Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey
Abstract
:1. Introduction
2. Design Strategies
2.1. Picking System
Electric Grippers | Pneumatic Grippers | Hydraulic Grippers | |
---|---|---|---|
Accuracy, strength and speed | High accuracy and repeatability, good strength, high speed | High accuracy, good strength, high speed | Good accuracy, high strength, high speed |
Space | Less floor space | Less floor space | Large floor space |
Advantage | Low cost and easy maintenance | Easy maintenance | Mechanical simplicity |
Disadvantage | Easy to damage | Needs precise system control | Used usually for heavy payloads |
Application | Good results for single fruits | Good results for cluster fruits | Good results for single fruits |
2.2. Recognition System
2.2.1. Color Camera Recognition System
2.2.2. Multispectral Recognition System
3. Fruit Harvesting Robots
4. Discussion
Conflicts of Interest
References
- FAO. Core data statistics on agriculture labor population in the world. 2012. Available online: http://www.faostat.fao.org (accessed on 10 August 2012).
- Kondo, N.; Ting, K.C. Robotics for plant production. Artif. Intell. Rev. 1998, 12, 227–243. [Google Scholar] [CrossRef]
- Kondo, N.; Monta, M. Fruit harvesting robotics. J. Robot. Mechatron. 1999, 11, 321–325. [Google Scholar]
- Hashimoto, Y. Agro-robotics. J. Robot. Mechatron. 1999, 11, 171–172. [Google Scholar]
- Ferguson, L.; Rosa, U.A.; Castro-Garcia, S.; Lee, S.M.; Guinard, J.X.; Burns, J.; Krueger, W.H.; O'Connell, N.V.; Glozer, K. Mechanical harvesting of california table and oil olives. Adv. Hortic. Sci. 2010, 24, 53–63. [Google Scholar]
- Coppock, G.E. Harvesting early and midseason citrus fruit with tree shaker. Fla. Agric. Exp. Station. J. Ser. 1967, 2824, 98–104. [Google Scholar]
- Holt, J.S. Implications of reduced availability of seasonal agricultural workers on the labor intensive sector of us agriculture. In Proceedings of ASAE Annual International Meeting, Toronto, Canada, 18–22 July 1999.
- Sanders, K.F. Orange harvesting system review. Biosyst. Eng. 2005, 90, 115–125. [Google Scholar] [CrossRef]
- Pal, N.; Pal, K. A review on image segmentation techniques. Pattern Recogn. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Jimenez, R.; Jain, A.K.; Ceres, R.; Pons, J.L. Automatic fruit recognition: A survey and new results using range/attenuation images. Pattern Recogn. 1999, 32, 1719–1736. [Google Scholar] [CrossRef]
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Bachche, S.; Oka, K. Distinction of green sweet pepper by using various color space models and computation of 3 dimensional coordinates location of recognized green sweet peppers based on parallel stereovision system. J. Syst. Des. Dyn. 2013, 7, 178–196. [Google Scholar]
- Jimenez, A.R.; Ceres, R.; Pons, J.L. A survey of computer vision methods for locating fruit on trees. Trans. ASAE 2000, 43, 1911–1920. [Google Scholar] [CrossRef]
- Blanes, C.; Mellado, M.; Ortiz, C.; Valera, A. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Span. J. Agric. Res. 2011, 9, 1130–1141. [Google Scholar] [CrossRef]
- Montana, D.J. Contact stability for two-fingered grasps. IEEE Trans. Robot. Autom. 1992, 8, 421–430. [Google Scholar] [CrossRef]
- Funahashi, Y.; Yamada, T.; Tate, M.; Suzuki, Y. Grasp stability analysis considering the curvatures at contact points. In Proceedings of the International Conference on Robotics and Automation, Minneapolis, MN, USA, 20–28 April 1996; Volume 4, pp. 3040–3046.
- Jenmalm, P.; Goodwin, A.W.; Johansson, R.S. Control of grasp stability when humans lift objects with different surface curvatures. J. Neurophysiol. 1998, 79, 1643–1653. [Google Scholar] [PubMed]
- Svinin, M.M.; Kaneko, M.; Tsuji, T. Internal forces and stability in multi-finger grasps. Control Eng. Pract. 1999, 7, 413–422. [Google Scholar] [CrossRef]
- Morales, A.; Sanz, P.J.; del Pobil, A.P.; Fagg, A.H. Vision-Based three-finger grasp synthesis constrained by hand geometry. Robot. Auton. Syst. 2006, 54, 496–512. [Google Scholar] [CrossRef]
- Birglen, L.; Gosselin, C.M. Grasp-state plane analysis of two-phalanx underactuated fingers. Mech. Mach. Theory 2006, 41, 807–822. [Google Scholar] [CrossRef]
- Kragten, G.A.; Herder, J.L.; Schwab, A.L. On the influence of contact geometry on grasp stability. In Proceedings of the ASME 2008 IDETC/CIE, New York, NY, USA, 3–6 August 2008.
- Aleotti, J.; Caselli, S. Interactive teaching of task-oriented robot grasps. Robot. Auton. Syst. 2010, 58, 539–550. [Google Scholar] [CrossRef]
- Noohi, E.; Moradi, H.; Noori, N.; Ahmadabadi, M.N. Manipulation of polygonal objects with two wheeled-tip fingers: Planning in the presence of contact position error. Robot. Auton. Syst. 2011, 55, 44–55. [Google Scholar] [CrossRef]
- Daoud, N.; Gazeau, J.P.; Zeqhloul, S.; Arsicault, M. A real-time strategy for dexterous manipulation: Fingertips motion planning, force sensing and grasp stability. Robot. Auton. Syst. 2012, 60, 377–386. [Google Scholar] [CrossRef]
- Li, Z.; Li, P.; Yang, H.; Wang, Y. Stability tests of two-finger tomato grasping for harvesting robots. Biosyst. Eng. 2013, 116, 163–170. [Google Scholar] [CrossRef]
- Monkman, G.J.; Hesse, S.; Steinmann, R.; Schunk, H. Robot Grippers; Wiley-VCH Verlag GmbH and Co. KGaA Weinheim: Germany, 2007. [Google Scholar]
- Edan, Y.; Haghighi, K.; Stroshine, R.; Cardenas-Weber, M. Robot gripper analysis: Finite element modeling and optimization. Appl. Eng. Agric. 1992, 8, 563–570. [Google Scholar] [CrossRef]
- Bachche, S.; Oka, K.; Sakamoto, H. Design and modeling of gripper and cutting tool system for sweet pepper harvesting robot hand. In Proceedings of the MAGDA Conference in Pacific Asia, Kaohsiung, Taiwan, 14–16 November 2011.
- Bachche, S.; Oka, K. Modeling and performance testing of end-effector for sweet pepper harvesting robot. J. Robot. Mechatron. 2013, 25, 705–717. [Google Scholar]
- Monta, M.; Kondo, N.; Ting, K.C. End-effector for tomato harvesting robot. Artif. Intell. Rev. 1998, 12, 11–25. [Google Scholar] [CrossRef]
- Sakai, S.; Lida, M.; Umeda, M. Heavy material handling manipulator for agricultural robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; pp. 1062–1068.
- Ling, P.P.; Ehsani, R.; Ting, K.C.; Chi, Y.; Ramalingam, N.; Klingman, M.H.; Draper, C. Sensing and end-effector for a robotic tomato harvester. 2004 ASAE Annu. Meet. 2004. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Li, Z. A multi-sensory end-effector for spherical fruit harvesting robot. In Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August 2012; pp. 258–262.
- Bachche, S.; Oka, K.; Sakamoto, H. Development of thermal cutting system for sweet pepper harvesting robot in greenhouse horticulture. In Proceedings of the JSME Conference on Robotics and Mechatronics, Hamamatsu, Japan, 27–29 May 2012.
- Bachche, S.; Oka, K.; Sakamoto, H. Development of current based temperature arc thermal cutting system for green pepper harvesting robot. In Proceedings of the Shikoku-section Joint Convention of the Institute of Electrical and related Engineers, Takamatsu, Japan, 29 September 2012.
- Bachche, S.; Oka, K. Performance testing of thermal cutting system for sweet pepper harvesting robot in greenhouse horticulture. J. Syst. Des. Dyn. 2013, 7, 36–51. [Google Scholar] [CrossRef]
- Tillett, R.D. Image analysis for agricultural processes: A review of potential opportunities. J. Agric. Eng. Res. 1991, 50, 247–258. [Google Scholar] [CrossRef]
- Jain, A.K.; Dorai, C. Practicing vision: Integration, evaluation and applications. Pattern Recogn. 1997, 30, 183–196. [Google Scholar] [CrossRef]
- Juste, F.; Sevilla, F. Citrus: A european project to study the robotic harvesting of oranges. In Proceedings of the 3rd International Symposium on Fruit, Nut and Vegetable Harvesting Mechanization, Denmark-Sweden-Norway, 5–15 August 1991; pp. 331–338.
- Grand D’Esnon, A. Robot Harvesting of Apples. In Proceedings of Agr-Mation, Chicago, IL, USA, 25–28 February 1985.
- Kassay, L. Hungarian robotic apple harvester. 1992 ASAE Annu. Meet. 1992, 92-7042, 1–14. [Google Scholar]
- Bulanon, D.M.; Kataoka, T.; Zhang, S.; Ota, Y.; Hiroma, T. Optimal thresholding for the automatic recognition of apple fruits. 2001 ASAE Annu. Meet. 2001. [Google Scholar] [CrossRef]
- Tabb, A.; Peterson, D.; Park, J. Segmentation of apple fruit from video via background modeling. 2006 ASAE Pap. 2006. [Google Scholar] [CrossRef]
- Tanagaki, K.; Fujiura, T.; Akase, A.; Imagawa, I. Cherry harvesting robot. In Proceedings of the International Workshop on Bio-Robotics, Information Technology and Intelligent Control for Bio-Production Systems, Sapporo, Japan, 9–10 September 2006; pp. 254–260.
- Arima, S.; Kondo, N.; Monta, M. Development of robotic system for cucumber harvesting. Jpn. Agric. Res. Q. 1996, 30, 233–238. [Google Scholar]
- Van Henten, E.J.; Hemming, J.; Van Tuijl, B.A.J.; Kornet, J.G.; Bontsema, J. Collision-free motion planning for a cucumber picking robot. Biosyst. Eng. 2003, 86, 135–144. [Google Scholar]
- Harrell, R.C.; Adsit, P.D.; Pool, T.A.; Hoffman, R. The florida robotic grove-lab. Trans. ASABE 1990, 33, 391–399. [Google Scholar] [CrossRef]
- Hannan, M.W.; Burks, T.F. Current developments in automated citrus harvesting. 2004 ASAE Annu. Inter. Meet. 2004. [Google Scholar] [CrossRef]
- Kondo, N.; Monta, M.; Fujiura, T. Fruit harvesting robots in japan. Adv. Space Res. 1996, 18, 181–184. [Google Scholar] [CrossRef]
- Kondo, N.; Yamamoto, K.; Yata, K.; Kurita, M. A machine vision for tomato cluster harvesting robot. ASAE Annu. Inter. Meet. 2008, 5, 3111–3120. [Google Scholar]
- Jiang, H.; Peng, Y.; Ying, Y. Measurement of 3-d locations of ripe tomato by binocular stereo vision for tomato harvesting. 2008 ASAE Annu. Inter. Meet. 2008. [Google Scholar] [CrossRef]
- Guo, F.; Cao, Q.; Cui, Y.; Masateru, N. Fruit location and stem detection for strawberry harvesting robot. Trans. Chin. Soc. Agric. Eng. 2008, 24, 89–94. [Google Scholar]
- Rajendra, P.; Kondo, N.; Ninomoya, K.; Kamata, J.; Kurita, M.; Shiigi, S.; Hayashi, S.; Yoshida, H. Machine vision algorithm for robots to harvest strawberries in tabletop culture greenhouse. Eng. Agric. Environ. Food 2009, 2, 24–30. [Google Scholar] [CrossRef]
- Benady, M.; Edan, Y.; Hetzroni, A.; Miles, G.E. Design of a field crops robotic machine. Pap. ASAE 1991, 91-7028, 1–7. [Google Scholar]
- Dobrusin, Y.; Edan, Y.; Grinshpun, J.; Peiper, U.M.; Hetzroni, A. Real-time image processing for robotic melon harvesting. Pap. ASAE 1992, 92-3515, 1–16. [Google Scholar]
- Kitamura, S.; Oka, K. Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, Ontario, Canada, 29 July–1 August 2005; Volume 4, pp. 1807–1812.
- Kitamura, S.; Oka, K. Improvement of the ability to recognize sweet peppers for picking robot in greenhouse horticulture. In Proceedings of the International Joint Conference on SICE-ICASE, Busan, Korea, 18–21 October 2006; pp. 353–356.
- Bachche, S.; Oka, K.; Ogawa, N. Distinction of green sweet pepper by using various color space models. In Proceedings of the Annual Conference of the Robotics Society of Japan, Sapporo, Japan, 17–20 September 2012.
- McCarthy, C.L.; Hancock, N.H.; Raine, S.R. Applied machine vision of plants: A review with implications for field deployment in automated farming operations. Intell. Serv. Robot. 2010, 3, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Kapach, K.; Barnea, E.; Mairon, R.; Edan, Y.; Ben-Shahar, O. Computer vision for fruit harvesting robots-state of art and challenges ahead. Int. J. Comput. Vis. Robot. 2012, 3, 4–34. [Google Scholar] [CrossRef]
- Baylou, P.; El Hadi Amor, B.; Monsion, M.; CBouvet, C.; Boussau, G. Detection and three-dimensional localization by stereoscopic visual sensor and its application to a robot for picking asparagus. Pattern Recogn. 1984, 17, 377–384. [Google Scholar] [CrossRef]
- Humburg, D.S.; Reid, J.F. Field performance for machine vision for selective harvesting of asparagus. Appl. Eng. Agric. 1986, 2, 2–5. [Google Scholar]
- Kondo, N.; Nishitsuji, Y.; Ling, P.P.; Ting, K.C. Visual feedback guided robotic cherry tomato harvesting. Trans. ASAE 1996b, 39, 2331–2338. [Google Scholar] [CrossRef]
- Edan, Y.; Rogozin, D.; Flash, T.; Miles, G.E. Robotic melon harvesting. IEEE Trans. Robot. Autom. 2000, 16, 831–835. [Google Scholar] [CrossRef]
- Edan, Y.; Miles, G.E. Design of an agricultural robot for harvesting melons. Trans. ASAE 1993, 36, 593–603. [Google Scholar] [CrossRef]
- Takahashi, T.; Zhang, S.; Fukuchi, H. Measurement of 3-d locations of fruit by binocular stereo vision for apple harvesting in an orchard. 2002 ASAE Annu. Inter. Meet. 2002. [Google Scholar] [CrossRef]
- Bulanon, D.M.; Kataoka, T.; Okamoto, H.; Hata, S. Determining the 3-d Location of the Apple Fruit During Harvest. In Proceedings of the Automation Technology for Off-Road Equipment, Kyoto, Japan, 7 October 2004; pp. 91–97.
- Tarrio, P.; Bernardos, A.M.; Casar, J.R.; Besada, J.A. A harvesting robot for small fruit in bunches based on 3-d stereoscopic vision. In Proceedings of the World Congress Conference on Computers in Agriculture and Natural Resources, Orlando, FL, USA, 24–26 July 2006; pp. 270–275.
- Lak, M.B.; Minaei, S.; Amiriparian, J.; Beheshti, B. Apple fruits recognition under natural luminance using machine vision. Adv. J. Food Sci. Technol. 2010, 2, 325–327. [Google Scholar]
- Li, B.; Wang, M.; Wang, N. Development of a real-time fruit recognition system for pineapple harvesting robots. In Proceedings of the Annual Meeting of ASABE, Pittsburgh, PA, USA, 20–23 June 2010.
- Ji, W.; Zhao, D.; Cheng, F.; Xu, B.; Zhang, Y.; Wang, J. Automatic recognition vision system guided for apple harvesting robot. Comput. Electr. Eng. 2012, 38, 1186–1195. [Google Scholar] [CrossRef]
- Gatica, G.; Best, S.; Ceroni, J.; Lefranc, G. Olive fruits recognition using neural networks. Procedia Comput. Sci. 2013, 17, 412–419. [Google Scholar] [CrossRef]
- Osborne, B.G.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific: Harlow, Esex, UK, 1993. [Google Scholar]
- Kim, Y.S.; Reid, J.F.; Hansen, A.C.; Zhang, Q. On-field crop stress detection system using multispectral imaging sensor. Agric. Biosyst. Eng. 2000, 1, 88–94. [Google Scholar]
- Sui, R.; Wilkerson, J.B.; Hart, W.E.; Wilhelm, L.R.; Howard, D.D. Multi-spectral senseo for detection of nitrogen status in cotton. Appl. Eng. Agric. 2005, 21, 167–172. [Google Scholar] [CrossRef]
- Abbott, J. Quality measurement of fruits and vegetables. Postharvest Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Non-destructive measurement of fruit and vegetable quality by means of nir spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Czarnowski, M.; Cebula, S. Spectral properties of sweet pepper fruits. Folia Hortic. 1998, 10, 39–51. [Google Scholar]
- Van Henten, E.J.; Hemming, J.; Van Tuijl, B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; Van Os, E.A. An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robot. 2002, 13, 241–258. [Google Scholar]
- Hemming, J.; Wageningen University, Wageningen, the Netherlands; Bachche, S.; Tohoku University, Sendai, Japan. Personal communication. 2003. [Google Scholar]
- Safren, O.; Alchanatis, V.; Ostrovsky, V.; Levi, O. Detection of green apples in hyperspectral images of apple-tree foliage using machine vision. Trans. ASABE 2007, 50, 2303–2313. [Google Scholar] [CrossRef]
- Rath, T.; Kawollek, M. Robotic harvesting of gerbera jamesonii based on detection and three-dimensional modeling of cut flower pedicels. Comput. Electr. Agric. 2009, 66, 85–92. [Google Scholar] [CrossRef]
- Yuan, T.; Li, W.; Feng, Q.; Zhang, J. Spectral Imaging for Greenhouse Cucumber Fruit Detection Based on Binocular Stereovision. 2010 ASAE Annu. Inter. Meet. 2010. [Google Scholar] [CrossRef]
- Bulanon, D.M.; Burks, T.F.; Alchanatis, V. A multispectral imaging analysis for enhancing citrus fruit detection. Environ. Control Biol. 2010, 48, 81–91. [Google Scholar] [CrossRef]
- Bachche, S. Automatic Harvesting for Sweet Peppers in Greenhouse Horticulture. Ph.D. Dissertation, Kochi University of Technology, Kochi, Japan, 2013. [Google Scholar]
- Bac, C.W.; Hemming, J.; van Henten, E.J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput. Electr. Agric. 2013, 96, 148–162. [Google Scholar] [CrossRef]
- Schert, C.E.; Brown, G.K. Basic considerations in mechanizing citrus harvest. Trans. ASAE 1968, 11, 343–346. [Google Scholar]
- Kawamura, N.; Namikawa, K.; Fujiura, T.; Ura, M. Study on agricultural robot. J. Jpn. Soc. Agric. Mach. 1984, 46, 353–358. [Google Scholar]
- Prussia, S.E. Ergonomics of manual harvesting. Appl. Ergon. 1985, 16, 209–215. [Google Scholar] [CrossRef]
- Sistler, F.E. Robotics and intelligent machines in agriculture. IEEE J. Robot. Autom. 1987, 3, 3–6. [Google Scholar] [CrossRef]
- Grand D'Esnon, A.; Rabatel, G.; Pellenc, R. Magali: A self-propelled robot to pick apples. Available online: http://agris.fao.org/agris-search/search.do?recordID=US8853733 (accessed on 15 June 2015).
- Amaha, K.; Shono, H.; Takakura, T. A harvesting robot of cucumber fruits. Available online: http://agris.fao.org/agris-search/search.do?recordID=US9166423 (accessed on 15 June 2015).
- Whitney, J.D.; Harrell, R.C. Status of citrus harvesting in florida. J. Agric. Eng. Res. 1989, 42, 285–299. [Google Scholar] [CrossRef]
- Blandini, G.; Levi, P. First approaches to robot utilization for automatic citrus harvesting. In Land and Water Use; Dodd, V.A., Grace, P.M., Eds.; A.A. Balkema: Rotterdam, Netherlands, 1989; pp. 1903–1907. ISBN 9061919800. [Google Scholar]
- Sevilla, F.; Sittichareonchai, F.; Fatou, J.M.; Constans, A.; Brons, A.; Davenel, A. A robot to harvest grape: A feasibility study. SAE Pap. No.: 89-7084. 1989. [Google Scholar]
- Tillett, R.D. Initial development of a mechatronic mushroom harvester. In Proceedings of the International Conference on Mechatronics: Designing Intelligent Machines, Institution of Mechanical Engineers, Cambridge, UK; 1990; pp. 109–114. [Google Scholar]
- Sandini, G.; Buemi, F.; Massa, M.; Zucchini, M. Visually guided operations in greenhouse. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, Ibaraki, Japan, 3-6 July 1990; pp. 279–285.
- Hayashi, U.; Ueda, Y. Orange harvesting robot; Kubota Co.: Sakai, Japan, 1991. [Google Scholar]
- Pool, T.A.; Harrell, R.C. An end-effector for robotic removal of citrus from the tree. Trans. ASABE 1991, 34, 373–378. [Google Scholar] [CrossRef]
- Benady, M.; Miles, G.E. Locating melons for robotic harvesting using structured light. ASAE Pap. No.: 92-7021. 1992. [Google Scholar]
- Sarig, Y. Robotics of fruit harvesting: A state-of-the-art review. J. Agric. Eng. Res. 1993, 54, 265–280. [Google Scholar] [CrossRef]
- Tillett, N.D. Robotic manipulators in horticulture: A review. J. Agric. Eng. Res. 1993, 55, 89–105. [Google Scholar] [CrossRef]
- Reed, J.N.; Tillett, R.D. Initial experiments in robotic mushroom harvesting. Mechatronics 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Grattoni, P.; Cumani, A.; Guiducci, A.; Pettiti, G. Automatic harvesting of asparagus: An application of robot vision to agriculture. In Proceedings of the SPIE 2058, Mobile Robots VIII, Boston, MA, USA, 1 February 1994; pp. 200–210.
- Monta, M.; Kondo, N.; Shibano, Y. Agricultural robot in grape production system. In Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; Volume 3, pp. 2504–2509.
- Buemi, F.; Massa, M.; Sandini, G. Agrobot: A robotic system for greenhouse operations. Robot. Agric. Food Ind. 1995, 4, 172–184. [Google Scholar]
- Edan, Y. Design of an autonomous agricultural robot. Appl. Intell. 1995, 5, 41–50. [Google Scholar] [CrossRef]
- Mandow, A.; Gomez de Gabriel, J.M.; Martinez, J.L.; Munoz, V.F.; Ollero, A.; Garci a-Cerezo, A. The autonomous mobile robot aurora for greenhouse operation. IEEE Robot. Autom. Mag. 1996, 3, 18–28. [Google Scholar] [CrossRef]
- Arndt, G.; Rudziejewski, R.; Stewart, V.A. On the future of automated selective asparagus harvesting technology. Comput. Electr. Agric. 1997, 16, 137–145. [Google Scholar] [CrossRef]
- Ceres, R.; Pons, J.L.; Jimenez, A.R.; Martin, J.M.; Calderon, L. Design and implementation of an aided fruit-harvesting robot (agribot). Ind. Robot Int. J. 1998, 25, 337–346. [Google Scholar] [CrossRef]
- Kondo, N.; Monta, M. Strawberry harvesting robots. ASAE Pap. No.: 99-3071. 1999. [Google Scholar]
- Reed, J.N.; Miles, S.J.; Butler, J.; Baldwin, M.; Noble, R. AE—Automation and emerging technologies: Automatic mushroom harvester development. J. Agric. Eng. Res. 2001, 78, 15–23. [Google Scholar] [CrossRef]
- Brown, G.K. Mechanical harvesting systems for the florida citrus juice industry. 2002 ASAE Annu. Meet. 2002. [Google Scholar] [CrossRef]
- Hayashi, S.; Ganno, K.; Ishii, Y.; Tanaka, I. Robotic harvesting system for eggplants. Jpn. Agric. Res. Q. 2002, 36, 163–168. [Google Scholar] [CrossRef]
- Cho, S.I.; Chang, S.J.; Kim, Y.Y. Development of a three degrees-of-freedom robot for harvesting lettuce using machine vision and fuzzy logic control. Biosyst. Eng. 2002, 82, 143–149. [Google Scholar] [CrossRef]
- Van Henten, E.J.; Van Tuijl, B.A.J.; Hemming, J.; Kornet, J.G.; Bontsema, J.; Van Os, E.A. Field test of an autonomous cucumber picking robot. Biosyst. Eng. 2003, 86, 305–313. [Google Scholar] [CrossRef]
- Arima, S.; Kondo, N.; Monta, M. Strawberry harvesting robot on table-top culture. 2004 ASAE Annu. Meet. 2004. [Google Scholar] [CrossRef]
- Burks, T.F.; Villegsa, F.; Hannan, M.; Flood, S.; Sivaraman, B.; Subramanian, V.; Sikes, J. Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constrains. HortTechnology 2005, 15, 79–87. [Google Scholar]
- Kondo, N.; Ninomoya, K.; Hayashi, S.; Tomohiko, O.; Kubota, K. A new challenge of robot for harvesting strawberry grown on table top culture. 2005 ASAE Annu. Meet. 2005. [Google Scholar] [CrossRef]
- Muscato, G.; Prestifilippo, M.; Abbate, N.; Rizzuto, I. A prototype of an orange picking robot: Past history, the new robot and experimental result. Ind. Robot Int. J. 2005, 32, 128–138. [Google Scholar]
- Foglia, M.; Reina, G. Agricultural robot for radicchio harvesting. J. Field Robot. 2006, 23, 363–377. [Google Scholar] [CrossRef]
- Belforte, G.; Deboli, R.; Gay, P.; Piccarolo, P.; Ricauda Aimonino, D. Robot design and testing for greenhouse applications. Biosyst. Eng. 2006, 95, 309–321. [Google Scholar] [CrossRef]
- Ota, T.; Bontsema, J.; Hayashi, S.; Kubota, K.; Van Henten, E.J.; Van Os, E.A.; Ajiki, K. Development of a cucumber leaf picking device for greenhouse production. Biosyst. Eng. 2007, 98, 381–391. [Google Scholar] [CrossRef]
- Van Henten, E.J.; Van Tuijl, B.A.J.; Hoogakker, G.J.; Van Der Weerd, M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosyst. Eng. 2006, 94, 317–323. [Google Scholar] [CrossRef]
- Kondo, N.; Taniwaki, S.; Tanihara, K.; Yata, K.; Monta, M.; Kurita, M.; Tsutumi, M. An end-effector and manipulator control for tomato cluster harvesting robot. 2007 ASAE Annu. Meet. 2007. [Google Scholar] [CrossRef]
- Tanagaki, K.; Fujiura, T.; Akase, A.; Imagawa, I. Cherry-harvesting robot. Comput. Electr. Agric. 2008, 63, 65–72. [Google Scholar] [CrossRef]
- Baeten, J.; Donne, K.; Boedrij, S.; Beckers, W.; Claesen, E. Autonomous fruit picking machine: A robotic apple harvester. Field Serv. Robot. 2008, 42, 531–539. [Google Scholar]
- Irie, N.; Tagushi, N.; Horie, T.; Ishimatsu, T. Development of asparagus harvester coordinated with 3-d vision sensor. J. Robot. Mechatron. 2009, 21, 583–589. [Google Scholar]
- Van Henten, E.J.; van't Slot, D.A.; Hol, C.W.J.; van Willigenburg, L.G. Optimal manipulator design for a cucumber harvesting robot. Comput. Electr. Agric. 2009, 65, 247–257. [Google Scholar] [CrossRef]
- Scarfe, A.J.; Flemmer, R.C.; Bakker, H.H.; Flemmer, C.L. Development of an autonomous kiwifruit picking robot. In Proceedings of the International Conference on Autonomous Robots and Agents, Wellington, New Zealand, 10–12 February, 2009; pp. 380–384.
- Chatzimichali, A.P.; Georgilas, I.P.; Tourassis, V.D. Design of an advanced prototype robot for white asparagus harvesting. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 887–892.
- Aljanobi, A.A.; Al-Hamed, S.A.; Al-Suhaibani, S.A. A setup of mobile robotic unit for fruit harvesting. In Proceedings of the IEEE International Workshop on Robotics in Alpe-Adria-Danube Region, Budapest, 24– June 2010; pp. 105–108.
- Hayashi, S.; Shigematsu, K.; Yamamoto, S.; Kobayashi, K.; Kohno, Y.; Kamata, J.; Kurita, M. Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng. 2010, 105, 160–171. [Google Scholar] [CrossRef]
- Zhao, A.; Lv, J.; Ji, W.; Zhang, Y.; Chen, Y. Design and control of an apple harvesting robot. Biosyst. Eng. 2011, 110, 112–122. [Google Scholar]
- Kohan, A.; Borghaee, A.M.; Yazdi, M.; Minaei, S.; Sheykhdavudi, M.J. Robotic harvesting of rosa damascena using stereoscopic machine vision. World Appl. Sci. J. 2011, 12, 231–237. [Google Scholar]
- Li, P.; Lee, S.M.; Hsu, H. Review on fruit harvesting method for potential use of automatic fruit harvesting systems. Procedia Eng. 2011, 23, 351–366. [Google Scholar] [CrossRef]
- Feng, Q.C.; Wang, X.; Zheng, W.G.; Qui, Q.; Jiang, K. New strawberry harvesting robot for elevated-trough culture. Int. J. Agric. Biol. Eng. 2012, 5, 1–8. [Google Scholar]
- Wang, J.; Zhou, Z.; Du, X. Design for tomato harvesting robots. In Proceedings of Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 5105–5108.
- Yang, Z.; Zhang, W.; Zhang, J.; Ji, C.; Li, W. Design and Experiment of Intelligent Monorail Cucumbers Harvester System, Proceedings of ASABE annual meeting, Kansas, MI, USA, 21–24 July 2013.
- Hemming, J.; Bac, C.W.; Bart, A.J.; van Tuijl, B.A.J.; Barth, R.; Bontsema, J.; Pekkeriet, E. A robot for harvesting sweet-pepper in greenhouses. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6–10 July 2014.
- Bac, C.W.; van Henten, E.J.; Hemming, J.; Edan, Y. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. J. Field Robot. 2014, 31, 888–911. [Google Scholar] [CrossRef]
- Fernández, R.; Montes, H.; Salinas, C.; Sarria, J.; Armada, M. Combination of rgb and multispectral imagery for discrimination of cabernet sauvignon grapevine elements. Sensors 2013, 13, 7838–7859. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachche, S. Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey. Robotics 2015, 4, 194-222. https://doi.org/10.3390/robotics4020194
Bachche S. Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey. Robotics. 2015; 4(2):194-222. https://doi.org/10.3390/robotics4020194
Chicago/Turabian StyleBachche, Shivaji. 2015. "Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey" Robotics 4, no. 2: 194-222. https://doi.org/10.3390/robotics4020194
APA StyleBachche, S. (2015). Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey. Robotics, 4(2), 194-222. https://doi.org/10.3390/robotics4020194