Adamantyl-Substituted Chalcone CA13 Induces Cytoprotective Autophagy and JNK-Dependent Apoptosis in Lung Cancer Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. The Synthesis of 3-(Adamant-1-yl)-4-(Methoxymethoxy)-Benzaldehyde (3)
2.1.2. General Procedure for the Preparation of Chalcones (CA 5–13)
2.2. Cell Culture
2.3. Cell Viability Assay (MTT Assay)
2.4. Western Blot Analysis
2.5. Flow Cytometry Analysis of Apoptosis
2.6. Autophagic Flux Analysis
2.7. Xenograft Mouse Model
2.8. Statistical Analysis
3. Results
3.1. Chemistry
3.2. Biological Activity
3.2.1. In Vitro Antiproliferative Activity of Adamantly-Substituted Chalcones on Lung Cancer Cell Lines
3.2.2. Adamantly-Substituted Chalcone CA13 Induced Autophagy in Lung Cancer Cells
3.2.3. CA13 Induced Apoptosis in Lung Cancer Cells
3.2.4. CA13-Induced Autophagy Plays a Protective Role in Lung Cancer Cells
3.2.5. JNK Activation Is Required for CA13-Induced Apoptosis in Lung Cancer Cells
3.2.6. CA13 Suppresses Lung Cancer Growth In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Xu, Y.; Liu, J.; Feng, L.; Yu, J.; Chen, D. Global burden of lung cancer in 2022 and projections to 2050: Incidence and mortality estimates from GLOBOCAN. Cancer Epidemiol. 2024, 93, 102693. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, H.; Yang, W.; Zhang, L. The next generation of immunotherapies for lung cancers. Nat. Rev. Clin. Oncol. 2025, 22, 592–616. [Google Scholar] [CrossRef]
- Li, S.; Wang, A.; Wu, Y.; He, S.; Shuai, W.; Zhao, M.; Zhu, Y.; Hu, X.; Luo, Y.; Wang, G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol. Rev. 2024, 321, 300–334. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mastachi-Loza, S.; Ramirez-Candelero, T.I.; Benitez-Puebla, L.J.; Fuentes-Benites, A.; Gonzalez-Romero, C.; Vazquez, M.A. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chem. Asian J. 2022, 17, e202200706. [Google Scholar] [CrossRef]
- WalyEldeen, A.A.; Sabet, S.; El-Shorbagy, H.M.; Abdelhamid, I.A.; Ibrahim, S.A. Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem. Biol. Interact. 2023, 369, 110297. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021, 11, 894. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone Scaffolds, Bioprecursors of Flavonoids: Chemistry, Bioactivities, and Pharmacokinetics. Molecules 2021, 26, 7177. [Google Scholar] [CrossRef]
- Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125–137. [Google Scholar] [CrossRef]
- Mittal, A.; Vashistha, V.K.; Das, D.K. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review. Free Radic. Res. 2022, 56, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, T.; Lungu, C.N. Anticancer Activity of Natural and Synthetic Chalcones. Int. J. Mol. Sci. 2021, 22, 11306. [Google Scholar] [CrossRef] [PubMed]
- Michalkova, R.; Mirossay, L.; Gazdova, M.; Kello, M.; Mojzis, J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers 2021, 13, 2730. [Google Scholar] [CrossRef] [PubMed]
- Hseu, Y.C.; Chiang, Y.C.; Vudhya Gowrisankar, Y.; Lin, K.Y.; Huang, S.T.; Shrestha, S.; Chang, G.R.; Yang, H.L. The In Vitro and In Vivo Anticancer Properties of Chalcone Flavokawain B through Induction of ROS-Mediated Apoptotic and Autophagic Cell Death in Human Melanoma Cells. Cancers 2020, 12, 2936. [Google Scholar] [CrossRef]
- Michalkova, R.; Kello, M.; Kudlickova, Z.; Gazdova, M.; Mirossay, L.; Mojzisova, G.; Mojzis, J. Programmed Cell Death Alterations Mediated by Synthetic Indole Chalcone Resulted in Cell Cycle Arrest, DNA Damage, Apoptosis and Signaling Pathway Modulations in Breast Cancer Model. Pharmaceutics 2022, 14, 503. [Google Scholar] [CrossRef]
- Mendez-Callejas, G.; Pineros-Avila, M.; Celis, C.A.; Torrenegra, R.; Espinosa-Benitez, A.; Pestana-Nobles, R.; Yosa-Reyes, J. Natural 2′,4-Dihydroxy-4′,6′-dimethoxy Chalcone Isolated from Chromolaena tacotana Inhibits Breast Cancer Cell Growth through Autophagy and Mitochondrial Apoptosis. Plants 2024, 13, 570. [Google Scholar] [CrossRef]
- Wang, J.R.; Luo, Y.H.; Piao, X.J.; Zhang, Y.; Feng, Y.C.; Li, J.Q.; Xu, W.T.; Zhang, Y.; Zhang, T.; Wang, S.N.; et al. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-kappaB pathways in human hepatocellular carcinoma cells. Drug Dev. Res. 2019, 80, 461–470. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Yuan, M.; Zhao, Q.; Zhang, Y.; Yao, Y.; Duan, Y. Angiogenesis, Anti-Tumor, and Anti-Metastatic Activity of Novel alpha-Substituted Hetero-Aromatic Chalcone Hybrids as Inhibitors of Microtubule Polymerization. Front. Chem. 2021, 9, 766201. [Google Scholar] [CrossRef]
- Kwak, A.W.; Lee, M.J.; Lee, M.H.; Yoon, G.; Cho, S.S.; Chae, J.I.; Shim, J.H. The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells. Phytomedicine 2021, 86, 153564. [Google Scholar] [CrossRef]
- Sasazawa, Y.; Kanagaki, S.; Tashiro, E.; Nogawa, T.; Muroi, M.; Kondoh, Y.; Osada, H.; Imoto, M. Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem. Biol. 2012, 7, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Wen, Z.H.; Wan, K.; Yuan, D.; Zeng, X.; Liang, G.; Zhu, J.; Xu, B.; Luo, H. A novel synthesized 3′, 5′-diprenylated chalcone mediates the proliferation of human leukemia cells by regulating apoptosis and autophagy pathways. Biomed. Pharmacother. 2018, 106, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Zhu, J.; Chang, Q.; Zhou, H.; Shi, Z.; Min, L.; Cai, Y.; Guan, H. Alpha, 2′-dihydroxy-4,4′-dimethoxydihydrochalcone inhibits cell proliferation, invasion, and migration in gastric cancer in part via autophagy. Biomed. Pharmacother. 2018, 98, 709–718. [Google Scholar] [CrossRef]
- Wang, X.; Liang, Y.; Zhang, B.; He, L.; Li, W.; Zhang, W.; Li, C.; Luo, L.; Umar, T.; Feng, H.; et al. 2′-Hydroxychalcone Induces Autophagy and Apoptosis in Breast Cancer Cells via the Inhibition of the NF-kappaB Signaling Pathway: In Vitro and In Vivo Studies. Nutrients 2024, 16, 514. [Google Scholar] [CrossRef]
- Wang, F.W.; Wang, S.Q.; Zhao, B.X.; Miao, J.Y. Discovery of 2′-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org. Biomol. Chem. 2014, 12, 3062–3070. [Google Scholar] [CrossRef]
- Rossi, M.; Pellegrino, C.; Rydzyk, M.M.; Farruggia, G.; de Biase, D.; Cetrullo, S.; D’Adamo, S.; Bisi, A.; Blasi, P.; Malucelli, E.; et al. Chalcones induce apoptosis, autophagy and reduce spreading in osteosarcoma 3D models. Biomed. Pharmacother. 2024, 179, 117284. [Google Scholar] [CrossRef]
- Niu, Q.; Zhao, W.; Wang, J.; Li, C.; Yan, T.; Lv, W.; Wang, G.; Duan, W.; Zhang, T.; Wang, K.; et al. LicA induces autophagy through ULK1/Atg13 and ROS pathway in human hepatocellular carcinoma cells. Int. J. Mol. Med. 2018, 41, 2601–2608. [Google Scholar] [CrossRef]
- Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020, 19, 12. [Google Scholar] [CrossRef]
- He, Q.; Liu, W.; Sha, S.; Fan, S.; Yu, Y.; Chen, L.; Dong, M. Adenosine 5′-monophosphate-activated protein kinase-dependent mTOR pathway is involved in flavokawain B-induced autophagy in thyroid cancer cells. Cancer Sci. 2018, 109, 2576–2589. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qi, Q.; Zhou, W.; Feng, Z.; Huang, B.; Chen, A.; Zhang, D.; Li, W.; Zhang, Q.; Jiang, Z.; et al. Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy 2018, 14, 2007–2022. [Google Scholar] [CrossRef]
- Ao, M.; Hu, X.; Qian, Y.; Li, B.; Zhang, J.; Cao, Y.; Zhang, Y.; Guo, K.; Qiu, Y.; Jiang, F.; et al. Discovery of new chalone adamantyl arotinoids having RXRalpha-modulating and anticancer activities. Bioorg. Chem. 2021, 113, 104961. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Luo, X.; Zou, Z.; Zhang, X.; Huang, F.; Li, R.; Liao, S.; Liu, Y. Synthesis and evaluation of hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia. Bioorg. Med. Chem. Lett. 2017, 27, 3602–3606. [Google Scholar] [CrossRef]
- Gore, M.P.; Gore, A.M. Compositions and Methods for Treating Bleeding and Bleeding Disorders. U.S. Patent 12,343,317, 1 July 2025. [Google Scholar]
- Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett. 2013, 23, 1322–1325. [Google Scholar] [CrossRef]
- Wanka, L.; Iqbal, K.; Schreiner, P.R. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives. Chem. Rev. 2013, 113, 3516–3604. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, C.; Wang, Q.; Song, L.; He, Z.; Liu, W.; Wan, W. Deacetylation of ATG7 drives the induction of macroautophagy and LC3-associated microautophagy. Autophagy 2024, 20, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021, 26, 512–533. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Liu, Y.; Li, X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl. Oncol. 2020, 13, 100871. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.O.; Kim, M.O.; Choi, Y.H.; Hyun, J.W.; Chang, W.Y.; Kim, G.Y. Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett. 2010, 288, 204–213. [Google Scholar] [CrossRef]
- Slawinska-Brych, A.; Zdzisinska, B.; Czerwonka, A.; Mizerska-Kowalska, M.; Dmoszynska-Graniczka, M.; Stepulak, A.; Gagos, M. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129408. [Google Scholar] [CrossRef]
- Kong, W.; Li, C.; Qi, Q.; Shen, J.; Chang, K. Cardamonin induces G2/M arrest and apoptosis via activation of the JNK-FOXO3a pathway in breast cancer cells. Cell Biol. Int. 2020, 44, 177–188. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, E.J.; Zhao, Y.Z.; Sohn, D.H. Butein suppresses bile acid-induced hepatocyte apoptosis through a JNK-dependent but ERK-independent pathway. Planta Med. 2007, 73, 777–781. [Google Scholar] [CrossRef]
- He, W.; Wang, Q.; Srinivasan, B.; Xu, J.; Padilla, M.T.; Li, Z.; Wang, X.; Liu, Y.; Gou, X.; Shen, H.M.; et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene 2014, 33, 3004–3013. [Google Scholar] [CrossRef] [PubMed]







![]() | |||||||
|---|---|---|---|---|---|---|---|
| Comp. | R1 | R2 | R3 | R4 | R5 | IC50 (μmol/L) 1 | |
| H292 | A549 | ||||||
| 2′-HC | OH | H | H | H | H | >50 | >50 |
| CA1 | OH | H | H | H | OH | >50 | >50 |
| CA2 | OH | Cl | H | H | OH | 40.56 ± 2.16 | 48.04 ± 2.01 |
| CA3 | OH | CH3 | H | H | OH | >50 | >50 |
| CA4 | OH | OCH3 | H | H | OH | 45.25 ± 1.85 | >50 |
| CA5 | OH | COOH | H | H | OH | 38.17 ± 2.35 | 41.35 ± 2.13 |
| CA6 | OH | F | H | Ad | OCH2OCH3 | >50 | >50 |
| CA7 | OH | Cl | H | Ad | OCH2OCH3 | 22.24 ± 1.80 | 25.46 ± 1.21 |
| CA8 | OH | Br | H | Ad | OCH2OCH3 | 21.57 ± 2.17 | 27.32 ± 1.74 |
| CA9 | OH | CH3 | H | Ad | OCH2OCH3 | >50 | >50 |
| CA10 | OH | OCH3 | H | Ad | OCH2OCH3 | 34.18 ± 2.09 | 32.16 ± 2.28 |
| CA11 | OH | OCH3 | OCH3 | Ad | OCH2OCH3 | 21.06 ± 1.57 | 24.03 ± 1.82 |
| CA12 | OCH3 | OCH3 | OCH3 | Ad | OCH2OCH3 | 40.31 ± 2.04 | 43.52 ± 2.24 |
| CA13 | OH | COOH | H | Ad | OCH2OCH3 | 10.15 ± 1.61 | 12.24 ± 1.28 |
| 5-FU | - | - | - | - | - | 28.83 ± 2.31 | 21.56 ± 2.04 |
| Comp. | IC50 (μmol/L) 1 | |||
|---|---|---|---|---|
| A549 | H460 | H292 | MRC-5 | |
| CA13 | 12.24 ± 1.28 | 10.60 ± 0.67 | 10.15 ± 1.61 | >50 |
| 2′-HC | >50 | 46.83 ± 2.15 | >50 | >50 |
| 5-FU | 21.56 ± 2.04 | 27.57 ± 1.92 | 28.83 ± 2.31 | 40.72 ± 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, Y.; Liu, Y.; Zhou, J.; Bao, T.; Wang, J.; Ao, M. Adamantyl-Substituted Chalcone CA13 Induces Cytoprotective Autophagy and JNK-Dependent Apoptosis in Lung Cancer Cells. Biomolecules 2026, 16, 54. https://doi.org/10.3390/biom16010054
Chen Y, Liu Y, Zhou J, Bao T, Wang J, Ao M. Adamantyl-Substituted Chalcone CA13 Induces Cytoprotective Autophagy and JNK-Dependent Apoptosis in Lung Cancer Cells. Biomolecules. 2026; 16(1):54. https://doi.org/10.3390/biom16010054
Chicago/Turabian StyleChen, Yuting, Yaxin Liu, Jing Zhou, Tingting Bao, Jing Wang, and Mingtao Ao. 2026. "Adamantyl-Substituted Chalcone CA13 Induces Cytoprotective Autophagy and JNK-Dependent Apoptosis in Lung Cancer Cells" Biomolecules 16, no. 1: 54. https://doi.org/10.3390/biom16010054
APA StyleChen, Y., Liu, Y., Zhou, J., Bao, T., Wang, J., & Ao, M. (2026). Adamantyl-Substituted Chalcone CA13 Induces Cytoprotective Autophagy and JNK-Dependent Apoptosis in Lung Cancer Cells. Biomolecules, 16(1), 54. https://doi.org/10.3390/biom16010054

