Gut Microbial Composition and Short-Chain Fatty Acid Metabolism in Cognitively Unimpaired Adults Stratified by Amyloid-β Status
Abstract
1. Introduction
2. Methodology
2.1. Participant Selection
2.2. Ethics
2.3. Classification of CU Aβ High and CU Aβ Low Participants
2.4. Determination of MCI and AD Diagnoses
2.5. Fecal Sample Quantification
2.5.1. Sample Processing
2.5.2. Short-Chain Fatty Acid (SCFA) Extraction and GC-MS Quantification
2.6. DNA Extraction
2.7. Metagenomic Library Preparation and Sequencing
2.8. Bioinformatics Processing
2.9. Data Filtering and Integration
2.9.1. Taxonomic Profiling
2.9.2. Species-Level Refinement
2.9.3. Data Harmonization
2.10. Statistical Analyses
2.10.1. Descriptive Analyses (Whole Dataset; Compared by Amyloid Stage)
2.10.2. Multivariable Regression Analyses of SCFA Concentrations (Whole Dataset)
2.10.3. Stratified and Interaction Analyses (Amyloid-Stage and Demographic Subgroups)
Aβ Status (Aβ Low vs. Aβ High)
Sex (Male vs. Female)
APOE ε4 Carrier Status (Carrier vs. Non-Carrier)
Age Groups
2.10.4. Correlation Between Gut Microbial Species and SCFA Concentrations (Whole Dataset and Stratified by Amyloid Stage)
2.10.5. Species–SCFA Correlations Stratified by Aβ Status
2.10.6. Multivariate Pattern Recognition and Clustering (Whole Dataset; Amyloid as Grouping Factor)
2.10.7. Network-Based Microbial–Metabolite Integration (Amyloid-Stratified)
2.10.8. Canonical Correlation Analysis (CCA)
2.10.9. Mediation Analyses (Amyloid-Stratified Causal Framework)
2.11. Multiple Testing and Visualization
3. Results
3.1. Descriptive Analyses (Whole Dataset; Compared by Amyloid Stage)
3.2. Multivariable Regression Analyses of SCFA Concentrations
3.3. Stratified and Interaction Analyses (Amyloid-Stage and Demographic Subgroups)
3.3.1. Aβ Status (Aβ Low vs. Aβ High)
3.3.2. Sex (Male vs. Female)
3.3.3. APOE Ε4 Status (Carrier vs. Non-Carrier)
3.3.4. Age Groups
3.4. Correlation Between Gut Microbial Species and SCFA Concentrations (Whole Dataset and Stratified by Amyloid Stage)
3.5. Species–SCFA Correlations Stratified by Aβ Status
3.6. Multivariate Pattern Recognition and Clustering (Whole Dataset; Amyloid as Grouping Factor)
3.7. Canonical Correlation Analysis (CCA) Analyses (Whole Dataset; Amyloid Included as Covariate)
3.8. Mediation Analyses (Amyloid-Stratified Causal Framework)


4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engen, P.A.; Dodiya, H.B.; Naqib, A.; Forsyth, C.B.; Green, S.J.; Voigt, R.M.; Kordower, J.H.; Mutlu, E.A.; Shannon, K.M.; Keshavarzian, A. The potential role of gut-derived inflammation in multiple system atrophy. J. Park. Dis. 2017, 7, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Dissanayaka, D.S.; Jayasena, V.; Rainey-Smith, S.R.; Martins, R.N.; Fernando, W.B. The role of diet and gut microbiota in Alzheimer’s disease. Nutrients 2024, 16, 412. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Meng, L.; Shen, L. Multiple roles of short-chain fatty acids in Alzheimer disease. Nutrition 2022, 93, 111499. [Google Scholar] [CrossRef]
- Marizzoni, M.; Cattaneo, A.; Mirabelli, P.; Festari, C.; Lopizzo, N.; Nicolosi, V.; Mombelli, E.; Mazzelli, M.; Luongo, D.; Naviglio, D.; et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J. Alzheimer’s Dis. 2020, 78, 683–697. [Google Scholar] [CrossRef]
- Aaldijk, E.; Vermeiren, Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: A narrative review. Ageing Res. Rev. 2022, 75, 101556. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, H.; Xu, J.; Guo, X.; Zhao, H.; Chen, Y.; Zhou, Y.; Nie, Y.F. prausnitzii and its supernatant increase SCFAs-producing bacteria to restore gut dysbiosis in TNBS-induced colitis. AMB Express 2021, 11, 33. [Google Scholar] [CrossRef]
- Shealy, N.G.; Yoo, W.; Byndloss, M.X. Colonization resistance: Metabolic warfare as a strategy against pathogenic Enterobacteriaceae. Curr. Opin. Microbiol. 2021, 64, 82–90. [Google Scholar] [CrossRef]
- Ho, L.; Ono, K.; Tsuji, M.; Mazzola, P.; Singh, R.; Pasinetti, G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 2018, 18, 83–90. [Google Scholar] [CrossRef]
- Verhaar, B.J.; Hendriksen, H.M.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; et al. Gut microbiota composition is related to AD pathology. Front. Immunol. 2022, 12, 794519. [Google Scholar] [CrossRef]
- Kuehn, J.F.; Zhang, Q.; Heston, M.B.; Kang, J.W.; Harding, S.J.; Davenport-Sis, N.J.; Peter, D.C.; Kerby, R.L.; Vemuganti, V.; Schiffmann, E.C.; et al. Fecal Short-Chain Fatty Acids Vary by Sex and Amyloid Status. Alzheimer’s Dement. 2025, 21, e70877. [Google Scholar] [CrossRef] [PubMed]
- Guardia-Escote, L.; Basaure, P.; Biosca-Brull, J.; Cabré, M.; Blanco, J.; Pérez-Fernández, C.; Sánchez-Santed, F.; Domingo, J.L.; Colomina, M.T. APOE genotype and postnatal chlorpyrifos exposure modulate gut microbiota and cerebral short-chain fatty acids in preweaning mice. Food Chem. Toxicol. 2020, 135, 110872. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, A.I.; Fyfe, C.L.; Martin, J.C.; Smith, E.E.; Horgan, G.W.; Myint, P.K.; Johnstone, A.M.; Scott, K.P. Aging Gut-Brain Interactions: Pro-Inflammatory Gut Bacteria Are Elevated in Fecal Samples from Individuals Living with Alzheimer’s Dementia. Geriatrics 2025, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.; Rainey-Smith, S.R.; Bird, S.; Bomke, J.; Bourgeat, P.; Brown, B.M.; Burnham, S.C.; Bush, A.I.; Chadunow, C.; Collins, S.; et al. Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2021, 5, 443–468. [Google Scholar] [CrossRef]
- Sohrabi, H.R.; Weinborn, M.; Laske, C.; Bates, K.A.; Christensen, D.; Taddei, K.; Rainey-Smith, S.R.; Brown, B.M.; Gardener, S.L.; Laws, S.M.; et al. Subjective memory complaints predict baseline but not future cognitive function over three years: Results from the Western Australia Memory Study. Int. Psychogeriatr. 2019, 31, 513–525. [Google Scholar] [CrossRef]
- Doré, V.; Bullich, S.; Rowe, C.C.; Bourgeat, P.; Konate, S.; Sabri, O.; Stephens, A.W.; Barthel, H.; Fripp, J.; Masters, C.L. Comparison of 18F-florbetaben quantification results using the standard Centiloid, MR-based, and MR-less CapAIBL® approaches: Validation against histopathology. Alzheimer’s Dement. 2019, 15, 807–816. [Google Scholar] [CrossRef]
- Bourgeat, P.; Doré, V.; Fripp, J.; Ames, D.; Masters, C.L.; Salvado, O.; Villemagne, V.L.; Rowe, C.C.; AIBL Research Group. Implementing the centiloid transformation for 11C-PiB and β-amyloid 18F-PET tracers using CapAIBL. Neuroimage 2018, 183, 387–393. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Krueger, R.F.; Hobbs, K.A.; Conway, C.C.; Dick, D.M.; Dretsch, M.N.; Eaton, N.R.; Forbes, M.K.; Forbush, K.T.; Keyes, K.M.; Latzman, R.D.; et al. Validity and utility of hierarchical taxonomy of psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry 2021, 20, 171–193. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef] [PubMed]
- Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Meroño, T.; Nikoloudaki, O.; Calabrese, F.M.; Turroni, S.; Taverniti, V.; et al. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: A systematic review. Nutrients 2022, 14, 2559. [Google Scholar] [CrossRef]
- Maynard, C.; Weinkove, D. The gut microbiota and ageing. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science; Springer: Singapore, 2019; pp. 351–371. [Google Scholar]
- Ragonnaud, E.; Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing 2021, 18, 2. [Google Scholar] [CrossRef]
- D’Alonzo, Z.J.; Lam, V.; Takechi, R.; Nesbit, M.; Vaccarezza, M.; Mamo, J.C. Peripheral metabolism of lipoprotein-amyloid beta as a risk factor for Alzheimer’s disease: Potential interactive effects of APOE genotype with dietary fats. Genes Nutr. 2023, 18, 2. [Google Scholar] [CrossRef]
- Liaquat, M.; Le Gall, G.; Scholey, A.; Pontifex, M.G.; Bastiaanssen, T.F.; Muller, M.; Minihane, A.M.; Vauzour, D. APOE4 genotype shapes the role of dietary fibers in cognitive health through gut microbiota changes. Gut Microbes 2025, 17, 2526133. [Google Scholar] [CrossRef]
- La Torre, D.; Verbeke, K.; Dalile, B. Dietary fibre and the gut–brain axis: Microbiota-dependent and independent mechanisms of action. Gut Microbiome 2021, 2, e3. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Zhang, W.; Chen, F.; Liu, B. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: A narrative review. Crit. Rev. Food Sci. Nutr. 2025, 65, 265–286. [Google Scholar] [CrossRef]
- Ferreira-Halder, C.V.; de Sousa Faria, A.V.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 643–648. [Google Scholar] [CrossRef]
- Paddison Rees, N. Investigating the Potential Senomorphic Properties of SCFA Butyrate on Aged T Cells. Master’s Thesis, University of Birmingham, Birmingham, UK, 2024. [Google Scholar]
- Kim, C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Ma, Y.; Cai, B.; Zhang, A.; Zhang, L. Exploring the mechanism of action of acupuncture for Alzheimer’s disease based on the immune-metabolic network perspective. Integr. Med. Discov. 2025, 9, e25014. [Google Scholar] [CrossRef]
- Chandra, S.; Vassar, R.J. Gut microbiome-derived metabolites in Alzheimer’s disease: Regulation of immunity and potential for therapeutics. Immunol. Rev. 2024, 327, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Fu, Y.; Yin, N.; Qin, W.; Huang, Z.; Xiao, W.; Huang, H.; Mei, Q.; Fan, J.; Zeng, Y.; et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis. Am. J. Physiol. -Gastrointest. Liver Physiol. 2024, 326, G607–G621. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Tillotson, G.; MacKenzie, T.N.; Warren, C.A.; Wexler, H.M.; Goldstein, E.J. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024, 85, 102819. [Google Scholar] [CrossRef]
- Abdelsalam, N.A.; Hegazy, S.M.; Aziz, R.K. The curious case of Prevotella copri. Gut Microbes 2023, 15, 2249152. [Google Scholar] [CrossRef]
- Connors, J.; Dawe, N.; Van Limbergen, J. The role of succinate in the regulation of intestinal inflammation. Nutrients 2018, 11, 25. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, C.; Wang, D.; Wu, Q.; Feng, B. Succinate’s Dual Roles in Inflammatory Bowel Disease: A Narrative Review of Microbiota-Metabolism-Immune Crosstalk and Therapeutic Implications. J. Inflamm. Res. 2025, 18, 15017–15032. [Google Scholar] [CrossRef]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef] [PubMed]
- Ramos Meyers, G.; Samouda, H.; Bohn, T. Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients 2022, 14, 5361. [Google Scholar] [CrossRef] [PubMed]
- Marizzoni, M.; Mirabelli, P.; Mombelli, E.; Coppola, L.; Lopizzo, N.; Luongo, D.; Naviglio, D.; Salamone, D.; Salvatore, M.; Cattaneo, A.; et al. Association of microbiota-derived products with astrogliosis and neurodegeneration in patients with Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, e064469. [Google Scholar] [CrossRef]
- Marizzoni, M.; Coppola, L.; Festari, C.; Luongo, D.; Salamone, D.; Naviglio, D.; Soricelli, A.; Mirabelli, P.; Salvatore, M.; Cattaneo, A. Circulating short chain fatty acids in Alzheimer’s disease: A cross-sectional observational study. J. Alzheimer’s Dis. 2025, 106, 38–43. [Google Scholar] [CrossRef]
- Qian, X.-H.; Xie, R.-Y.; Liu, X.-L.; Chen, S.-D.; Tang, H.-D. Mechanisms of short-chain fatty acids derived from gut microbiota in Alzheimer’s disease. Aging Dis. 2022, 13, 1252–1266. [Google Scholar] [CrossRef]
- Killingsworth, J.; Sawmiller, D.; Shytle, R.D. Propionate and Alzheimer’s disease. Front. Aging Neurosci. 2021, 12, 580001. [Google Scholar] [CrossRef]
- Murray, E.R.; Kemp, M.; Nguyen, T.T. The microbiota–gut–brain axis in Alzheimer’s disease: A review of taxonomic alterations and potential avenues for interventions. Arch. Clin. Neuropsychol. 2022, 37, 595–607. [Google Scholar] [CrossRef]
- Heravi, F.S.; Naseri, K.; Hu, H. Gut microbiota composition in patients with neurodegenerative disorders (Parkinson’s and Alzheimer’s) and healthy controls: A systematic review. Nutrients 2023, 15, 4365. [Google Scholar] [CrossRef]
- Burakova, I.; Smirnova, Y.; Gryaznova, M.; Syromyatnikov, M.; Chizhkov, P.; Popov, E.; Popov, V. The effect of short-term consumption of lactic acid bacteria on the gut microbiota in obese people. Nutrients 2022, 14, 3384. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, L.; Schröder, J.; Schuster, I.S.; Nakai, M.; Sun, G.; Sun, Y.B.; Mariño, E.; Degli-Esposti, M.A.; Marques, F.Z.; et al. Dietary fiber and microbiota metabolite receptors enhance cognition and alleviate disease in the 5xFAD mouse model of Alzheimer’s disease. J. Neurosci. 2023, 43, 6460–6475. [Google Scholar] [CrossRef]
- Romanenko, M.; Kholin, V.; Koliada, A.; Vaiserman, A. Nutrition, gut microbiota, and Alzheimer’s disease. Front. Psychiatry 2021, 12, 712673. [Google Scholar] [CrossRef]
- Leeming, E.R.; Louca, P.; Gibson, R.; Menni, C.; Spector, T.D.; Le Roy, C.I. The complexities of the diet-microbiome relationship: Advances and perspectives. Genome Med. 2021, 13, 10. [Google Scholar] [CrossRef]
- Binosha Fernando, W.; Brennan, C.S.; Martins, R.N. The Products of Fermentation and Their Effects on Metabolism, Alzheimer’s Disease, and Other Neurodegenerative Diseases: Role of Short-Chain Fatty Acids (SCFA). In Neurodegeneration and Alzheimer’s Disease: The Role of Diabetes, Genetics, Hormones, and Lifestyle; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 311–333. [Google Scholar]






| Characteristic | CU Aβ Low (n = 68) | CU Aβ High (n = 19) | p-Value |
|---|---|---|---|
| Age, median (IQR) | 76 (67–80) | 81 (76–83) | 0.019 |
| Gender (Female), n (%) | 48 (70.6%) | 9 (47.4%) | 0.107 |
| Education, mean ± SD | 14.43 ± 3.00 | 13.00 ± 2.47 | 0.057 |
| APOE4 Positivity, n (%) | 9 (13.2%) | 7 (58.3%) | 0.026 |
| BMI, mean ± SD | 25.41 ± 3.52 | 26.27 ± 4.37 | 0.467 |
| Total SCFAs (µmol/g), median (IQR) | 56.0 (42.8–68.3) | 60.0 (36.9–77.0) | 0.90 |
| Acetic acid (µmol/g), median (IQR) | 35.3 (26.3–43.3) | 32.6 (24.5–47.5) | 0.89 |
| Propionic acid (µmol/g), median (IQR) | 8.9 (6.1–11.7) | 9.7 (5.9–13.5) | 0.62 |
| Isobutyric acid (µmol/g), median (IQR) | 1.2 (0.84–1.60) | 1.2 (0.94–1.45) | 0.89 |
| Butyric acid (µmol/g), median (IQR) | 6.8 (2.5–9.2) | 8.1 (3.0–13.0) | 0.61 |
| Isovaleric acid (µmol/g), median (IQR) | 1.9 (1.2–2.5) | 1.7 (1.45–2.35) | 0.996 |
| Valeric acid (µmol/g), median (IQR) | 1.3 (0.82–1.63) | 1.4 (1.05–2.05) | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dissanayaka, D.M.S.; Jayasinghe, T.N.; Sohrabi, H.R.; Rainey-Smith, S.R.; Taddei, K.; Masters, C.L.; Martins, R.N.; Fernando, W.M.A.D.B. Gut Microbial Composition and Short-Chain Fatty Acid Metabolism in Cognitively Unimpaired Adults Stratified by Amyloid-β Status. Biomolecules 2026, 16, 18. https://doi.org/10.3390/biom16010018
Dissanayaka DMS, Jayasinghe TN, Sohrabi HR, Rainey-Smith SR, Taddei K, Masters CL, Martins RN, Fernando WMADB. Gut Microbial Composition and Short-Chain Fatty Acid Metabolism in Cognitively Unimpaired Adults Stratified by Amyloid-β Status. Biomolecules. 2026; 16(1):18. https://doi.org/10.3390/biom16010018
Chicago/Turabian StyleDissanayaka, D. M. Sithara, Thilini N. Jayasinghe, Hamid R. Sohrabi, S. R. Rainey-Smith, Kevin Taddei, Colin L. Masters, Ralph N. Martins, and W. M. A. D. Binosha Fernando. 2026. "Gut Microbial Composition and Short-Chain Fatty Acid Metabolism in Cognitively Unimpaired Adults Stratified by Amyloid-β Status" Biomolecules 16, no. 1: 18. https://doi.org/10.3390/biom16010018
APA StyleDissanayaka, D. M. S., Jayasinghe, T. N., Sohrabi, H. R., Rainey-Smith, S. R., Taddei, K., Masters, C. L., Martins, R. N., & Fernando, W. M. A. D. B. (2026). Gut Microbial Composition and Short-Chain Fatty Acid Metabolism in Cognitively Unimpaired Adults Stratified by Amyloid-β Status. Biomolecules, 16(1), 18. https://doi.org/10.3390/biom16010018

