Sensitivity Based Selection of an Optimal Cable-Driven Parallel Robot Design for Rehabilitation Purposes †
Abstract
:1. Introduction
2. Rehabilitation Task Analysis
- Five markers were fixed on the opisthenar area of the hand (one in the middle and the others around it);
- Two markers were attached to the wrist (one on each side);
- Two markers were fixed on the elbow (one on the olecranon and the other on the lateral epicondyle);
- Four markers were scattered on the arm (the markers at location A i were fixed on a support, and thus the distances between them were the same for all the volunteers);
- Two markers were attached to the dorsal of the left and right shoulders and two were on the ventral shoulders;
- Two last markers were attached to the back of the subjects on the iliocostalis lumborum muscles.
3. Robot Structure Selection
4. Formulation and Optimization
4.1. Problem Formulation
4.2. Optimization Process
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prange, G.B.; Jannink, M.J.A.; Groothuis-Oudshoorn, C.G.M.; Hermens, H.J.; Jzerman, M.J.I. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 2006, 43, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lum, P.S.; Burgar, C.G.; der Loos, M.V.; Shor, P.C.; Majmundar, M.; Yap, R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J. Rehabil. Res. Dev. 2006, 43, 631. [Google Scholar] [CrossRef] [PubMed]
- Nef, T.; Riener, R. ARMin—Design of a Novel Arm Rehabilitation Robot. In Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 57–60. [Google Scholar] [CrossRef]
- Reinkensmeyer, D.J.; Schmit, B.D. Understanding treating arm movement impairment after chronic brain injury: Progress with the ARM guide. JRDD 2000, 37, 653–662. [Google Scholar]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. NeuroEng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennaiem, F.; Chaker, A.; Arévalo, J.S.; Laribi, M.A.; Bennour, S.; Mlika, A.; Romdhane, L.; Zeghloul, S. Optimal Design of a Rehabilitation Four Cable-Driven Parallel Robot for Daily Living Activities. Adv. Serv. Ind. Robot. 2020, 84, 3–12. [Google Scholar] [CrossRef]
- Qian, S.; Zi, B.; Shang, W.-W.; Xu, Q.-S. A Review on Cable-driven Parallel Robots. Chin. J. Mech. Eng. 2018, 31, 66. [Google Scholar] [CrossRef]
- Langhammer, B.; Stanghelle, J.K. Bobath or Motor Relearning Programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: A randomized controlled study. Clin. Rehabil. 2000, 14, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ennaiem, F.; Chaker, A.; Laribi, M.A.; Sandoval, J.; Bennour, S.; Mlika, A.; Romdhane, L.; Zeghloul, S. Daily Life Activities Analysis for Rehabilitation Purposes. In International Workshop on Medical and Service Robots; Springer: Cham, Switzerland, 2020; pp. 290–297. [Google Scholar] [CrossRef]
- Fabritius, M.; Martin, C.; Pott, A. Calculation of the cable-platform collision-free total orientation workspace of cable-driven parallel robots. In Cable Driven Parallel Robots; Springer: Cham, Switzerland, 2019; Volume 74, pp. 137–148. [Google Scholar] [CrossRef]
- Xiong, H.; Diao, X. A review of cable-driven rehabilitation devices. Disabil. Rehabil. Assist. Technol. 2020, 15, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Kozisek, A. Cable Driven Parallel Robot for Lower Limb Rehabilitation Tasks. Master’s Thesis, Poitiers University, Poitiers, France, Rome Tor Vergata University, Rome, Italy, 2019. [Google Scholar]
- Cafolla, D.; Russo, M.; Carbone, G. CUBE, a cable-driven device for limb rehabilitation. J. Bion. Eng. 2019, 16, 492–502. [Google Scholar] [CrossRef]
- Duan, Q.J.; Duan, X. Workspace classification and quantification calculations of cable-driven parallel robots. Adv. Mech. Eng. 2014, 6, 358727. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.L.; Gallina, P.; Vadia, J. Planar Translational Cable-Direct-Driven Robots. J. Robot. Syst. 2003, 20, 107–120. [Google Scholar] [CrossRef]
- Shorman, S.M.; Pitchay, S.A. Significance of parameters in genetic algorithm, the strengths, its limitations and challenges in image recovery. J. Eng. Appl. Sci. 2015, 10, 9. [Google Scholar]
- Collette, Y.; Siarry, P. Optimisation Multiobjectif: Algorithmes; Editions Eyrolles: Paris, France, 2011. [Google Scholar]
- Papadopoulos, C.E.; Yeung, H. Uncertainty estimation and Monte Carlo simulation method. Flow Meas. Instrum. 2001, 12, 291–298. [Google Scholar] [CrossRef]
- Chaker, A.; Mlika, A.; Laribi, M.A.; Romdhane, L.; Zeghloul, S. Robust Design Synthesis of Spherical Parallel Manipulator for Dexterous Medical Task. In Computational Kinematics; Thomas, F., Gracia, A.P., Eds.; Springer: Heidelberg, The Netherlands, 2014; pp. 281–289. [Google Scholar] [CrossRef]
- Nelson, C.A.; Laribi, M.A.; Zeghloul, S. Multi-robot system optimization based on redundant serial spherical mechanism for robotic minimally invasive surgery. Robotica 2019, 37, 1202–1213. [Google Scholar] [CrossRef]
- Gosselin, C. Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 1988. [Google Scholar]
- Abdolshah, S.; Zanotto, D.; Rosati, G.; Agrawal, S.K. Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots. J. Mech. Robot. 2017, 9, 031004. [Google Scholar] [CrossRef]
- Ferretti, F.; Saltelli, A.; Tarantola, S. Trends in sensitivity analysis practice in the last decade. Sci. Total Environ. 2016, 568, 666–670. [Google Scholar] [CrossRef] [PubMed]
Starting Position | Halfway Position | Return Position | |
---|---|---|---|
Movement 1 (M1)Hand–Mouth | |||
Movement 2 (M2)Hand–Shoulder | |||
Movement 3 (M3)Hand–Head |
Gender | L/R Handed | Height [m] | |
---|---|---|---|
Volunteer 1 | M | L | 1.73 |
Volunteer 2 | M | L | 1.79 |
Volunteer 3 | M | R | 1.71 |
Volunteer 4 | M | R | 1.69 |
Volunteer 5 | F | R | 1.73 |
Structure | Circular Structure | Corner Structure | Rectangular Structures | Triangular Structure | |
---|---|---|---|---|---|
CAD Model | |||||
Cost | ✕ | ✓ | ✕ | ✕ | ✓ |
Stiffness | ✓ | ✕ | ✓ | ✓ | ✓ |
Workspace | ✕ | ✓ | ✕ | ✕ | ✓ |
Parameters | Values | Parameters | Values |
---|---|---|---|
[N] | 15 | [m] | 1 |
[N] | 0.5 | Load mass [kg] | 1.5 |
[mm] | 250 | [mm] | 23 |
I | |||||||
---|---|---|---|---|---|---|---|
Lower bounds [mm] | −1500 | −1500 | 0 | −1000 | 500 | 500 | 0 |
Upper bounds [mm] | 1500 | 1500 | 1500 | 1000 | 1500 | 1000 | 1500 |
Design Parameters | ||
---|---|---|
604% | 710.3% | |
908.3% | 953.9% | |
1.5% | 1.9% | |
0.08% | 0.4% | |
0.2% | 0.3% | |
0.2% | 0.3% | |
505.9% | 610.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ennaiem, F.; Chaker, A.; Arévalo, J.S.S.; Laribi, M.A.; Bennour, S.; Mlika, A.; Romdhane, L.; Zeghloul, S. Sensitivity Based Selection of an Optimal Cable-Driven Parallel Robot Design for Rehabilitation Purposes. Robotics 2021, 10, 7. https://doi.org/10.3390/robotics10010007
Ennaiem F, Chaker A, Arévalo JSS, Laribi MA, Bennour S, Mlika A, Romdhane L, Zeghloul S. Sensitivity Based Selection of an Optimal Cable-Driven Parallel Robot Design for Rehabilitation Purposes. Robotics. 2021; 10(1):7. https://doi.org/10.3390/robotics10010007
Chicago/Turabian StyleEnnaiem, Ferdaws, Abdelbadiâ Chaker, Juan Sebastián Sandoval Arévalo, Med Amine Laribi, Sami Bennour, Abdelfattah Mlika, Lotfi Romdhane, and Saïd Zeghloul. 2021. "Sensitivity Based Selection of an Optimal Cable-Driven Parallel Robot Design for Rehabilitation Purposes" Robotics 10, no. 1: 7. https://doi.org/10.3390/robotics10010007
APA StyleEnnaiem, F., Chaker, A., Arévalo, J. S. S., Laribi, M. A., Bennour, S., Mlika, A., Romdhane, L., & Zeghloul, S. (2021). Sensitivity Based Selection of an Optimal Cable-Driven Parallel Robot Design for Rehabilitation Purposes. Robotics, 10(1), 7. https://doi.org/10.3390/robotics10010007