Production of Fungal Glucoamylase for Glucose Production from Food Waste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Glucoamylase Production from Pastry Waste
Substrate | Crude GA concentration (U/mL) | Yield (U/g) | Fungus | Nitrogen supplement | References |
---|---|---|---|---|---|
Rice powder | N/A | 71.3 ± 2.34 a | Aspergillus niger | + | [12] |
Wheat bran | N/A | 110 ± 1.32 a | Aspergillus niger | + | [12] |
Mixed food waste | 137 | N/A | Aspergillus niger | + | [13] |
Cowpea waste | 970 | N/A | Aspergillus oryzae | - | [14] |
Wheat bran | 4.4 | 48 | Aspergillus awamori | - | [15] |
Wheat pieces | 3.32 | 81.3 | Aspergillus awamori | - | [16] |
Waste bread | 3.94 | 78.4 | Aspergillus awamori | - | [16] |
Waste bread | N/A | 114 | Aspergillus awamori | - | [17] |
Pastry waste | 76.1 ± 6.1 a | 253.7 ± 20.4 a | Aspergillus awamori | - | This study |
2.2. Characterization of Optimal Reaction Temperature and pH of the Crude Glucoamylase Extract
2.3. Thermo-Stability of the Crude Glucoamylase Extract at Optimal Reaction Temperatures
Temperature (°C) | kd (minutes−1) | t1/2 (minutes) |
---|---|---|
55 | 2.20 × 10−3 | 315.0 |
60 | 2.13 × 10−2 | 32.5 |
65 | 2.17× 10−2 | 31.9 |
2.4. Application of Crude Glucoamylase Extract on Mixed Food Waste Hydrolysis for Glucose Production
2.5. Material Balance for Glucose Production from 1 kg Mixed Food Waste with Crude Glucoamylase Extract
3. Experimental Section
3.1. Microorganism
3.2. Food Wastes Preparation
3.3. Solid State Fermentation for Glucoamylase Production
3.4. Glucoamylase Extraction
3.5. Food Waste Hydrolysis for Glucose Production
3.6. Glucoamylase Activity
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hong Kong SAR Environmental Protection Department. Monitoring of solid waste in Hong Kong – waste statistics for 2011, in Hong Kong 2011. Available online: https://www.wastereduction.gov.hk/en/materials/info/msw2011.pdf (accessed on 21 June 2013).
- Sauer, J.; Sigurskjold, B.W.; Christensen, U.; Frandsen, T.P.; Mirgorodskaya, E.; Harrison, M.; Roepstorff, P.; Svensson, B. Glucoamylase: Structure/Function relationships, and protein engineering. Biochim. Biophys. Acta 2000, 1543, 275–293. [Google Scholar]
- Norouzian, D.; Akbarzadeh, A.; Scharer, J.M.; Young, M.M. Fungal glucoamylases. Biotechnol. Adv. 2006, 24, 80–85. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, Q.H.; Liu, Y.Y.; Ma, H.Z. On-Site production of crude glucoamylase for kitchen waste hydrolysis. Waste Manag. Res. 2010, 28, 539–544. [Google Scholar] [CrossRef]
- Pleissner, D.; Lam, W.C.; Sun, Z.; Lin, C.S.K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour. Technol. 2013, 137, 139–146. [Google Scholar] [CrossRef]
- Sayeki, M.; Kitagawa, T.; Matsumoto, M.; Nishiyama, A.; Miyoshi, K.; Mochizuki, M.; Takasu, A.; Abe, A. Chemical composition and energy value of dried meal from food waste as feedstuff in swine and cattle. Anim. Sci. J. 2001, 72, 34–40. [Google Scholar]
- Koutinas, A.A.; Wang, R.; Webb, C. Estimation of fungal growth in complex, heterogeneous culture. Biochem. Eng. J. 2003, 14, 93–100. [Google Scholar] [CrossRef]
- Zhang, A.Y.-Z.; Sun, Z.; Leung, C.C.J.; Han, W.; Lau, K.Y.; Li, M.; Lin, C.S.K. Valorisation of bakery waste for succinic acid production. Green Chem. 2013, 15, 690–695. [Google Scholar] [CrossRef]
- Zambare, V. Solid state fermentation of Aspergillus. oryzae for glucoamylase production on agro residues. Int. J. Life Sci. 2010, 4, 16–25. [Google Scholar] [CrossRef]
- Ganzlin, M.; Rinas, U. In-Depth analysis of the Aspergillus. niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J. Biotechnol. 2008, 135, 266–271. [Google Scholar] [CrossRef]
- Ventura, L.; González-Candelas, L.; Pérez-Gonzáez, J.A.; Ramón, D. Molecular cloning and transcriptional analysis of the Aspergillus. terreus gla1 gene encoding a glucoamylase. Appl. Environ. Microbiol. 1995, 61, 399–402. [Google Scholar]
- Anto, H.; Trivedi, U.B.; Patel, K.C. Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresour. Technol. 2006, 97, 1161–1166. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Wang, X.; Ma, H. Glucoamylase production from food waste by Aspergillus. niger under submerged fermentation. Process. Biochem. 2008, 43, 280–286. [Google Scholar] [CrossRef]
- Kareem, S.O.; Akpan, I.; Oduntan, S.B. Cowpea waste: A novel substrate for solid state production of amylase by Aspergillus. oryzae. Afr. J. Microbiol. Res. 2009, 3, 974–977. [Google Scholar]
- Du, C.; Lin, S.K.C.; Koutinas, A.; Wang, R.; Dorado, P.; Webb, C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour. Technol. 2008, 99, 8310–8315. [Google Scholar] [CrossRef]
- Wang, R.; Godoy, L.C.; Shaarani, S.M.; Melikoglu, M.; Koutinas, A.; Webb, C. Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enzyme Microb. Technol. 2009, 44, 223–228. [Google Scholar] [CrossRef]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod. Process. 2013, in press. [Google Scholar]
- Lawton, J.M.; Doonan, S. Thermal inactivation and chaperonin-mediated renaturation of mitochondrial aspartate aminotransferase. Biochem. J. 1998, 334, 219–224. [Google Scholar]
- Johannes, T.W.; Woodyer, R.D.; Zhao, H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl. Environ. Microbiol. 2005, 71, 5728–5734. [Google Scholar] [CrossRef]
- Allen, M.J.; Coutinho, P.M.; Ford, C.F. Stabilization of Aspergillus. awamori glucoamylase by proline substitution and combining stabilizing mutations. Protein Eng. 1998, 11, 783–788. [Google Scholar] [CrossRef]
- Myer, R.O.; Brendemuhl, J.H.; Johnson, D.D. Evaluation of dehydrated restaurant food waste products as feedstuffs for finishing pigs. J. Anim. Sci. 1999, 77, 685–692. [Google Scholar]
- Leung, C.C.J.; Cheung, A.S.Y.; Zhang, A.Y.-Z.; Lam, K.F.; Lin, C.S.K. Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 2012, 65, 10–15. [Google Scholar] [CrossRef]
- Dorado, M.P.; Lin, S.K.C.; Koutinas, A.; Du, C.; Wang, R.; Webb, C. Cereal-Based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J. Biotechnol. 2009, 143, 51–59. [Google Scholar] [CrossRef]
- Yan, S.; Yao, J.; Yao, L.; Zhi, Z.; Chen, X.; Wu, J. Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces. Cerevisiae H058. Braz. Arch. Biol. Technol. 2012, 55, 183–192. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lam, W.C.; Pleissner, D.; Lin, C.S.K. Production of Fungal Glucoamylase for Glucose Production from Food Waste. Biomolecules 2013, 3, 651-661. https://doi.org/10.3390/biom3030651
Lam WC, Pleissner D, Lin CSK. Production of Fungal Glucoamylase for Glucose Production from Food Waste. Biomolecules. 2013; 3(3):651-661. https://doi.org/10.3390/biom3030651
Chicago/Turabian StyleLam, Wan Chi, Daniel Pleissner, and Carol Sze Ki Lin. 2013. "Production of Fungal Glucoamylase for Glucose Production from Food Waste" Biomolecules 3, no. 3: 651-661. https://doi.org/10.3390/biom3030651
APA StyleLam, W. C., Pleissner, D., & Lin, C. S. K. (2013). Production of Fungal Glucoamylase for Glucose Production from Food Waste. Biomolecules, 3(3), 651-661. https://doi.org/10.3390/biom3030651