Nutraceuticals Against Oxidative Stress in Allergic Diseases
Abstract
1. Introduction
1.1. Exogenous Antioxidants
1.1.1. Vitamins
1.1.2. Polyphenols
1.1.3. Coenzyme Q10
1.1.4. Minerals
Zinc
Selenium
1.2. Probiotics
1.3. Medicals Plants
1.3.1. L’Allium Sativum
1.3.2. Capsaicin
1.3.3. Curcumin
1.4. Melatonin
1.5. L-Arginine
1.6. Omega-3
2. Methods
3. Results and Discussion
3.1. Bronchial Asthma
3.2. Atopic Dermatitis
3.3. Allergic Rhinitis
3.4. Urticaria and Angioedema
3.5. Allergic Conjunctivitis
3.6. Food Allergies
4. Discussion
5. Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPPH | 1,1′-diphenyl-2-picrylhydrazyl |
CAT | Catalase |
AC | Allergic conjunctivitis |
AR | Allergic rhinitis |
AOX | Antioxidant processes |
ASL | Argininosuccinate lyase |
ASS | Argininosuccinate synthase |
AD | Atopic dermatitis |
BDMC | Bisdemethoxycurcumin |
BA | Bronchial asthma |
CoQ10 | Coenzyme Q10 |
CU | Chronic urticaria |
DCs | Dendritic cells |
EGCG | Epigallocatechin gallate |
FeNO | Fractional exhaled nitric oxide |
GPx | Glutathione peroxidase |
HOCI | Hypochlorous acid |
LDL | Low-density lipoproteins |
MC | Mast cells |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
PUFAs | Polyunsaturated fatty acids |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
UAS7 | Urticaria activity score over 7 days |
References
- Thannickal, V.J.; Fanburg, B.L. Reactive Oxygen Species in Cell Signaling. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L1005–L1028. [Google Scholar] [CrossRef]
- D’Autréaux, B.; Toledano, M.B. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.-H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef]
- Yu, Y.; Cui, Y.; Niedernhofer, L.J.; Wang, Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem. Res. Toxicol. 2016, 29, 2008–2039. [Google Scholar] [CrossRef]
- Demple, B.; Amábile-Cuevas, C.F. Redox Redux: The Control of Oxidative Stress Responses. Cell 1991, 67, 837–839. [Google Scholar] [CrossRef]
- Baker, A.; Lin, C.-C.; Lett, C.; Karpinska, B.; Wright, M.H.; Foyer, C.H. Catalase: A Critical Node in the Regulation of Cell Fate. Free Radic. Biol. Med. 2023, 199, 56–66. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. The Role of Glutathione Peroxidase-1 in Health and Disease. Free Radic. Biol. Med. 2022, 188, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Cerda, T.; Xie, K.; Mojadadi, A.; Witting, P.K. Myeloperoxidase in Health and Disease. Int. J. Mol. Sci. 2023, 24, 7725. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Cross, C.E.; Halliwell, B.; Borish, E.T.; Pryor, W.A.; Ames, B.N.; Saul, R.L.; McCORD, J.M.; Harman, D. Oxygen Radicals and Human Disease. Ann. Intern. Med. 1987, 107, 526–545. [Google Scholar] [CrossRef]
- Carr, A.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Martel, J.; Ojcius, D.M.; Ko, Y.-F.; Ke, P.-Y.; Wu, C.-Y.; Peng, H.-H.; Young, J.D. Hormetic Effects of Phytochemicals on Health and Longevity. Trends Endocrinol. Metab. 2019, 30, 335–346. [Google Scholar] [CrossRef]
- Aronson, J.K. Defining ‘Nutraceuticals’: Neither Nutritious nor Pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef]
- Chandra, S.; Saklani, S.; Kumar, P.; Kim, B.; Coutinho, H.D.M. Nutraceuticals: Pharmacologically Active Potent Dietary Supplements. BioMed Res. Int. 2022, 2022, 2051017. [Google Scholar] [CrossRef]
- Schmitt, J.; Ferro, A. Nutraceuticals: Is There Good Science behind the Hype? Br. J. Clin. Pharmacol. 2013, 75, 585–587. [Google Scholar] [CrossRef]
- Mannucci, C.; Casciaro, M.; Sorbara, E.E.; Calapai, F.; Di Salvo, E.; Pioggia, G.; Navarra, M.; Calapai, G.; Gangemi, S. Nutraceuticals against Oxidative Stress in Autoimmune Disorders. Antioxidants 2021, 10, 261. [Google Scholar] [CrossRef]
- Korczowska-Łącka, I.; Słowikowski, B.; Piekut, T.; Hurła, M.; Banaszek, N.; Szymanowicz, O.; Jagodziński, P.P.; Kozubski, W.; Permoda-Pachuta, A.; Dorszewska, J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants 2023, 12, 1811. [Google Scholar] [CrossRef]
- Vasiliou, J.E.; Lui, S.; Walker, S.A.; Chohan, V.; Xystrakis, E.; Bush, A.; Hawrylowicz, C.M.; Saglani, S.; Lloyd, C.M. Vitamin D Deficiency Induces TH2 Skewing and Eosinophilia in Neonatal Allergic Airways Disease. Allergy 2014, 69, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, Q.; Zhang, G.; Tian, X.; Li, Y.; Wang, Z.; Zhao, Y.; Chen, Y.; Luo, Z. Vitamin D Supplementation and Allergic Diseases during Childhood: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3947. [Google Scholar] [CrossRef] [PubMed]
- Cook-Mills, J.M.; Averill, S.H.; Lajiness, J.D. Asthma, Allergy and Vitamin E: Current and Future Perspectives. Free Radic. Biol. Med. 2022, 179, 388–402. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Ascorbic Acid as Antioxidant. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2023; Volume 121, pp. 247–270. ISBN 978-0-443-15768-4. [Google Scholar]
- Du, Y.-T.; Long, Y.; Tang, W.; Liu, X.-F.; Dai, F.; Zhou, B. Prooxidative Inhibition against NF-κB-Mediated Inflammation by Pharmacological Vitamin C. Free Radic. Biol. Med. 2022, 180, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kianian, F.; Karimian, S.M.; Kadkhodaee, M.; Takzaree, N.; Seifi, B.; Adeli, S.; Harati, E.; Sadeghipour, H.R. Combination of Ascorbic Acid and Calcitriol Attenuates Chronic Asthma Disease by Reductions in Oxidative Stress and Inflammation. Respir. Physiol. Neurobiol. 2019, 270, 103265. [Google Scholar] [CrossRef]
- Ghalibaf, M.H.E.; Kianian, F.; Beigoli, S.; Behrouz, S.; Marefati, N.; Boskabady, M.; Boskabady, M.H. The Effects of Vitamin C on Respiratory, Allergic and Immunological Diseases: An Experimental and Clinical-Based Review. Inflammopharmacol 2023, 31, 653–672. [Google Scholar] [CrossRef]
- Joshi, M.; Hiremath, P.; John, J.; Ranadive, N.; Nandakumar, K.; Mudgal, J. Modulatory Role of Vitamins A, B3, C, D, and E on Skin Health, Immunity, Microbiome, and Diseases. Pharmacol. Rep. 2023, 75, 1096–1114. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Tunon, M.; Garcia-Mediavilla, M.; Sanchez-Campos, S.; Gonzalez-Gallego, J. Potential of Flavonoids as Anti-Inflammatory Agents: Modulation of Pro-Inflammatory Gene Expression and Signal Transduction Pathways. Curr. Drug Metab. 2009, 10, 256–271. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Zawawi, N.A.; Ahmad, H.; Madatheri, R.; Fadilah, N.I.M.; Maarof, M.; Fauzi, M.B. Flavonoids as Natural Anti-Inflammatory Agents in the Atopic Dermatitis Treatment. Pharmaceutics 2025, 17, 261. [Google Scholar] [CrossRef]
- De Almeida Brasiel, P.G.; Guimarães, F.V.; Rodrigues, P.M.; Bou-Habib, D.C.; Carvalho, V.D.F. Therapeutic Efficacy of Flavonoids in Allergies: A Systematic Review of Randomized Controlled Trials. J. Immunol. Res. 2022, 2022, 8191253. [Google Scholar] [CrossRef] [PubMed]
- Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A Multitargeted Agent for Age-Associated Chronic Diseases. Cell Cycle 2008, 7, 1020–1035. [Google Scholar] [CrossRef]
- Kodali, M.; Parihar, V.K.; Hattiangady, B.; Mishra, V.; Shuai, B.; Shetty, A.K. Resveratrol Prevents Age-Related Memory and Mood Dysfunction with Increased Hippocampal Neurogenesis and Microvasculature and Reduced Glial Activation. Sci. Rep. 2015, 5, 8075. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Li, C.-X.; Kakar, M.U.; Khan, M.S.; Wu, P.-F.; Amir, R.M.; Dai, D.-F.; Naveed, M.; Li, Q.-Y.; Saeed, M.; et al. Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef] [PubMed]
- Littarru, G.P.; Tiano, L. Bioenergetic and Antioxidant Properties of Coenzyme Q10: Recent Developments. Mol. Biotechnol. 2007, 37, 31–37. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef]
- Couce, M.L.; Saenz de Pipaon, M. Bone Mineralization and Calcium Phosphorus Metabolism. Nutrients 2021, 13, 3692. [Google Scholar] [CrossRef]
- Peroni, D.G.; Hufnagl, K.; Comberiati, P.; Roth-Walter, F. Lack of Iron, Zinc, and Vitamins as a Contributor to the Etiology of Atopic Diseases. Front. Nutr. 2023, 9, 1032481. [Google Scholar] [CrossRef]
- Faghfouri, A.H.; Zarezadeh, M.; Aghapour, B.; Izadi, A.; Rostamkhani, H.; Majnouni, A.; Abu-Zaid, A.; Kord Varkaneh, H.; Ghoreishi, Z.; Ostadrahimi, A. Clinical Efficacy of Zinc Supplementation in Improving Antioxidant Defense System: A Comprehensive Systematic Review and Time-Response Meta-Analysis of Controlled Clinical Trials. Eur. J. Pharmacol. 2021, 907, 174243. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef]
- Gozzi-Silva, S.C.; Teixeira, F.M.E.; Duarte, A.J.D.S.; Sato, M.N.; Oliveira, L.D.M. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front. Nutr. 2021, 8, 674258. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Y.; Wu, Y. Lower Circulating Zinc and Selenium Levels Are Associated with an Increased Risk of Asthma: Evidence from a Meta-Analysis. Public Health Nutr. 2020, 23, 1555–1562. [Google Scholar] [CrossRef]
- Zhang, P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023, 15, 3683. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Winkler, P.; Ghadimi, D.; Schrezenmeir, J.; Kraehenbuhl, J.-P. Molecular and Cellular Basis of Microflora-Host Interactions. J. Nutr. 2007, 137, 756S–772S. [Google Scholar] [CrossRef] [PubMed]
- Michail, S. The Role of Probiotics in Allergic Diseases. Allergy Asthma Clin. Immunol. 2009, 5, 5. [Google Scholar] [CrossRef]
- Eslami, M.; Bahar, A.; Keikha, M.; Karbalaei, M.; Kobyliak, N.M.; Yousefi, B. Probiotics Function and Modulation of the Immune System in Allergic Diseases. Allergol. Immunopathol. 2020, 48, 771–788. [Google Scholar] [CrossRef]
- Niers, L.E.M.; Hoekstra, M.O.; Timmerman, H.M.; Van Uden, N.O.; De Graaf, P.M.A.; Smits, H.H.; Kimpen, J.L.L.; Rijkers, G.T. Selection of Probiotic Bacteria for Prevention of Allergic Diseases: Immunomodulation of Neonatal Dendritic Cells. Clin. Exp. Immunol. 2007, 149, 344–352. [Google Scholar] [CrossRef]
- Farhat, Z.; Scheving, T.; Aga, D.S.; Hershberger, P.A.; Freudenheim, J.L.; Hageman Blair, R.; Mammen, M.J.; Mu, L. Antioxidant and Antiproliferative Activities of Several Garlic Forms. Nutrients 2023, 15, 4099. [Google Scholar] [CrossRef]
- Zare, A.; Farzaneh, P.; Pourpak, Z.; Zahedi, F.; Moin, M.; Shahabi, S.; Hassan, Z.M. Purified Aged Garlic Extract Modulates Allergic Airway Inflammation in BALB/c Mice. Iran. J. Allergy Asthma Immunol. 2008, 7, 133–141. [Google Scholar]
- Akhilender Naidu, K.; Thippeswamy, N.B. Inhibition of Human Low Density Lipoprotein Oxidation by Active Principles from Spices. Mol. Cell. Biochem. 2002, 229, 19–23. [Google Scholar] [CrossRef]
- Kempaiah, R.K.; Manjunatha, H.; Srinivasan, K. Protective Effect of Dietary Capsaicin on Induced Oxidation of Low-Density Lipoprotein in Rats. Mol. Cell. Biochem. 2005, 275, 7–13. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Fan, J.; Feng, Z.; Song, X. Pharmacological Activity of Capsaicin: Mechanisms and Controversies (Review). Mol. Med. Rep. 2024, 29, 38. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-S.; Chen, P.-N.; Hsieh, Y.-S.; Lin, C.-Y.; Lee, Y.-H.; Chu, S.-C. Capsaicin Protects Endothelial Cells and Macrophage against Oxidized Low-Density Lipoprotein-Induced Injury by Direct Antioxidant Action. Chem.-Biol. Interact. 2015, 228, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Dehzad, M.J.; Ghalandari, H.; Nouri, M.; Askarpour, M. Antioxidant and Anti-Inflammatory Effects of Curcumin/Turmeric Supplementation in Adults: A GRADE-Assessed Systematic Review and Dose–Response Meta-Analysis of Randomized Controlled Trials. Cytokine 2023, 164, 156144. [Google Scholar] [CrossRef]
- Mousa, A.M.; Alhumaydhi, F.A.; Abdellatif, A.A.H.; Abdulmonem, W.A.; AlKhowailed, M.S.; Alsagaby, S.A.; Al Rugaie, O.; Alnuqaydan, A.M.; Aljohani, A.S.M.; Aljasir, M.; et al. Curcumin and Ustekinumab Cotherapy Alleviates Induced Psoriasis in Rats through Their Antioxidant, Anti-Inflammatory, and Antiproliferative Effects. Cutan. Ocul. Toxicol. 2022, 41, 33–42. [Google Scholar] [CrossRef]
- Kaag, S.; Lorentz, A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023, 12, 2602. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Yan, G.-H.; Chai, O.H.; Song, C.H. Inhibitory Effects of Curcumin on Passive Cutaneous Anaphylactoid Response and Compound 48/80-Induced Mast Cell Activation. Anat. Cell Biol. 2010, 43, 36–43. [Google Scholar] [CrossRef]
- Kong, Z.-L.; Sudirman, S.; Lin, H.-J.; Chen, W.-N. In Vitro Anti-Inflammatory Effects of Curcumin on Mast Cell-Mediated Allergic Responses via Inhibiting FcεRI Protein Expression and Protein Kinase C Delta Translocation. Cytotechnology 2020, 72, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Hao, J.; Yang, Z.; Ma, C.; Gao, L.; Chen, Y.; Li, G.; Li, J. Anti-Allergic Effect of Dietary Polyphenols Curcumin and Epigallocatechin Gallate via Anti-Degranulation in IgE/Antigen-Stimulated Mast Cell Model: A Lipidomics Perspective. Metabolites 2023, 13, 628. [Google Scholar] [CrossRef] [PubMed]
- Haftcheshmeh, S.M.; Mirhafez, S.R.; Abedi, M.; Heydarlou, H.; Shakeri, A.; Mohammadi, A.; Sahebkar, A. Therapeutic Potency of Curcumin for Allergic Diseases: A Focus on Immunomodulatory Actions. Biomed. Pharmacother. 2022, 154, 113646. [Google Scholar] [CrossRef] [PubMed]
- Mayo, J.C.; Sainz, R.M. Melatonin from an Antioxidant to a Classic Hormone or a Tissue Factor: Experimental and Clinical Aspects 2019. Int. J. Mol. Sci. 2020, 21, 3645. [Google Scholar] [CrossRef]
- Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of Antioxidant Enzymes: A Significant Role for Melatonin. J. Pineal Res. 2004, 36, 1–9. [Google Scholar] [CrossRef]
- Maarsingh, H.; Zaagsma, J.; Meurs, H. Arginine Homeostasis in Allergic Asthma. Eur. J. Pharmacol. 2008, 585, 375–384. [Google Scholar] [CrossRef]
- Morris, C.R. Arginine and Asthma. In Nestlé Nutrition Institute Workshop Series; Makrides, M., Ochoa, J.B., Szajewska, H., Eds.; S. Karger AG: Basel, Switzerland, 2013; Volume 77, pp. 1–15. ISBN 978-3-318-02446-3. [Google Scholar]
- Wu, G.; Meininger, C.J.; McNeal, C.J.; Bazer, F.W.; Rhoads, J.M. Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. In Amino Acids in Nutrition and Health; Wu, G., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; Volume 1332, pp. 167–187. ISBN 978-3-030-74179-2. [Google Scholar]
- Sartorio, M.U.A.; Pendezza, E.; Coppola, S.; Paparo, L.; D’Auria, E.; Zuccotti, G.V.; Berni Canani, R. Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy. Nutrients 2021, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Zeyda, M.; Säemann, M.D.; Stuhlmeier, K.M.; Mascher, D.G.; Nowotny, P.N.; Zlabinger, G.J.; Waldhäusl, W.; Stulnig, T.M. Polyunsaturated Fatty Acids Block Dendritic Cell Activation and Function Independently of NF-κB Activation. J. Biol. Chem. 2005, 280, 14293–14301. [Google Scholar] [CrossRef]
- Kong, W.; Yen, J.-H.; Vassiliou, E.; Adhikary, S.; Toscano, M.G.; Ganea, D. Docosahexaenoic Acid Prevents Dendritic Cell Maturation and in Vitro and in Vivo Expression of the IL-12 Cytokine Family. Lipids Health Dis. 2010, 9, 12. [Google Scholar] [CrossRef]
- Michaeloudes, C.; Abubakar-Waziri, H.; Lakhdar, R.; Raby, K.; Dixey, P.; Adcock, I.M.; Mumby, S.; Bhavsar, P.K.; Chung, K.F. Molecular Mechanisms of Oxidative Stress in Asthma. Mol. Asp. Med. 2022, 85, 101026. [Google Scholar] [CrossRef]
- Paudel, K.R.; Dharwal, V.; Patel, V.K.; Galvao, I.; Wadhwa, R.; Malyla, V.; Shen, S.S.; Budden, K.F.; Hansbro, N.G.; Vaughan, A.; et al. Role of Lung Microbiome in Innate Immune Response Associated with Chronic Lung Diseases. Front. Med. 2020, 7, 554. [Google Scholar] [CrossRef]
- De Simoni, E.; Candelora, M.; Belleggia, S.; Rizzetto, G.; Molinelli, E.; Capodaglio, I.; Ferretti, G.; Bacchetti, T.; Offidani, A.; Simonetti, O. Role of Antioxidants Supplementation in the Treatment of Atopic Dermatitis: A Critical Narrative Review. Front. Nutr. 2024, 11, 1393673. [Google Scholar] [CrossRef] [PubMed]
- Anania, C.; Brindisi, G.; Martinelli, I.; Bonucci, E.; D’Orsi, M.; Ialongo, S.; Nyffenegger, A.; Raso, T.; Spatuzzo, M.; De Castro, G.; et al. Probiotics Function in Preventing Atopic Dermatitis in Children. Int. J. Mol. Sci. 2022, 23, 5409. [Google Scholar] [CrossRef]
- Gardner, K.G.; Gebretsadik, T.; Hartman, T.J.; Rosa, M.J.; Tylavsky, F.A.; Adgent, M.A.; Moore, P.E.; Kocak, M.; Bush, N.R.; Davis, R.L.; et al. Prenatal Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Childhood Atopic Dermatitis. J. Allergy Clin. Immunol. Pract. 2020, 8, 937–944. [Google Scholar] [CrossRef]
- Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter Canonica, G.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; et al. Allergic Rhinitis. Nat. Rev. Dis. Primers 2020, 6, 95. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Walker, A.; Pirwani, M.; Tahiri, M.; Syed, I. Allergic Rhinitis: Diagnosis and Management. Br. J. Hosp. Med. 2022, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shoshan, M.; Kanani, A.; Kalicinsky, C.; Watson, W. Urticaria. Allergy Asthma Clin. Immunol. 2024, 20, 64. [Google Scholar] [CrossRef]
- Saini, S.; Shams, M.; Bernstein, J.A.; Maurer, M. Urticaria and Angioedema Across the Ages. J. Allergy Clin. Immunol. Pract. 2020, 8, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Mołoń, M.; Biesiadecki, M.; Bożek, A.; Rachel, M. The Role of Oxidative Stress in Atopic Dermatitis and Chronic Urticaria. Antioxidants 2022, 11, 1590. [Google Scholar] [CrossRef]
- Jiang, S.; Hou, Y.; Meng, L.; Pu, X.; Zhu, X.; Tuo, Y.; Qian, F.; Mu, G. Effect of Lactiplantibacillus Plantarum HM-22 on Immunoregulation and Intestinal Microbiota in α-Lactalbumin-Induced Allergic Mice. Food Funct. 2021, 12, 8887–8898. [Google Scholar] [CrossRef]
- Di Costanzo, M.; Vella, A.; Infantino, C.; Morini, R.; Bruni, S.; Esposito, S.; Biasucci, G. Probiotics in Infancy and Childhood for Food Allergy Prevention and Treatment. Nutrients 2024, 16, 297. [Google Scholar] [CrossRef]
- Fu, L.; Peng, J.; Zhao, S.; Zhang, Y.; Su, X.; Wang, Y. Lactic Acid Bacteria-Specific Induction of CD4+Foxp3+T Cells Ameliorates Shrimp Tropomyosin-Induced Allergic Response in Mice via Suppression of mTOR Signaling. Sci. Rep. 2017, 7, 1987. [Google Scholar] [CrossRef]
- Mohseni, A.H.; Casolaro, V.; Bermúdez-Humarán, L.G.; Keyvani, H.; Taghinezhad-S, S. Modulation of the PI3K/Akt/mTOR Signaling Pathway by Probiotics as a Fruitful Target for Orchestrating the Immune Response. Gut Microbes 2021, 13, e1886844. [Google Scholar] [CrossRef]
- Goldin, J.; Hashmi, M.F.; Cataletto, M.E. Asthma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Allam, V.S.R.R.; Paudel, K.R.; Gupta, G.; Singh, S.K.; Vishwas, S.; Gulati, M.; Gupta, S.; Chaitanya, M.V.N.L.; Jha, N.K.; Gupta, P.K.; et al. Nutraceuticals and Mitochondrial Oxidative Stress: Bridging the Gap in the Management of Bronchial Asthma. Environ. Sci. Pollut. Res. 2022, 29, 62733–62754. [Google Scholar] [CrossRef]
- Xie, Q.; Yuan, J.; Wang, Y. Treating Asthma Patients with Probiotics: A Systematic Review and Meta-Analysis. Nutr. Hosp. 2023, 40, 829–838. [Google Scholar] [CrossRef]
- Harada, T.; Yamasaki, A.; Chikumi, H.; Hashimoto, K.; Okazaki, R.; Takata, M.; Fukushima, T.; Watanabe, M.; Kurai, J.; Halayko, A.J.; et al. γ-Tocotrienol Reduces Human Airway Smooth Muscle Cell Proliferation and Migration. Pulm. Pharmacol. Ther. 2015, 32, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Adam-Bonci, T.-I.; Bonci, E.-A.; Pârvu, A.-E.; Herdean, A.-I.; Moț, A.; Taulescu, M.; Ungur, A.; Pop, R.-M.; Bocșan, C.; Irimie, A. Vitamin D Supplementation: Oxidative Stress Modulation in a Mouse Model of Ovalbumin-Induced Acute Asthmatic Airway Inflammation. Int. J. Mol. Sci. 2021, 22, 7089. [Google Scholar] [CrossRef]
- Watkins, S.; Harrison, T.; Mushtaq, S. A 12-Week Double-Blind Randomised Controlled Trial Investigating the Effect of Dietary Supplementation with 125 μg/d Vitamin D in Adults with Asthma. Br. J. Nutr. 2024, 132, 738–749. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, G.; Chen, J.; Yuan, S.; Wu, J.; Zhang, J.; Zhang, L.; Yuan, J.; Lin, J.; Chen, J.; et al. The Correlation between Selenium Intake and Lung Function in Asthmatic People: A Cross-Sectional Study. Front. Nutr. 2024, 11, 1362119. [Google Scholar] [CrossRef]
- Girdhar, N.; Kansal, H.; Garg, K.; Sharma, S.; Prabhu, K.S.; Chopra, V.; Tinkov, A.A.; Skalny, A.V.; Prakash, N.T. Correlation of Serum Selenium in Asthma Patients with Severity of the Disorder. Biol. Trace Elem. Res. 2022, 200, 4949–4954. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, I.; Kotb, M.; Yassin, N.; Rabie, W.; Alsayed, A.; Hamed, D. Zinc Supplementation Improves Nocturnal Asthma Symptoms. Pediatr. Sci. J. 2022, 2, 10–16. [Google Scholar] [CrossRef]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef] [PubMed]
- Frazier, W.; Bhardwaj, N. Atopic Dermatitis: Diagnosis and Treatment. Am. Fam. Physician 2020, 101, 590–598. [Google Scholar]
- Barta, K.; Fonacier, L.S.; Hart, M.; Lio, P.; Tullos, K.; Sheary, B.; Winders, T.A. Corticosteroid Exposure and Cumulative Effects in Patients with Eczema. Ann. Allergy Asthma Immunol. 2023, 130, 93–99.e10. [Google Scholar] [CrossRef] [PubMed]
- Amestejani, M.; Salehi, B.S.; Vasigh, M.; Sobhkhiz, A.; Karami, M.; Alinia, H.; Kamrava, S.K.; Shamspour, N.; Ghalehbaghi, B.; Behzadi, A.H. Vitamin D Supplementation in the Treatment of Atopic Dermatitis: A Clinical Trial Study. J. Drugs Dermatol. 2012, 11, 327–330. [Google Scholar]
- Lara-Corrales, I.; Huang, C.M.; Parkin, P.C.; Rubio-Gomez, G.A.; Posso-De Los Rios, C.J.; Maguire, J.; Pope, E. Vitamin D Level and Supplementation in Pediatric Atopic Dermatitis: A Randomized Controlled Trial. J. Cutan. Med. Surg. 2019, 23, 44–49. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Lin, M.-H.; Lee, J.-H.; Lee, P.-L.; Dai, Y.-S.; Chu, K.-H.; Sun, C.; Lin, Y.-T.; Wang, L.-C.; Yu, H.-H.; et al. Melatonin Supplementation for Children with Atopic Dermatitis and Sleep Disturbance: A Randomized Clinical Trial. JAMA Pediatr. 2016, 170, 35. [Google Scholar] [CrossRef]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Alverina, A.C.; Susanto, M. The Role of Polyphenols in Atopic Dermatitis: A Literature Review. World Nutr. J. 2024, 7, 111–117. [Google Scholar] [CrossRef]
- Tian, C.; Feng, Y.; Chen, T.; Zhang, Z.; He, X.; Jiang, L.; Liu, M. EGCG Restores Keratinocyte Autophagy to Promote Diabetic Wound Healing through the AMPK/ULK1 Pathway. Front. Biosci. (Landmark Ed.) 2023, 28, 324. [Google Scholar] [CrossRef]
- Sun, M.; Luo, J.; Liu, H.; Xi, Y.; Lin, Q. Can Mixed Strains of Lactobacillus and Bifidobacterium Reduce Eczema in Infants under Three Years of Age? A Meta-Analysis. Nutrients 2021, 13, 1461. [Google Scholar] [CrossRef] [PubMed]
- Leermakers, E.T.M.; Sonnenschein-van Der Voort, A.M.M.; Heppe, D.H.M.; De Jongste, J.C.; Moll, H.A.; Franco, O.H.; Hofman, A.; Jaddoe, V.W.V.; Duijts, L. Maternal Fish Consumption during Pregnancy and Risks of Wheezing and Eczema in Childhood: The Generation R Study. Eur. J. Clin. Nutr. 2013, 67, 353–359. [Google Scholar] [CrossRef]
- Luo, C.; Peng, S.; Li, M.; Ao, X.; Liu, Z. The Efficacy and Safety of Probiotics for Allergic Rhinitis: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 848279. [Google Scholar] [CrossRef]
- Zajac, A.E.; Adams, A.S.; Turner, J.H. A Systematic Review and Meta-analysis of Probiotics for the Treatment of Allergic Rhinitis. Int. Forum Allergy Rhinol. 2015, 5, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, A.; Yu, L.; Qin, G. The Role of Probiotics in Prevention and Treatment for Patients with Allergic Rhinitis: A Systematic Review. Am. J. Rhinol. Allergy 2015, 29, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Hu, T.; Kang, C.; Liu, J.; Zhang, J.; Ran, H.; Zeng, X.; Qiu, S. Research Advances in the Treatment of Allergic Rhinitis by Probiotics. J. Asthma Allergy 2022, 15, 1413–1428. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, H.; Awan, M.O.; Awan, M.S.; Mustafa, K.; Das, J.K.; Ahmed, S.K. Role of Probiotics in Patients with Allergic Rhinitis: A Systematic Review of Systematic Reviews. Int. Arch. Otorhinolaryngol. 2022, 26, e744–e752. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Guo, J.; Li, Q.; Su, J. Effects of Serum Vitamin D Levels and Vitamin D Supplementation on Urticaria: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4911. [Google Scholar] [CrossRef]
- Piotin, A.; Oulehri, W.; Charles, A.-L.; Tacquard, C.; Collange, O.; Mertes, P.-M.; Geny, B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants 2024, 13, 920. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Hu, S.; Ge, S.; Jia, M.; Wang, N. Resveratrol Inhibits MRGPRX2-Mediated Mast Cell Activation via Nrf2 Pathway. Int. Immunopharmacol. 2021, 93, 107426. [Google Scholar] [CrossRef]
- Civelek, M.; Bilotta, S.; Lorentz, A. Resveratrol Attenuates Mast Cell Mediated Allergic Reactions: Potential for Use as a Nutraceutical in Allergic Diseases? Mol. Nutr. Food Res. 2022, 66, 2200170. [Google Scholar] [CrossRef]
- Shaik, Y.; Caraffa, A.; Ronconi, G.; Lessiani, G.; Conti, P. Impact of Polyphenols on Mast Cells with Special Emphasis on the Effect of Quercetin and Luteolin. Central Eur. J. Immunol. 2018, 43, 476–481. [Google Scholar] [CrossRef]
- Ding, Y.; Che, D.; Li, C.; Cao, J.; Wang, J.; Ma, P.; Zhao, T.; An, H.; Zhang, T. Quercetin Inhibits Mrgprx2-Induced Pseudo-Allergic Reaction via PLCγ-IP3R Related Ca2+ Fluctuations. Int. Immunopharmacol. 2019, 66, 185–197. [Google Scholar] [CrossRef]
- Dabbaghzadeh, A.; Ghaffari, J.; Moradi, S.; Sayadian separghan, D. Probiotics on Chronic Urticaria: A Randomized Clinical Trial Study. Casp. J. Intern. Med. 2023, 14, 192–198. [Google Scholar] [CrossRef]
- Villegas, B.V.; Benitez-del-Castillo, J.M. Current Knowledge in Allergic Conjunctivitis. Turk. J. Ophthalmol. 2021, 51, 45–54. [Google Scholar] [CrossRef]
- Portnoy, J.M.; Dinakar, C. Review of Cetirizine Hydrochloride for the Treatment of Allergic Disorders. Expert Opin. Pharmacother. 2004, 5, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Ricca, V.; Paola, F.; Alessandra, B.; Riccio, A.M.; Milanese, M.; Frati, F.; Tosca, M.A. Duration of Antiinflammatory and Symptomatic Effects after Suspension of Intranasal Corticosteroid in Persistent Allergic Rhinitis. Eur. Ann. Allergy Clin. Immunol. 2004, 36, 63–66. [Google Scholar]
- Marseglia, G.; Licari, A.; Ciprandi, G. Complementary Treatment of Allergic Rhinoconjunctivitis: The Role of the Nutraceutical Lertal(R). Acta Biomed. Atenei Parm. 2020, 91, 97–106. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, J.-F.; Ma, L.-J.; Hu, Y.-J.; Li, P.; Wan, J.-B. Phytochemical and Phytopharmacological Review of Perilla frutescens L. (Labiatae), a Traditional Edible-Medicinal Herb in China. Food Chem. Toxicol. 2017, 108, 375–391. [Google Scholar] [CrossRef]
- Ariano, R. Efficacy of a Novel Food Supplement in the Relief of the Signs and Symptoms of Seasonal Allergic Rhinitis and in the Reduction of the Consumption of Anti-Allergic Drugs. Acta Biomed. 2015, 86, 53–58. [Google Scholar]
- Cosme-Blanco, W.; Arroyo-Flores, E.; Ale, H. Food Allergies. Pediatr. Rev. 2020, 41, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.M.; Coelho, B.S.L.; Vichi, T.M.; Santos, E.A.D.; Gondim, F.K.B.; Diniz, A.B.; Aguilar, E.C.; Cara, D.C.; Porto, L.C.J.; Castro, I.C.D.; et al. Oral Supplementation with Capsaicin Reduces Oxidative Stress and IL-33 on a Food Allergy Murine Model. World Allergy Organ. J. 2019, 12, 100045. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, E.; Gangemi, S.; Genovese, C.; Cicero, N.; Casciaro, M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. Plants 2023, 12, 3579. [Google Scholar] [CrossRef] [PubMed]
Allergic Disease | Antioxidants | Outcomes |
---|---|---|
ASTHMA |
| Probiotics (10 RCTs, n = 1101) significantly reduced FeNO levels, asthma symptom severity, and frequency of acute exacerbations. Vitamin D supplementation (125 μg/d, 12 weeks) improved FEV1/FVC ratio and modulated cytokine profile (↑IL-10, ↓TNF-α). Selenium intake (137–200 μg/d) correlated with improved lung function (↑FEV1, ↑FVC) in a cohort of 4541 patients. Vitamin E (γ-tocotrienol) reduced airway smooth muscle hyperplasia in preclinical models. Zinc supplementation showed benefits on lung inflammation in pediatric asthma [72,73]. |
ATOPIC DERMATITIS |
| In atopic dermatitis, antioxidants and nutraceuticals are emerging as promising supportive therapies. Vitamins such as D, E, A, and melatonin may help decrease clinical severity, improving itch, skin lesions, and sleep quality. Polyphenols like quercetin and EGCG modulate oxidative stress and key inflammatory pathways, contributing to better immune balance. Probiotics have been shown to lower the incidence of eczema, particularly when administered prenatally, while an appropriate maternal n-3/n-6 PUFA ratio during pregnancy appears protective against AD. Overall, these interventions may lessen corticosteroid dependence and enhance long-term disease management [74,75,76]. |
ALLERGIC RHINITIS |
| Probiotics, part of nutraceuticals, have shown promising results in allergic rhinitis, such as decreased symptoms and reduced medication use. Their great importance lies in modulating the immune response (shifting Th2 dominance, enhancing Treg activity, and altering the gut microbiota), suggesting a supportive role in managing allergic inflammation and improving quality of life [77,78]. |
URTICARIA AND ANGIOEDEMA |
| In urticaria and angioedema, mast cell degranulation with histamine release is the main pathogenic mechanism, while ROS contribute to chronic inflammation. Evidence shows that low vitamin D levels are often associated with chronic urticaria, and supplementation leads to improved symptom control and quality of life. Correcting vitamin D deficiency may therefore represent a useful adjunctive strategy in the management of these conditions [79,80,81]. |
FOOD ALLERGY |
| Quercetin protects LDL from oxidative damage through its antioxidant activity, while capsaicin reduces oxidative stress, preserves glutathione, and enhances key antioxidant enzymes. Probiotics show promising immunomodulatory effects in food allergies: Lactobacillus plantarum HM22 increases regulatory cytokines and reduces IgE and IL-4, Lactobacillus acidophilus KLDS 1.0738 suppresses the TLR4/NF-κB pathway via miR-146a, and Bacillus coagulans 09.712 strengthens the epithelial barrier, stimulates Treg cells, and decreases Th17 responses. These findings suggest that bioactive compounds and probiotics may significantly modulate oxidative stress and immune responses, representing promising strategies for the prevention and treatment of food allergies [82,83,84,85]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, M.; Ventre, A.; Dato, E.; Casciaro, M.; Gangemi, S. Nutraceuticals Against Oxidative Stress in Allergic Diseases. Biomolecules 2025, 15, 1347. https://doi.org/10.3390/biom15091347
Di Salvo M, Ventre A, Dato E, Casciaro M, Gangemi S. Nutraceuticals Against Oxidative Stress in Allergic Diseases. Biomolecules. 2025; 15(9):1347. https://doi.org/10.3390/biom15091347
Chicago/Turabian StyleDi Salvo, Marilena, Alessandra Ventre, Enrica Dato, Marco Casciaro, and Sebastiano Gangemi. 2025. "Nutraceuticals Against Oxidative Stress in Allergic Diseases" Biomolecules 15, no. 9: 1347. https://doi.org/10.3390/biom15091347
APA StyleDi Salvo, M., Ventre, A., Dato, E., Casciaro, M., & Gangemi, S. (2025). Nutraceuticals Against Oxidative Stress in Allergic Diseases. Biomolecules, 15(9), 1347. https://doi.org/10.3390/biom15091347