Semantic 3D Reconstruction for Volumetric Modeling of Defects in Construction Sites
Abstract
:1. Introduction
2. Related Work
2.1. Three-Dimensional Reconstruction
2.2. Semantic Segmentation
2.3. Defect Detection and 3D Modeling
3. Methodology
3.1. Three-Dimensional Reconstruction
3.2. Semantic Understanding
3.3. Volumetric Model of a Defect
3.4. Integrated System
4. Experimental Evalutation
4.1. Experimental Process
4.2. Results
4.2.1. Evaluation of Semantic and 3D Reconstruction Components
4.2.2. Results Analysis of the Proposed Framework
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Li, S.; Li, H.; Li, Q. Modeling and problem solving of building defects using point clouds and enhanced case-based reasoning. Autom. Constr. 2018, 96, 40–54. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, S. A review of 3D reconstruction techniques in civil engineering and their applications. Adv. Eng. Inform. 2018, 37, 163–174. [Google Scholar] [CrossRef]
- Faqih, F.; Zayed, T. Defect-based building condition assessment. Build. Environ. 2021, 191, 107575. [Google Scholar] [CrossRef]
- Xiaoping, L.; Yupeng, W.; Yao, L.; Xiaotian, G.; Bibo, S. Qiyun Pagoda 3D Model Reconstruction Based on Laser Cloud Data. Surv. Mapp. 2011, 9, 11–14. [Google Scholar]
- Son, H.; Bosché, F.; Kim, C. As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure: A survey. Adv. Eng. Inform. 2015, 29, 172–183. [Google Scholar] [CrossRef]
- Mathavan, S.; Kamal, K.; Rahman, M. A Review of Three-Dimensional Imaging Technologies for Pavement Distress Detection and Measurements. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2353–2362. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Q.; Cheng, J.C.; Song, C.; Yin, C. Vision-assisted BIM reconstruction from 3D LiDAR point clouds for MEP scenes. Autom. Constr. 2022, 133, 103997. [Google Scholar] [CrossRef]
- Yoggy, G.D. The History of Shotcrete; Technical Report; Shotcrete Classics; American Shotcrete Association: Wakefield, MA, USA, 2002. [Google Scholar]
- Kostavelis, I.; Nalpantidis, L.; Detry, R.; Bruyninckx, H.; Billard, A.; Christian, S.; Bosch, M.; Andronikidis, K.; Lund-Nielsen, H.; Yosefipor, P.; et al. RoBétArmé Project: Human-robot Collaborative Construction System for Shotcrete Digitization and Automation through Advanced Perception, Cognition, Mobility and Additive Manufacturing Skills. Open Res. Eur. 2024, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Valero, E.; Forster, A.; Bosché, F.; Hyslop, E.; Wilson, L.; Turmel, A. Automated defect detection and classification in ashlar masonry walls using machine learning. Autom. Constr. 2019, 106, 102846. [Google Scholar] [CrossRef]
- Dong, W.; Park, J.; Yang, Y.; Kaess, M. GPU Accelerated Robust Scene Reconstruction. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7863–7870. [Google Scholar] [CrossRef]
- Huang, H.; Li, L.; Cheng, H.; Yeung, S.K. Photo-SLAM: Real-time Simultaneous Localization and Photorealistic Mapping for Monocular, Stereo, and RGB-D Cameras. arXiv 2024, arXiv:2311.16728. [Google Scholar]
- Schönberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Commun. ACM 2020, 65, 99–106. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkühler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. arXiv 2023, arXiv:2308.04079. [Google Scholar] [CrossRef]
- Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv 2022, arXiv:2201.05989. [Google Scholar] [CrossRef]
- Matsuki, H.; Murai, R.; Kelly, P.H.J.; Davison, A.J. Gaussian Splatting SLAM. arXiv 2024, arXiv:2312.06741. [Google Scholar]
- Hong, K.; Wang, H.; Yuan, B. Inspection-Nerf: Rendering Multi-Type Local Images for Dam Surface Inspection Task Using Climbing Robot and Neural Radiance Field. Buildings 2023, 13, 213. [Google Scholar] [CrossRef]
- Hachisuka, S.; Tono, A.; Fisher, M. Harbingers of NeRF-to-BIM: A case study of semantic segmentation on building structure with neural radiance fields. In Proceedings of the 2023 European Conference on Computing in Construction 40th International CIB W78 Conference Heraklion, Crete, Greece, 10–12 July 2023. [Google Scholar]
- Keetha, N.; Karhade, J.; Jatavallabhula, K.M.; Yang, G.; Scherer, S.; Ramanan, D.; Luiten, J. SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM. arXiv 2024, arXiv:2312.02126. [Google Scholar]
- Guédon, A.; Lepetit, V. SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering. arXiv 2023, arXiv:2311.12775. [Google Scholar]
- Fink, L.; Rückert, D.; Franke, L.; Keinert, J.; Stamminger, M. LiveNVS: Neural View Synthesis on Live RGB-D Streams. In Proceedings of the SIGGRAPH Asia 2023 Conference Papers. ACM, 2023, SA ’23, Sydney, NSW, Australia, 12–15 December 2023. [Google Scholar] [CrossRef]
- Katsatos, D.; Alexiou, D.; Kontodina, T.; Chatzikonstantinou, I.; Kostavelis, I.; Giakoumis, D.; Tzovaras, D. Comparative Study of Surface 3D Reconstruction Methods Applied in Construction Sites. In Proceedings of the 2023 IEEE International Conference on Imaging Systems and Techniques (IST), Copenhagen, Denmark, 17–19 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Chung, C.M.; Tseng, Y.C.; Hsu, Y.C.; Shi, X.Q.; Hua, Y.H.; Yeh, J.F.; Chen, W.C.; Chen, Y.T.; Hsu, W.H. Orbeez-SLAM: A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping. arXiv 2023, arXiv:2209.13274. [Google Scholar]
- Kong, X.; Liu, S.; Taher, M.; Davison, A.J. vMAP: Vectorised Object Mapping for Neural Field SLAM. arXiv 2023, arXiv:2302.01838. [Google Scholar]
- Ha, S.; Yeon, J.; Yu, H. RGBD GS-ICP SLAM. arXiv 2024, arXiv:2403.12550. [Google Scholar]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar] [CrossRef]
- Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source estimation. Int. Robot. Res. 2016, 35, 1697–1716. [Google Scholar] [CrossRef]
- Prisacariu, V.A.; Kähler, O.; Golodetz, S.; Sapienza, M.; Cavallari, T.; Torr, P.H.S.; Murray, D.W. InfiniTAM v3: A Framework for Large-Scale 3D Reconstruction with Loop Closure. arXiv 2017, arXiv:1708.00783. [Google Scholar]
- Oleynikova, H.; Taylor, Z.; Fehr, M.; Nieto, J.I.; Siegwart, R. Voxblox: Building 3D Signed Distance Fields for Planning. arXiv 2016, arXiv:1611.03631. [Google Scholar]
- Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. arXiv 2019, arXiv:1910.02490. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. arXiv 2019, arXiv:1908.07919. [Google Scholar] [CrossRef] [PubMed]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. In Advances in Neural Information Processing Systems; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Glasgow, UK, 2021; Volume 34, pp. 12077–12090. [Google Scholar]
- Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6877–6886. [Google Scholar] [CrossRef]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention Mask Transformer for Universal Image Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1280–1289. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8; Ultralytics Inc.: Frederick, MD, USA, 2023. [Google Scholar]
- Hüthwohl, P.; Lu, R.; Brilakis, I. Multi-classifier for reinforced concrete bridge defects. Autom. Constr. 2019, 105, 102824. [Google Scholar] [CrossRef]
- Mundt, M.; Majumder, S.; Murali, S.; Panetsos, P.; Ramesh, V. Meta-Learning Convolutional Neural Architectures for Multi-Target Concrete Defect Classification with the COncrete Defect Bridge Image Dataset. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11188–11197. [Google Scholar] [CrossRef]
- Santos, R.; Ribeiro, D.; Lopes, P.; Cabral, R.; Calçada, R. Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles. Autom. Constr. 2022, 139, 104324. [Google Scholar] [CrossRef]
- Wang, H.; Ye, Z.; Wang, D.; Jiang, H.; Liu, P. Synthetic Datasets for Rebar Instance Segmentation Using Mask R-CNN. Buildings 2023, 13, 585. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast Online Object Tracking and Segmentation: A Unifying Approach. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1328–1338. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Q.; Fang, X.; Liang, W.; Cao, Y.; Zhao, C.; Li, L.; Liu, C.; Wang, K. Application and Development of Autonomous Robots in Concrete Construction: Challenges and Opportunities. Drones 2022, 6, 424. [Google Scholar] [CrossRef]
- Lin, T.H.; Chang, C.T.; Yang, B.H.; Hung, C.C.; Wen, K.W. AI-powered shotcrete robot for enhancing structural integrity using ultra-high performance concrete and visual recognition. Autom. Constr. 2023, 155, 105038. [Google Scholar] [CrossRef]
- Mariniuc, A.M.; Cojocaru, D.; Abagiu, M.M. Building Surface Defect Detection Using Machine Learning and 3D Scanning Techniques in the Construction Domain. Buildings 2024, 14, 669. [Google Scholar] [CrossRef]
- Tan, Y.; Li, G.; Cai, R.; Ma, J.; Wang, M. Mapping and modelling defect data from UAV captured images to BIM for building external wall inspection. Autom. Constr. 2022, 139, 104284. [Google Scholar] [CrossRef]
- Katsatos, D.; Alexiou, D.; Kontodina, T.; Kostavelis, I.; Giakoumis, D.; Tzovaras, D.; Nalpantidis, L. Real-time 3D Reconstruction Adapted for Robotic Applications in Construction Sites. In Proceedings of the European Robotics Forum 2024: ERF 2024, Rimini, Italy, 13–15 March 2023. [Google Scholar]
- Schmidt, P.; Katsatos, D.; Alexiou, D.; Kostavelis, I.; Giakoumis, D.; Tzovaras, D.; Nalpantidis, L. Towards autonomous shotcrete construction: Semantic 3D reconstruction for concrete deposition using stereo vision and deep learning. In Proceedings of the 41st International Symposium on Automation and Robotics in Construction, Lille, France, 3–7 June 2024; pp. 896–903. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR, USA, 2–4 August 1996; AAAI Press: Washington, DC, USA, 1996; pp. 226–231. [Google Scholar]
- Muntoni, A.; Cignoni, P. PyMeshLab; CERN: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dawson-Haggerty, M. trimesh. 2019. Available online: https://trimesh.org/ (accessed on 10 June 2024).
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Fioraio, N.; Taylor, J.; Fitzgibbon, A.; Di Stefano, L.; Izadi, S. Large-scale and drift-free surface reconstruction using online subvolume registration. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4475–4483. [Google Scholar] [CrossRef]
MAE (mm) | RMSE (mm) | |
---|---|---|
Testbed 01-a | 14.5 | 6.7 |
Testbed 01-b | 8.5 | 4.6 |
Testbed 02 (LR) | 8.9 | 3.3 |
Testbed 02 (RR) | 6.2 | 2.6 |
Testbed 03 | 10.3 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsatos, D.; Charalampous, P.; Schmidt, P.; Kostavelis, I.; Giakoumis, D.; Nalpantidis, L.; Tzovaras, D. Semantic 3D Reconstruction for Volumetric Modeling of Defects in Construction Sites. Robotics 2024, 13, 102. https://doi.org/10.3390/robotics13070102
Katsatos D, Charalampous P, Schmidt P, Kostavelis I, Giakoumis D, Nalpantidis L, Tzovaras D. Semantic 3D Reconstruction for Volumetric Modeling of Defects in Construction Sites. Robotics. 2024; 13(7):102. https://doi.org/10.3390/robotics13070102
Chicago/Turabian StyleKatsatos, Dimitrios, Paschalis Charalampous, Patrick Schmidt, Ioannis Kostavelis, Dimitrios Giakoumis, Lazaros Nalpantidis, and Dimitrios Tzovaras. 2024. "Semantic 3D Reconstruction for Volumetric Modeling of Defects in Construction Sites" Robotics 13, no. 7: 102. https://doi.org/10.3390/robotics13070102
APA StyleKatsatos, D., Charalampous, P., Schmidt, P., Kostavelis, I., Giakoumis, D., Nalpantidis, L., & Tzovaras, D. (2024). Semantic 3D Reconstruction for Volumetric Modeling of Defects in Construction Sites. Robotics, 13(7), 102. https://doi.org/10.3390/robotics13070102