Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities
Abstract
:1. Introduction
2. Overview of the Collaborative Cell
2.1. The Prototype Manufacturing Cell
2.2. Core Interaction Abilities
2.3. Contributions and Novelty
- The introduction of a collaborative cell endowed with learning-based core interaction abilities that can be applied across various domains (non-domain-specific abilities).
- The evaluation of communication interfaces allowing direct interaction with the cell, employing contrastive learning (CL) for the recognition of user-specific visual gestures and a feedforward neural network (FNN) for the classification of contact-based interaction primitives.
- The development of coordination strategies featuring proactive monitoring of shared spaces and anticipation of human intentions based on hand–object interactions.
- The presentation of a full functional use case demonstrating the real-time operation of the collaborative cell.
3. Supervised Collaboration
3.1. Hand Gesture Recognition
- Hand level constraint: The module calculates the midpoint of the operator’s chest. The constraint is satisfied if the center of the hand is above this limit.
- Hands overlapping constraint: The module checks if the bounding boxes of the left and right hands overlap. The constraint fails if there is an overlap between the bounding boxes.
- Overlapping face constraint: The module examines whether any of the MediaPipe key points associated with the face (anatomical landmarks on the face) are inside the bounding box of the hand. The constraint fails if any face key point is found within that bounding box.
Algorithm 1 Gesture filtering. |
Input: ; ;
|
3.2. Physical Interaction Classification
- pull—a force applied in the direction towards the operator;
- push—a force applied in the direction away from the operator;
- shake—a fast, short, amplitude-alternating action imposed by the human hand on the object;
- twist—a torsion imposed on an axis along the human arm–hand.
- Number of hidden layers: 2, 3, 4.
- Neurons in each hidden layer: 16, 32, 64, 128.
- Dropout for the last hidden layer: 0%, 20%, 50%.
- Activation function: ReLU, SELU, sigmoid.
- Optimizer: Adam, SGD, RMSprop.
- Batch size: between 32 and 128.
- Starting learning rate: between 0.0001 and 0.1.
4. Human-Centric Proactive Interaction
4.1. Volumetric Detection
4.2. Human Intention Anticipation
5. Application Case Study
5.1. Demonstration’s Software
5.2. State Machine
- State 1—Fast Object Manipulation. The demonstration begins in State 0, which is an initiation state that immediately switches to State 1. In this State 1, the robotic arm carries out a palletizing task, manipulating two objects 1 and 2 between two distinct positions, as depicted by the red zones in Figure 17. The arm operates at maximum speed, performing wide movements to minimize task cycle time. The state machine monitors the output of the volumetric detection node, which detects the presence of a human operator. If an operator is detected within the monitored volume, the state machine switches to State 2.
- State 2—Safe Object Manipulation. While the operator is present and there is no engagement with the robot, the state machine remains in State 2. In this state, the robot performs in a slower motion and more retracted movements, displaying awareness of the operator’s presence. However, it continues the initial palletizing task for objects 1 and 2. There are two triggers to exit State 2. If the volumetric detection module detects the operator leaving the monitored volume, the state machine goes back to State 1. Alternatively, if the hand gesture recognition module detects the operator correctly performing the A hand gesture, and the robot possesses an object in the gripper, the state machine goes to State 3. If the robot does not have an object, the program waits for the robot to grasp one before switching states.
- State 3—Object Handover. State 3 acts as a transient state between States 2 and 4. The transition from State 2 to State 3 occurs when the operator requests an object. In State 3, the robotic arm moves to a handover position. The trigger to switch to State 4 is an internal robot event that verifies if it has reached the handover position.
- State 4—Wait for Interaction. In this state, the robot remains stationary in the handover position, placing the object at about a 45° angle, in a configuration similar to the one represented in Figure 17. The state machine monitors the output of the physical interaction classification module, which recognizes two available interactions: PUSH and PULL. The PUSH interaction results in the rejection of the object held by the robot, prompting a return to State 2 to resume palletizing. On the other hand, the PULL interaction triggers the gripper to release the object, allowing the operator to retrieve it. Subsequently, the robot retracts to a safe position and goes to State 5.
- State 5—Wait to Recover Object. During this phase, the human operator is handling the object. Once the inspection is complete, the operator places the object in an area designated for object recovery, as indicated by the green zone in Figure 17. To signal the intent of object recovery to the robot, the operator performs the F gesture. This triggers the state machine to transition to State 6.
- State 6—Recover Object. State 6 initiates a slow movement to retrieve the object from the designated object-recovery area. Upon completing the movement, the state machine automatically switches back to State 2.
6. Discussion and Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demir, K.A.; Döven, G.; Sezen, B. Industry 5.0 and human–robot co-working. Procedia Comput. Sci. 2019, 158, 688–695. [Google Scholar] [CrossRef]
- Coronado, E.; Kiyokawa, T.; Ricardez, G.A.G.; Ramirez-Alpizar, I.G.; Venture, G.; Yamanobe, N. Evaluating quality in human–robot interaction: A systematic search and classification of performance and human-centered factors, measures and metrics towards an industry 5.0. J. Manuf. Syst. 2022, 63, 392–410. [Google Scholar] [CrossRef]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 2018, 55, 248–266. [Google Scholar] [CrossRef]
- Kumar, S.; Savur, C.; Sahin, F. Survey of human–robot collaboration in industrial settings: Awareness, intelligence, and compliance. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 280–297. [Google Scholar] [CrossRef]
- Castro, A.; Silva, F.; Santos, V. Trends of human–robot collaboration in industry contexts: Handover, learning, and metrics. Sensors 2021, 21, 4113. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, S.; Chrysostomou, D. Human–robot collaboration in industrial environments: A literature review on non-destructive disassembly. Robot. Comput.-Integr. Manuf. 2022, 73, 102208. [Google Scholar] [CrossRef]
- Gualtieri, L.; Rauch, E.; Vidoni, R. Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Robot. Comput.-Integr. Manuf. 2021, 67, 101998. [Google Scholar] [CrossRef]
- Simões, A.; Pinto, A.; Santos, J.; Pinheiro, S.; Romero, D. Designing human–robot collaboration (HRC) workspaces in industrial settings: A systematic literature review. J. Manuf. Syst. 2022, 62, 28–43. [Google Scholar] [CrossRef]
- Lorenzini, M.; Lagomarsino, M.; Fortini, L.; Gholami, S.; Ajoudani, A. Ergonomic human–robot collaboration in industry: A review. Front. Robot. AI 2023, 9, 262. [Google Scholar] [CrossRef]
- Michalos, G.; Makris, S.; Tsarouchi, P.; Guasch, T.; Kontovrakis, D.; Chryssolouris, G. Design considerations for safe human–robot collaborative workplaces. Procedia CIrP 2015, 37, 248–253. [Google Scholar] [CrossRef]
- Wadekar, P.; Gopinath, V.; Johansen, K. Safe layout design and evaluation of a human–robot collaborative application cell through risk assessment–a computer aided approach. Procedia Manuf. 2018, 25, 602–611. [Google Scholar] [CrossRef]
- Forlini, M.; Neri, F.; Scoccia, C.; Carbonari, L.; Palmieri, G. Collision Avoidance in Collaborative Robotics Based on Real-Time Skeleton Tracking. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Bled, Slovenia, 14–16 June 2023; Springer: Cham, Switzerland, 2023; pp. 81–88. [Google Scholar]
- Kim, W.; Lorenzini, M.; Balatti, P.; Nguyen, P.D.; Pattacini, U.; Tikhanoff, V.; Peternel, L.; Fantacci, C.; Natale, L.; Metta, G.; et al. Adaptable workstations for human–robot collaboration: A reconfigurable framework for improving worker ergonomics and productivity. IEEE Robot. Autom. Mag. 2019, 26, 14–26. [Google Scholar] [CrossRef]
- Gualtieri, L.; Palomba, I.; Merati, F.A.; Rauch, E.; Vidoni, R. Design of human-centered collaborative assembly workstations for the improvement of operators’ physical ergonomics and production efficiency: A case study. Sustainability 2020, 12, 3606. [Google Scholar] [CrossRef]
- Lagomarsino, M.; Lorenzini, M.; Balatti, P.; De Momi, E.; Ajoudani, A. Pick the right co-worker: Online assessment of cognitive ergonomics in human–robot collaborative assembly. IEEE Trans. Cogn. Dev. Syst. 2022, 15, 1928–1937. [Google Scholar] [CrossRef]
- Maurtua, I.; Fernandez, I.; Tellaeche, A.; Kildal, J.; Susperregi, L.; Ibarguren, A.; Sierra, B. Natural multimodal communication for human–robot collaboration. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417716043. [Google Scholar] [CrossRef]
- Su, H.; Qi, W.; Chen, J.; Yang, C.; Sandoval, J.; Laribi, M.A. Recent advancements in multimodal human–robot interaction. Front. Neurorobot. 2023, 17, 1084000. [Google Scholar] [CrossRef]
- El Zaatari, S.; Marei, M.; Li, W.; Usman, Z. Cobot programming for collaborative industrial tasks: An overview. Robot. Auton. Syst. 2019, 116, 162–180. [Google Scholar] [CrossRef]
- Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human–robot interaction. Robot. Comput.-Integr. Manuf. 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Ogenyi, U.; Liu, J.; Yang, C.; Ju, Z.; Liu, H. Physical human–robot collaboration: Robotic systems, learning methods, collaborative strategies, sensors, and actuators. IEEE Trans. Cybern. 2019, 51, 1888–1901. [Google Scholar] [CrossRef]
- Xue, T.; Wang, W.; Ma, J.; Liu, W.; Pan, Z.; Han, M. Progress and prospects of multimodal fusion methods in physical human–robot interaction: A review. IEEE Sens. J. 2020, 20, 10355–10370. [Google Scholar] [CrossRef]
- Huang, C.M.; Mutlu, B. Anticipatory robot control for efficient human–robot collaboration. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 83–90. [Google Scholar]
- Kim, W.; Lee, J.; Peternel, L.; Tsagarakis, N.; Ajoudani, A. Anticipatory robot assistance for the prevention of human static joint overloading in human–robot collaboration. IEEE Robot. Autom. Lett. 2017, 3, 68–75. [Google Scholar] [CrossRef]
- Duarte, N.F.; Raković, M.; Tasevski, J.; Coco, M.I.; Billard, A.; Santos-Victor, J. Action anticipation: Reading the intentions of humans and robots. IEEE Robot. Autom. Lett. 2018, 3, 4132–4139. [Google Scholar] [CrossRef]
- Bütepage, J.; Kjellström, H.; Kragic, D. Anticipating many futures: Online human motion prediction and generation for human–robot interaction. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4563–4570. [Google Scholar]
- Ortenzi, V.; Cosgun, A.; Pardi, T.; Chan, W.P.; Croft, E.; Kulić, D. Object handovers: A review for robotics. IEEE Trans. Robot. 2021, 37, 1855–1873. [Google Scholar] [CrossRef]
- Lagomarsino, M.; Lorenzini, M.; Constable, M.D.; De Momi, E.; Becchio, C.; Ajoudani, A. Maximising Coefficiency of Human-Robot Handovers through Reinforcement Learning. IEEE Robot. Autom. Lett. 2023, 8, 4378–4385. [Google Scholar] [CrossRef]
- Lwakatare, L.; Raj, A.; Crnkovic, I.; Bosch, J.; Olsson, H.H. Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions. Inf. Softw. Technol. 2020, 127, 106368. [Google Scholar] [CrossRef]
- Mukherjee, D.; Gupta, K.; Chang, L.H.; Najjaran, H. A survey of robot learning strategies for human–robot collaboration in industrial settings. Robot. Comput.-Integr. Manuf. 2022, 73, 102231. [Google Scholar] [CrossRef]
- Sajwan, M.; Singh, S. A Review on the Effectiveness of Machine Learning and Deep Learning Algorithms for Collaborative Robot. Arch. Comput. Methods Eng. 2023, 30, 3489–3508. [Google Scholar] [CrossRef]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In ICRA Workshop on Open Source Software, Kobe, Japan, 2009; Volume 3, p. 5. Available online: http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf (accessed on 10 July 2024).
- Oliveira, M.; Pedrosa, E.; Aguiar, A.; Rato, D.; Santos, F.; Dias, P.; Santos, V. ATOM: A general calibration framework for multi-modal, multi-sensor systems. Expert Syst. Appl. 2022, 207, 118000. [Google Scholar] [CrossRef]
- Rato, D.; Oliveira, M.; Santos, V.; Gomes, M.; Sappa, A. A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. J. Manuf. Syst. 2022, 64, 497–507. [Google Scholar] [CrossRef]
- Baptista, J.; Santos, V.; Silva, F.; Pinho, D. Domain Adaptation with Contrastive Simultaneous Multi-Loss Training for Hand Gesture Recognition. Sensors 2023, 23, 3332. [Google Scholar] [CrossRef]
- Castro, A.; Baptista, J.; Silva, F.; Santos, V. Classification of handover interaction primitives in a COBOT–human context with a deep neural network. J. Manuf. Syst. 2023, 68, 289–302. [Google Scholar] [CrossRef]
- Gomes, M.; Oliveira, M.; Santos, V. Volumetric Occupancy Detection: A Comparative Analysis of Mapping Algorithms. arXiv 2023, arXiv:2307.03089. [Google Scholar] [CrossRef]
- Amaral, P.; Silva, F.; Santos, V. Recognition of Grasping Patterns Using Deep Learning for Human–Robot Collaboration. Sensors 2023, 23, 8989. [Google Scholar] [CrossRef] [PubMed]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.; Yong, M.G.; Lee, J.; et al. MediaPipe: A Framework for Building Perception Pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015, arXiv:1512.00567. [Google Scholar] [CrossRef]
- Scibilia, A.; Laghi, M.; De Momi, E.; Peternel, L.; Ajoudani, A. A Self-Adaptive Robot Control Framework for Improved Tracking and Interaction Performances in Low-Stiffness Teleoperation. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 280–283. [Google Scholar] [CrossRef]
- Faroni, M.; Beschi, M.; Pedrocchi, N. Safety-Aware Time-Optimal Motion Planning With Uncertain Human State Estimation. IEEE Robot. Autom. Lett. 2022, 7, 12219–12226. [Google Scholar] [CrossRef]
- Hornung, A.; Wurm, K.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef]
- Deans, C. Biological Prescience: The Role of Anticipation in Organismal Processes. Front. Physiol. 2021, 12, 672457. [Google Scholar] [CrossRef]
- Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. Using probabilistic movement primitives in robotics. Auton. Robot. 2018, 42, 529–551. [Google Scholar] [CrossRef]
- Huang, C.M.; Andrist, S.; Sauppé, A.; Mutlu, B. Using gaze patterns to predict task intent in collaboration. Front. Psychol. 2015, 6, 144956. [Google Scholar] [CrossRef]
- Coleman, D.; Șucan, I.A.; Chitta, S.; Correll, N. Reducing the Barrier to Entry of Complex Robotic Software: A MoveIt! Case Study. J. Softw. Eng. Robot. 2014, 5, 3–16. [Google Scholar] [CrossRef]
- Bohren, J.; Cousins, S. The SMACH High-Level Executive [ROS News]. IEEE Robot. Autom. Mag. 2010, 17, 18–20. [Google Scholar] [CrossRef]
Action | Occurrences | Outcome | Total | Mean NN Output Confidence | Standard Deviation |
---|---|---|---|---|---|
True Positives | 310 | 0.98 | 0.055 | ||
pull | 310 | False Positives | 13 | 0.782 | 0.192 |
False Negatives | 0 | ||||
True Positives | 280 | 0.974 | 0.07 | ||
push | 287 | False Positives | 4 | 0.673 | 0.107 |
False Negatives | 7 | 0.175 | 0.153 | ||
True Positives | 304 | 0.942 | 0.097 | ||
shake | 319 | False Positives | 11 | 0.795 | 0.199 |
False Negatives | 15 | 0.153 | 0.137 | ||
True Positives | 312 | 0.971 | 0.083 | ||
twist | 323 | False Positives | 5 | 0.781 | 0.198 |
False Negatives | 11 | 0.165 | 0.193 |
Dataset | Bottle | Cube | Plier | Screwdriver | Total |
---|---|---|---|---|---|
User1 | 649 | 890 | 943 | 956 | 3438 |
User2 | 771 | 836 | 872 | 898 | 3377 |
User3 | 746 | 834 | 904 | 930 | 3414 |
Total | 2166 | 2560 | 2719 | 2784 | 10,229 |
Feature | Link |
---|---|
Application case study | ➀ https://youtu.be/c5i2uKO9SoI (accessed on 8 July 2024) |
Hand gesture recognition | ➁ https://youtu.be/F3uH_sBS1yM (accessed on 8 July 2024) ➂ https://www.kaggle.com/datasets/joelbaptista/hand-gestures-for-human--robot-interaction (accessed on 8 July 2024) |
Physical interaction | ➃ https://youtu.be/Xpv3msB7mdQ (accessed on 8 July 2024) ➄ https://youtu.be/ydZqHMQwlus (accessed on 8 July 2024) ➅ https://youtu.be/c3o96O5K1rg?si=5qYwjXoMAvw0sD8E (accessed on 8 July 2024) |
Volumetric monitoring | ➆ https://youtu.be/6M159G4xxKI (accessed on 8 July 2024) ➇ https://youtu.be/77XK-L295Eo (accessed on 8 July 2024) |
Human intention anticipation | ➈ https://youtu.be/DnPNmu9UzDI (accessed on 8 July 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, J.; Castro, A.; Gomes, M.; Amaral, P.; Santos, V.; Silva, F.; Oliveira, M. Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities. Robotics 2024, 13, 107. https://doi.org/10.3390/robotics13070107
Baptista J, Castro A, Gomes M, Amaral P, Santos V, Silva F, Oliveira M. Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities. Robotics. 2024; 13(7):107. https://doi.org/10.3390/robotics13070107
Chicago/Turabian StyleBaptista, Joel, Afonso Castro, Manuel Gomes, Pedro Amaral, Vítor Santos, Filipe Silva, and Miguel Oliveira. 2024. "Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities" Robotics 13, no. 7: 107. https://doi.org/10.3390/robotics13070107
APA StyleBaptista, J., Castro, A., Gomes, M., Amaral, P., Santos, V., Silva, F., & Oliveira, M. (2024). Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities. Robotics, 13(7), 107. https://doi.org/10.3390/robotics13070107