall-climbing robot. Vacuum 2010, 85, 107–112. [Google Scholar] [CrossRef]
- Kawasaki, S.; Kikuchi, K. Development of a small legged wall climbing robot with passive suction cups. In Proceedings of the 3rd International Conference on Design Engineering and Science—ICDES, Pilsen, Czech Republic, 31 August–3 September 2014; pp. 112–116.
- Yano, T.; Suwa, T.; Murakami, M.; Yamamoto, T. Development of a semi self-contained wall climbing robot with scanning type suction cups. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’97, Grenoble, France, 7–11 September 1997; Volume 2, pp. 900–905.
- Ikeda, K.; Yano, T. Fundamental study of a scanning-type suction cup. Adv. Robot. 1990, 5, 309–320. [Google Scholar] [CrossRef]
- Yano, T.; Numao, S.; Kitamura, Y. Development of a self-contained wall climbing robot with scanning type suction cups. In Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, 13–17 October 1998; Volume 1, pp. 249–254.
- Zhu, J.; Sun, D.; Tso, S.K. Application of a service climbing robot with motion planning and visual sensing. J. Robot. Syst. 2003, 20, 189–199. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, J.; Lai, C.; Tso, S. A visual sensing application to a climbing cleaning robot on the glass surface. Mechatronics 2004, 14, 1089–1104. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, J.; Tso, S.K. A Climbing Robot for Cleaning Glass Surface with Motion Planning and Visual Sensing; INTECH Open Access Publisher: Rijeka, Croatia, 2007. [Google Scholar]
- Ota, Y.; Inagaki, Y.; Yoneda, K.; Hirose, S. Research on a reduced-DOF walking robot with parallel mechanism that has high homogeneity of output force. J. Robot. Soc. Jpn. 2000, 18, 66–74. [Google Scholar] [CrossRef]
- Ota, Y.; Inagaki, Y.; Yoneda, K.; Hirose, S. Research on a six-legged walking robot with parallel mechanism. In Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, 13–17 October 1998; Volume 1, pp. 241–248.
- Lee, T.T.; Liao, C.M.; Chen, T.K. On the stability properties of hexapod tripod gait. IEEE J. Robot. Autom. 1988, 4, 427–434. [Google Scholar] [CrossRef]
- Haynes, G.C.; Rizzi, A.A. Gaits and gait transitions for legged robots. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 1117–1122.
- Chen, W.; Yao, S.; Low, K. Modular formulation for dynamics of multi-legged robots. In Proceedings of the 8th International Conference on Advanced Robotics, ICAR’97, Monterey, CA, USA, 7–9 July 1997; pp. 279–284.
- Inagaki, S.; Yuasa, H.; Suzuki, T.; Arai, T. Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control. Robot. Auton. Syst. 2006, 54, 118–126. [Google Scholar] [CrossRef]
- Lee, G.; Kim, H.; Seo, K.; Kim, J.; Sitti, M.; Seo, T. Series of Multilinked Caterpillar Track-Type Climbing Robots. J. Field Robot. 2014. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; Yang, H.; Lee, K.; Seo, K.; Chang, D.; Kim, J. A wall climbing robot with vacuum caterpillar wheel system operated by mechanical valve. In Proceedings of the 9th International Conference on Climbing and Walking Robots, Brussels, Belgium, 12–14 September 2006; pp. 28–33.
- Roy, R.K. A Primer on the Taguchi Method; Society of Manufacturing Engineers: Dearborn, MI, USA, 2010. [Google Scholar]
- Kim, H.; Kim, D.; Yang, H.; Lee, K.; Seo, K.; Chang, D.; Kim, J. Development of a wall-climbing robot using a tracked wheel mechanism. J. Mech. Sci. Technol. 2008, 22, 1490–1498. [Google Scholar] [CrossRef]
- Kim, H.; Seo, K.; Lee, K.; Kim, J.; Kim, H. Development of a multi-body wall climbing robot with tracked wheel mechanism. In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), Nagoya, Japan, 31 August–3 September 2010; pp. 439–446.
- Lee, G.; Kim, H.; Seo, K.; Kim, J.; Kim, H.S. MultiTrack: A multi-linked track robot with suction adhesion for climbing and transition. Robot. Auton. Syst. 2015, 72, 207–216. [Google Scholar] [CrossRef]
- Serbot-AG. Available online: http://www.serbot.ch/en/ (accessed on 28 June 2016).
- Tso, S.; Fung, Y.; Chow, W.; Zong, G.; Liu, R. Design and implementation of a glass-wall climbing robot for high rise building. In Proceedings of the World Automation Congress, Kobe, Japan, 19–23 September 2000.
- Zhu, J.; Sun, D.; Tso, S.K. Development of a tracked climbing robot. J. Intell. Robot. Syst. 2002, 35, 427–443. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Xu, D.; Zhao, Y.; Hao, S.; Gao, X. Development and application of wall-climbing robots. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, AL, USA, 10–15 May 1999; Volume 2, pp. 1207–1212.
- Gao, X.; Kikuchi, K. Study on a kind of wall cleaning robot. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, ROBIO 2004, Shenyang, China, 22–26 August 2004; pp. 391–394.
- Liu, S.; Gao, X.; Li, K.; Li, J.; Duan, X. A small-sized wall-climbing robot for anti-terror scout. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, ROBIO 2007, Sanya, China, 16–18 September 2007; pp. 1866–1870.
- Xu, D.; Gao, X.; Wu, X.; Fan, N.; Li, K.; Kikuchi, K. Suction ability analyzes of a novel wall climbing robot. In Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO’06, Pisa, Italy, 20–22 February 2006; pp. 1506–1511.
- Li, J.; Gao, X.; Fan, N.; Li, K.; Jiang, Z. BIT Climber: A centrifugal impeller-based wall climbing robot. In Proceedings of the 2009 International Conference on Mechatronics and Automation, ICMA 2009, Changchun, China, 9–12 August 2009; pp. 4605–4609.
- Li, J.; Gao, X.; Fan, N.; Li, K.; Jiang, Z.; Jiang, Z. Adsorption performance of sliding wall climbing robot. Chin. J. Mech. Eng. 2010, 23, 1. [Google Scholar] [CrossRef]
- Miyake, T.; Ishihara, H. Mechanisms and basic properties of window cleaning robot. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, Kobe, Japan, 20–24 July 2003; Volume 2, pp. 1372–1377.
- Miyake, T.; Ishikawa, H. Window Wiping System. U.S. Patent 8,099,818, 24 January 2012. [Google Scholar]
- Miyake, T.; Ishihara, H.; Yoshimura, M. Basic studies on wet adhesion system for wall climbing robots. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, San Diego, CA, USA, 29 October–2 November 2007; pp. 1920–1925.
- Miyake, T.; Ishihara, H.; Yoshimura, M. Application of Wet Vacuum-based Adhesion System for Wall Climging Mechanism. In Proceedings of the 2007 International Symposium on Micro-Nanomechatronics and Human Science, MHS’07, Nagoya, Japan, 11–14 November 2007; pp. 532–537.
- Miyake, T.; Ishihara, H.; Tomino, T. Basic research on vacuum-based wet adhesion system for wall climbing robots-measurement of lubricating action and seal action by the liquid. In Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation, ICMA 2008, Takamatsu, Japan, 5–8 August 2008; pp. 616–621.
- Miyake, T.; Ishihara, H.; Tomino, T. Vacuum-based wet adhesion system for wall climbing robots-lubricating action and seal action by the liquid. In Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, Bangkok, Thailand, 22–25 February 2009; pp. 1824–1829.
- Miyake, T.; Ishihara, H.; Shoji, R.; Yoshida, S. Development of small-size window cleaning robot a traveling direction control on vertical surface using accelerometer. In Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 25–28 August 2006; pp. 1302–1307.
- Miyake, T.; Ishihara, H.; Shoji, R.; Yoshida, S. Development of small-size window cleaning robot by wall climbing mechanism. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction, Tokyo, Japan, 3–5 October 2006; pp. 215–220.
- Zhao, Y.; Fu, Z.; Cao, Q.; Wang, Y. Development and applications of wall-climbing robots with a single suction cup. Robotica 2004, 22, 643–648. [Google Scholar] [CrossRef]
- Qian, Z.; Zhao, Y.; Fu, Z.; Wang, Y. Fluid model of sliding suction cup of wall–climbing robots. Int. J. Adv. Robot. Syst. 2006, 3, 275–284. [Google Scholar]
- Qian, Z.Y.; Zhao, Y.Z.; Fu, Z. Development of wall-climbing robots with sliding suction cups. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3417–3422.
- Gao, X.; Jiang, Z.; Gao, J.; Xu, D.; Wang, Y.; Pan, H. Boiler maintenance robot with multi-operational schema. In Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation, ICMA 2008, Takamatsu, Japan, 5–8 August 2008; pp. 610–615.
- Gao, X.; Xu, D.; Wang, Y.; Pan, H.; Shen, W. Multifunctional robot to maintain boiler water-cooling tubes. Robotica 2009, 27, 941–948. [Google Scholar] [CrossRef]
- Lee, G.; Park, J.; Kim, H.; Seo, K.; Kim, J.; Seo, T. Wall Climbing Robots with Track-Wheel Mechanism. In Proceedings of the 3rd International Conference on Machine Learning and Computing (ICMLC 2011), Guillin, China, 10–14 July 2011; pp. V3-334–V3-337.
- Seo, T.; Sitti, M. Tank-like module-based climbing robot using passive compliant joints. IEEE/ASME Trans. Mechatron. 2013, 18, 397–408. [Google Scholar] [CrossRef]
- Lee, G.; Seo, K.; Lee, S.; Park, J.; Kim, H.; Kim, J.; Seo, T. Compliant track-wheeled climbing robot with transitioning ability and high-payload capacity. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), Phuket Island, Thailand, 7–11 December 2011; pp. 2020–2024.
- Lee, G.; Wu, G.; Kim, S.H.; Kim, S.H.; Seo, T. Combot: Compliant climbing robotic platform with transitioning capability and payload capacity. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MI, USA, 14–18 May 2012; pp. 2737–2742.
- Lee, G.; Wu, G.; Kim, J.; Seo, T. High-payload climbing and transitioning by compliant locomotion with magnetic adhesion. Robot. Auton. Syst. 2012, 60, 1308–1316. [Google Scholar] [CrossRef]
- Nam, S.; Oh, J.; Lee, G.; Kim, J.; Seo, T. Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion. J. Mech. Sci. Technol. 2014, 28, 5175–5187. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, P. A wall-climbing robot for labelling scale of oil tank’s volume. Robotica 2002, 20, 209–212. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, R.; Zong, G. Mechanical design and dynamcis of an autonomous climbing robot for elliptic half-shell cleaning. Int. J. Adv. Robot. Syst. 2007, 4, 437–446. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, R.; Wang, W.; Zong, G. Design of a climbing robot for cleaning spherical surfaces. In Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO), Hong Kong/Macau, 29 June–3 July 2005; pp. 375–380.
- Zhang, H.; Zhang, J.; Liu, R.; Zong, G. Realization of a service robot for cleaning spherical surfaces. Int. J. Adv. Robot. Syst. 2005, 2, 53–58. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, R.; Zong, G. Climbing technique of the cleaning robot for a spherical surface. In Proceedings of the 2005 IEEE International Conference on Mechatronics and Automation, Niagara Falls, NY, Canada, 29 July–1 August 2005; Volume 4, pp. 2061–2066.
- Zhang, H.; Wang, W.; Liu, R.; Zhang, J.; Zong, G. Locomotion realization of an autonomous climbing robot for elliptic half-shell cleaning. In Proceedings of the 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, Harbin, China, 23–25 May 2007; pp. 1220–1225.
- Wang, W.; Tang, B.; Zhang, H.; Zong, G. Robotic cleaning system for glass facade of high-rise airport control tower. Ind. Robot Int. J. 2010, 37, 469–478. [Google Scholar] [CrossRef]
- Seo, K.; Cho, S.; Kim, T.; Kim, H.S.; Kim, J. Design and stability analysis of a novel wall-climbing robotic platform (ROPE RIDE). Mech. Mach. Theory 2013, 70, 189–208. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, J.H.; Seo, K.C.; Kim, H.M.; Lee, G.U.; Kim, J.W.; Kim, H.S. Design and Control of a Cleaning Unit for a Novel Wall-Climbing Robot. In Applied Mechanics and Materials; Trans Tech Publications Inc.: Pfaffikon, Switzerland, 2014; Volume 541, pp. 1092–1096. [Google Scholar]
- Kim, T.; Seo, K.; Kim, J.H.; Kim, H.S. Adaptive impedance control of a cleaning unit for a novel wall-climbing mobile robotic platform (ROPE RIDE). In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besancon, France, 8–11 July 2014; pp. 994–999.
- Fraunhofer-IFF. Available online: http://www.iff.fraunhofer.de/en.html (accessed on 28 June 2016).
- Böhme, T.; Schmucker, U.; Elkmann, N.; Sack, M. Service robots for facade cleaning. In Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, IECON’98, Aachen, Germany, 31 August–4 September 1998; Volume 2, pp. 1204–1207.
- Elkmann, N.; Schmucker, U.; Scharfe, H.; Schoop, C.; Kubbe, I. Drive Device for Moving a Robot or Vehicle on Flat, Inclined or Curved Surfaces, Particularly of a Glass Construction and Robot with Drive Device. U.S. Patent 5,959,424, 28 September 1999. [Google Scholar]
- Elkmann, N.; Hortig, J.; Fritzsche, M. Cleaning automation. In Springer Handbook of Automation; Springer: Berlin, Germany, 2009; pp. 1253–1264. [Google Scholar]
- Elkmann, N.; Felsch, T.; Sack, M.; Saenz, J.; Hortig, J. Innovative service robot systems for facade cleaning of difficult-to-access areas. In Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 1, pp. 756–762.
- Elkmann, N.; Kunst, D.; Krueger, T.; Lucke, M.; Böhme, T.; Felsch, T.; Stürze, T. SIRIUSc–Façade cleaning robot for a high-rise building in munich, germany. In Climbing and Walking Robots; Springer: Berlin, Germany, 2005; pp. 1033–1040. [Google Scholar]
- Elkmann, N.; Lucke, M.; Krüger, T.; Kunst, D.; Stürze, T.; Hortig, J. Kinematics, sensors and control of the fully automated facade-cleaning robot SIRIUSc for the Fraunhofer headquarters building, Munich. Ind. Robot Int. J. 2008, 35, 224–227. [Google Scholar]
- Bridge, B.; Elkmann, N.; Lucke, M.; Krüger, T.; Kunst, D.; Stürze, T.; Hortig, J. Kinematics, sensors and control of the fully automated façade-cleaning robot SIRIUSc for the Fraunhofer headquarters building, Munich. Ind. Robot Int. J. 2008, 35, 224–227. [Google Scholar] [CrossRef]
- Nof, S.Y.; Ceroni, J.; Jeong, W.; Moghaddam, M. E-Service Industry. In Revolutionizing Collaboration through E-Work, E-Business, and E-Service; Springer: Berlin, Germany, 2015; pp. 315–356. [Google Scholar]
- Qian, Z.Y.; Zhao, Y.Z.; Fu, Z.; Cao, Q.X. Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups. Int. J. Adv. Manuf. Technol. 2006, 30, 147–155. [Google Scholar] [CrossRef]
- Funatsu, M.; Kawasaki, Y.; Kawasaki, S.; KikuchiI, K. Development of cm-Scale Wall Climbing Hexapod Robot with Claws. In Proceedings of the 3rd International Conference on Design Engineering and Science—ICDES, Pilsen, Czech Republic, 31 August–3 September 2014; pp. 101–106.
- Daltorio, K.A.; Horchler, A.D.; Gorb, S.; Ritzmann, R.E.; Quinn, R.D. A small wall-walking robot with compliant, adhesive feet. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, KY, Canada, 2–6 August 2005; pp. 3648–3653.
- Gorb, S.N.; Sinha, M.; Peressadko, A.; Daltorio, K.A.; Quinn, R.D. Insects did it first: A micropatterned adhesive tape for robotic applications. Bionspir. Biomim. 2007, 2, S117. [Google Scholar] [CrossRef] [PubMed]
- Daltorio, K.A.; Gorb, S.; Peressadko, A.; Horchler, A.D.; Ritzmann, R.E.; Quinn, R.D. A robot that climbs walls using micro-structured polymer feet. In Climbing and Walking Robots; Springer: Berlin, Germany, 2006; pp. 131–138. [Google Scholar]
- Daltorio, K.A.; Wei, T.E.; Gorb, S.N.; Ritzmann, R.E.; Quinn, R.D. Passive foot design and contact area analysis for climbing mini-whegs. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 29 October–2 November 2007; pp. 1274–1279.
- Daltorio, K.A.; Wei, T.E.; Horchler, A.D.; Southard, L.; Wile, G.D.; Quinn, R.D.; Gorb, S.N.; Ritzmann, R.E. Mini-whegs TM climbs steep surfaces using insect-inspired attachment mechanisms. Int. J. Robot. Res. 2009, 28, 285–302. [Google Scholar] [CrossRef]
- Daltorio, K.A.; Witushynsky, T.C.; Wile, G.D.; Palmer, L.R.; Malek, A.A.; Ahmad, M.R.; Southard, L.; Gorb, S.N.; Ritzmann, R.E.; Quinn, R.D. A body joint improves vertical to horizontal transitions of a wall-climbing robot. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, 19–23 May 2008; pp. 3046–3051.
- Wile, G.D.; Daltorio, K.A.; Diller, E.D.; Palmer, L.R.; Gorb, S.N.; Ritzmann, R.; Quinn, R.D. Screenbot: Walking inverted using distributed inward gripping. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, Nice, France, 22–26 September 2008; pp. 1513–1518.
- Sitti, M.; Fearing, R.S. Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA’03, Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 1164–1170.
- Aksak, B.; Murphy, M.P.; Sitti, M. Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, 19–23 May 2008; pp. 3058–3063.
- Murphy, M.P.; Aksak, B.; Sitti, M. Gecko-Inspired Directional and Controllable Adhesion. Small 2009, 5, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Mengüç, Y.; Yang, S.Y.; Kim, S.; Rogers, J.A.; Sitti, M. Gecko-Inspired Controllable Adhesive Structures Applied to Micromanipulation. Adv. Funct. Mater. 2012, 22, 1246–1254. [Google Scholar] [CrossRef]
- Menon, C.; Sitti, M. Biologically inspired adhesion based surface climbing robots. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, Barcelona, Spain, 18–22 April 2005; pp. 2715–2720.
- Murphy, M.P.; Sitti, M. Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Trans. Mechatron. 2007, 12, 330–338. [Google Scholar] [CrossRef]
- Murphy, M.P.; Tso, W.; Tanzini, M.; Sitti, M. Waalbot: An agile small-scale wall climbing robot utilizing pressure sensitive adhesives. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3411–3416.
- Murphy, M.P.; Kute, C.; Mengüç, Y.; Sitti, M. Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. Int. J. Robot. Res. 2011, 30, 118–133. [Google Scholar] [CrossRef]
- Unver, O.; Uneri, A.; Aydemir, A.; Sitti, M. Geckobot: A gecko inspired climbing robot using elastomer adhesives. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orland, CA, USA, 15–19 May 2006; pp. 2329–2335.
- Unver, O.; Murphy, M.; Sitti, M. Geckobot and waalbot: Small-scale wall climbing robots. In Proceedings of the AIAA 5th Aviation, Technology, Integration, and Operations Conference, Arlington, MA, USA, 26–28 September 2005.
- Menon, C.; Murphy, M.; Sitti, M. Gecko inspired surface climbing robots. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, ROBIO 2004, Shenyang, China, 22–26 August 2004; pp. 431–436.
- Carlo, M.; Metin, S. A biomimetic climbing robot based on the gecko. J. Bion. Eng. 2006, 3, 115–125. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nansai, S.; Mohan, R.E. A Survey of Wall Climbing Robots: Recent Advances and Challenges. Robotics 2016, 5, 14. https://doi.org/10.3390/robotics5030014
Nansai S, Mohan RE. A Survey of Wall Climbing Robots: Recent Advances and Challenges. Robotics. 2016; 5(3):14. https://doi.org/10.3390/robotics5030014
Chicago/Turabian StyleNansai, Shunsuke, and Rajesh Elara Mohan. 2016. "A Survey of Wall Climbing Robots: Recent Advances and Challenges" Robotics 5, no. 3: 14. https://doi.org/10.3390/robotics5030014
APA StyleNansai, S., & Mohan, R. E. (2016). A Survey of Wall Climbing Robots: Recent Advances and Challenges. Robotics, 5(3), 14. https://doi.org/10.3390/robotics5030014