Implicit Solvent Models and Their Applications in Biophysics
Abstract
1. Introduction
2. Classical Implicit Solvent Models
2.1. The Beginning of an Era
2.2. Poisson–Boltzmann Equation
2.3. Born Equation
2.4. The DelPhI Model
2.5. The APBS Model
2.6. The ABSINTH Model
2.7. Quasi-Chemical Theory
2.8. Transfer Free Energy Approach
2.9. The GBNSR6 Model
3. Implicit Solvation Models in Molecular Quantum Mechanics
3.1. Classical Electrostatic Models
3.2. Quantum Mechanical Continuum Models
3.3. Quantum-Centric Implicit Solvation
4. Machine Learning-Augmented Implicit Solvent Models
5. Some Applications in Biology
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABSINTH | self-assembly of biomolecules studied by an implicit, novel, and tunable Hamiltonian |
APBS | Adaptive Poisson–Boltzmann Solver |
ASA | Accessible surface area |
CFA | Coulomb area approximation |
CHA | The charge hydration asymmetry |
COSMO | Conductor-like Screening Model |
COSMO-RS | Conductor-like Screening Model-Real Solvent |
DMFI | Direct mean-field interaction |
FDBB | Finite-Difference Poisson–Boltzmann |
GB | Generalized Born model |
GBNSR6 | Generalized Born R6 version |
IDPs | Intrinsically disordered proteins |
IWM-GB | Implicit water multipole Generalized Born |
MD | Molecular dynamics |
ML | Machine learning |
PB | Poisson–Boltzmann equation |
PCM | Polarizable Continuum Model |
PDB | Finite-difference Poisson |
PGNN | Physics-Guided Neural Network |
SAV | Solvent-accessible volume |
S-GB | Surface Generalized Born |
SMD | Solvation Model based on Density |
VISM | Level-Set Variational Implicit-Solvent Model |
BE | Boundary Element |
MBE | Multigrid Boundary Element |
VHS | Exposed Volume of the Hydration Shell |
UNRES | United Residue Force Field |
SQD | Sample-Based Quantum Diagonalization |
IEF-PCM | Integral Equation Formalism Polarizable Continuum Model |
PBML | Poisson–Boltzmann–based machine learning |
References
- Ren, P.; Chun, J.; Thomas, D.G.; Schnieders, M.J.; Marucho, M.; Zhang, J.; Baker, N.A. Biomolecular Electrostatics and Solvation: A Computational Perspective. Q. Rev. Biophys. 2012, 45, 427–491. [Google Scholar] [CrossRef]
- Levy, Y.; Onuchic, J.N. Water Mediation in Protein Folding and Molecular Recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. [Google Scholar] [CrossRef]
- Persch, E.; Dumele, O.; Diederich, F. Molecular Recognition in Chemical and Biological Systems. Angew. Chem. Int. Ed. 2015, 54, 3290–3327. [Google Scholar] [CrossRef]
- Gervasio, F.L.; Spiwok, V. Biomolecular Simulations in Structure-Based Drug Discovery; Methods and Principles in Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2019; Volume 75, ISBN 978-3-527-80684-3. [Google Scholar]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [Google Scholar] [CrossRef]
- Roux, B.; Simonson, T. Implicit Solvent Models. Biophys. Chem. 1999, 78, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Lei, Q.; Peng, B.; Kontogeorgis, G.M.; Liang, X. An Analysis of the Parameters in the Debye-Hückel Theory. Fluid Phase Equilibria 2022, 556, 113398. [Google Scholar] [CrossRef]
- Papazyan, A.; Warshel, A. Continuum and Dipole-Lattice Models of Solvation. J. Phys. Chem. B 1997, 101, 11254–11264. [Google Scholar] [CrossRef]
- Kleinjung, J.; Fraternali, F. Design and Application of Implicit Solvent Models in Biomolecular Simulations. Curr. Opin. Struct. Biol. 2014, 25, 126–134. [Google Scholar] [CrossRef]
- Holst, M.J. The Poisson-Boltzmann Equation. Available online: https://ccom.ucsd.edu/~mholst/pubs/dist/Hols94d.pdf (accessed on 16 August 2025).
- Onufriev, A.V.; Case, D.A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48, 275–296. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. SMx Continuum Models for Condensed Phases. In Trends and Perspectives in Modern Computational Science; Brill/VSP: Leiden, The Netherlands, 2006. [Google Scholar]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2009, 113, 4538–4543. [Google Scholar] [CrossRef]
- Gallicchio, E.; Levy, R.M. AGBNP: An analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 2004, 25, 479–499. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, E.; Paris, K.; Levy, R.M. The AGBNP2 Implicit Solvation Model. J. Chem. Theory Comput. 2009, 5, 2544–2564. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Tan, Y.-H.; Luo, R. Implicit Nonpolar Solvent Models. J. Phys. Chem. B 2007, 111, 12263–12274. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Vorobjev, Y.N. Chapter 8—Advances in Implicit Models of Water Solvent to Compute Conformational Free Energy and Molecular Dynamics of Proteins at Constant pH. In Advances in Protein Chemistry and Structural Biology; Christov, C., Ed.; Computational Chemistry Methods in Structural Biology; Academic Press: Cambridge, MA, USA, 2011; Volume 85, pp. 281–322. [Google Scholar]
- Jorgensen, W.L.; Tirado-Rives, J. The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. [Google Scholar] [CrossRef]
- Pratt, L.R.; Chandler, D. Effects of Solute–Solvent Attractive Forces on Hydrophobic Correlations. J. Chem. Phys. 1980, 73, 3434–3441. [Google Scholar] [CrossRef]
- Huang, D.M.; Chandler, D. The Hydrophobic Effect and the Influence of Solute−Solvent Attractions. J. Phys. Chem. B 2002, 106, 2047–2053. [Google Scholar] [CrossRef]
- Gonçalves, P.F.B.; Stassen, H. Calculation of the Free Energy of Solvation from Molecular Dynamics Simulations. Pure Appl. Chem. 2004, 76, 231–240. [Google Scholar] [CrossRef]
- Tan, C.; Yang, L.; Luo, R. How Well Does Poisson-Boltzmann Implicit Solvent Agree with Explicit Solvent? A Quantitative Analysis. J. Phys. Chem. B 2006, 110, 18680–18687. [Google Scholar] [CrossRef]
- Thomas, D.G.; Chun, J.; Chen, Z.; Wei, G.; Baker, N.A. Parameterization of a Geometric Flow Implicit Solvation Model. J. Comput. Chem. 2013, 34, 687–695. [Google Scholar] [CrossRef]
- Chen, Y.; Krämer, A.; Charron, N.E.; Husic, B.E.; Clementi, C.; Noé, F. Machine Learning Implicit Solvation for Molecular Dynamics. J. Chem. Phys. 2021, 155, 084101. [Google Scholar] [CrossRef]
- Vitalis, A.; Pappu, R.V. ABSINTH: A New Continuum Solvation Model for Simulations of Polypeptides in Aqueous Solutions. J. Comput. Chem. 2009, 30, 673–699. [Google Scholar] [CrossRef] [PubMed]
- Arsiccio, A.; Pisano, R.; Shea, J.-E. A New Transfer Free Energy Based Implicit Solvation Model for the Description of Disordered and Folded Proteins. J. Phys. Chem. B 2022, 126, 6180–6190. [Google Scholar] [CrossRef] [PubMed]
- Arsiccio, A.; Shea, J.-E. Protein Cold Denaturation in Implicit Solvent Simulations: A Transfer Free Energy Approach. J. Phys. Chem. B 2021, 125, 5222–5232. [Google Scholar] [CrossRef]
- Stultz, C.M. An Assessment of Potential of Mean Force Calculations with Implicit Solvent Models. J. Phys. Chem. B 2004, 108, 16525–16532. [Google Scholar] [CrossRef]
- Ballabio, F.; Paissoni, C.; Bollati, M.; de Rosa, M.; Capelli, R.; Camilloni, C. Accurate and Efficient SAXS/SANS Implementation Including Solvation Layer Effects Suitable for Molecular Simulations. J. Chem. Theory Comput. 2023, 19, 8401–8413. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493. [Google Scholar] [CrossRef]
- Brout, R. Molecular Field Theory, the Onsager Reaction Field and the Spherical Model. Phys. Phys. Fiz. 1967, 3, 317–329. [Google Scholar] [CrossRef]
- Kirkwood, J.G. Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions. J. Chem. Phys. 1934, 2, 351–361. [Google Scholar] [CrossRef]
- Decherchi, S.; Masetti, M.; Vyalov, I.; Rocchia, W. Implicit Solvent Methods for Free Energy Estimation. Eur. J. Med. Chem. 2015, 91, 27–42. [Google Scholar] [CrossRef]
- Dzubiella, J.; Swanson, J.M.J.; McCammon, J.A. Coupling Nonpolar and Polar Solvation Free Energies in Implicit Solvent Models. J. Chem. Phys. 2006, 124, 084905. [Google Scholar] [CrossRef] [PubMed]
- Matos, G.D.R.; Kyu, D.Y.; Loeffler, H.H.; Chodera, J.D.; Shirts, M.R.; Mobley, D.L. Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database. J. Chem. Eng. Data 2017, 62, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, R.A.; Thiel, A.C.; Lynn, J.R.; Casavant, T.L.; Ren, P.; Ponder, J.W.; Schnieders, M.J. A Generalized Kirkwood Implicit Solvent for the Polarizable AMOEBA Protein Model. J. Chem. Phys. 2023, 159, 054102. [Google Scholar] [CrossRef] [PubMed]
- Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; van Mourik, T.; Mitchell, J.B.O. A Review of Methods for the Calculation of Solution Free Energies and the Modelling of Systems in Solution. Phys. Chem. Chem. Phys. 2015, 17, 6174–6191. [Google Scholar] [CrossRef]
- Hermann, R.B. Theory of Hydrophobic Bonding. II. Correlation of Hydrocarbon Solubility in Water with Solvent Cavity Surface Area. J. Phys. Chem. 1972, 76, 2754–2759. [Google Scholar] [CrossRef]
- Knight, J.L.; Brooks, C.L. Surveying Implicit Solvent Models for Estimating Small Molecule Absolute Hydration Free Energies. J. Comput. Chem. 2011, 32, 2909–2923. [Google Scholar] [CrossRef]
- Lee, B.; Richards, F.M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55, 379–400. [Google Scholar] [CrossRef]
- Sanner, M.F.; Olson, A.J.; Spehner, J.-C. Reduced Surface: An Efficient Way to Compute Molecular Surfaces. Biopolymers 1996, 38, 305–320. [Google Scholar] [CrossRef]
- Shrake, A.; Rupley, J.A. Environment and Exposure to Solvent of Protein Atoms. Lysozyme and Insulin. J. Mol. Biol. 1973, 79, 351–371. [Google Scholar] [CrossRef]
- Cavallo, L.; Kleinjung, J.; Fraternali, F. POPS: A Fast Algorithm for Solvent Accessible Surface Areas at Atomic and Residue Level. Nucleic Acids Res. 2003, 31, 3364–3366. [Google Scholar] [CrossRef]
- Ooi, T.; Oobatake, M.; Némethy, G.; Scheraga, H.A. Accessible Surface Areas as a Measure of the Thermodynamic Parameters of Hydration of Peptides. Proc. Natl. Acad. Sci. USA 1987, 84, 3086–3090. [Google Scholar] [CrossRef]
- Eisenberg, D.; McLachlan, A.D. Solvation Energy in Protein Folding and Binding. Nature 1986, 319, 199–203. [Google Scholar] [CrossRef]
- Still, W.C.; Tempczyk, A.; Hawley, R.C.; Hendrickson, T. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 1990, 112, 6127–6129. [Google Scholar] [CrossRef]
- Kleinjung, J.; Scott, W.R.P.; Allison, J.R.; van Gunsteren, W.F.; Fraternali, F. Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations. J. Chem. Theory Comput. 2012, 8, 2391–2403. [Google Scholar] [CrossRef] [PubMed]
- Bottaro, S.; Lindorff-Larsen, K.; Best, R.B. Variational Optimization of an All-Atom Implicit Solvent Force Field to Match Explicit Solvent Simulation Data. J. Chem. Theory Comput. 2013, 9, 5641–5652. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, H.S.; Kaler, E.W.; Paulaitis, M.E. A “universal” Surface Area Correlation for Molecular Hydrophobic Phenomena. J. Am. Chem. Soc. 1999, 121, 9243–9244. [Google Scholar] [CrossRef]
- Lum, K.; Chandler, D.; Weeks, J.D. Hydrophobicity at Small and Large Length Scales. J. Phys. Chem. B 1999, 103, 4570–4577. [Google Scholar] [CrossRef]
- Gallicchio, E.; Kubo, M.M.; Levy, R.M. Enthalpy−Entropy and Cavity Decomposition of Alkane Hydration Free Energies: Numerical Results and Implications for Theories of Hydrophobic Solvation. J. Phys. Chem. B 2000, 104, 6271–6285. [Google Scholar] [CrossRef]
- Hummer, G.; Garde, S.; García, A.E.; Paulaitis, M.E.; Pratt, L.R. Hydrophobic Effects on a Molecular Scale. J. Phys. Chem. B 1998, 102, 10469–10482. [Google Scholar] [CrossRef]
- Pierotti, R.A. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev. 1976, 76, 717–726. [Google Scholar] [CrossRef]
- Levy, R.M.; Zhang, L.Y.; Gallicchio, E.; Felts, A.K. On the Nonpolar Hydration Free Energy of Proteins: Surface Area and Continuum Solvent Models for the Solute−Solvent Interaction Energy. J. Am. Chem. Soc. 2003, 125, 9523–9530. [Google Scholar] [CrossRef] [PubMed]
- Pratt, L.R.; Chandler, D. Theory of the Hydrophobic Effect. J. Chem. Phys. 1977, 67, 3683–3704. [Google Scholar] [CrossRef]
- Petitjean, M. On the Analytical Calculation of van Der Waals Surfaces and Volumes: Some Numerical Aspects. J. Comput. Chem. 1994, 15, 507–523. [Google Scholar] [CrossRef]
- Sharp, K.A.; Honig, B. Calculating Total Electrostatic Energies with the Nonlinear Poisson-Boltzmann Equation. J. Phys. Chem. 1990, 94, 7684–7692. [Google Scholar] [CrossRef]
- Fisicaro, G.; Genovese, L.; Andreussi, O.; Marzari, N.; Goedecker, S. A Generalized Poisson and Poisson-Boltzmann Solver for Electrostatic Environments. J. Chem. Phys. 2016, 144, 014103. [Google Scholar] [CrossRef]
- Stein, C.J.; Herbert, J.M.; Head-Gordon, M. The Poisson–Boltzmann Model for Implicit Solvation of Electrolyte Solutions: Quantum Chemical Implementation and Assessment via Sechenov Coefficients. J. Chem. Phys. 2019, 151, 224111. [Google Scholar] [CrossRef]
- Wei, H.; Luo, A.; Qiu, T.; Luo, R.; Qi, R. Improved Poisson-Boltzmann Methods for High-Performance Computing. J. Chem. Theory Comput. 2019, 15, 6190–6202. [Google Scholar] [CrossRef]
- Polat, M.; Polat, H. Analytical Solution of Poisson–Boltzmann Equation for Interacting Plates of Arbitrary Potentials and Same Sign. J. Colloid Interface Sci. 2010, 341, 178–185. [Google Scholar] [CrossRef]
- Morro, A.; Parodi, M. A Variational Approach to Non-Linear Dielectrics: Application to Polyelectrolytes. J. Electrost. 1987, 20, 219–232. [Google Scholar] [CrossRef]
- Parodi, M. Behaviour of Mobile Ions near a Charged Cylindrical Surface: Application to Linear Polyelectrolytes. J. Electrost. 1985, 17, 255–268. [Google Scholar] [CrossRef]
- Rocchia, W.; Sridharan, S.; Nicholls, A.; Alexov, E.; Chiabrera, A.; Honig, B. Rapid Grid-based Construction of the Molecular Surface and the Use of Induced Surface Charge to Calculate Reaction Field Energies: Applications to the Molecular Systems and Geometric Objects. J. Comput. Chem. 2002, 23, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Decherchi, S.; Colmenares, J.; Catalano, C.E.; Spagnuolo, M.; Alexov, E.; Rocchia, W. Between Algorithm and Model: Different Molecular Surface Definitions for the Poisson-Boltzmann Based Electrostatic Characterization of Biomolecules in Solution. Commun. Comput. Phys. 2013, 13, 61–89. [Google Scholar] [CrossRef]
- Bates, P.W.; Wei, G.W.; Zhao, S. Minimal Molecular Surfaces and Their Applications. J. Comput. Chem. 2008, 29, 380–391. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, G.; Bajaj, C. Quality Meshing of Implicit Solvation Models of Biomolecular Structures. Comput. Aided Geom. Des. 2006, 23, 510–530. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS Biomolecular Solvation Software Suite. Protein Sci. Publ. Protein Soc. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Lamm, G. The Poisson–Boltzmann Equation. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; pp. 147–365. ISBN 978-0-471-46663-5. [Google Scholar]
- Baker, N.A. Biomolecular Applications of Poisson–Boltzmann Methods. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 349–379. ISBN 978-0-471-72089-8. [Google Scholar]
- Bashford, D.; Case, D.A. Generalized Born Models of Macromolecular Solvation Effects. Annu. Rev. Phys. Chem. 2000, 51, 129–152. [Google Scholar] [CrossRef]
- Fogolari, F.; Brigo, A.; Molinari, H. The Poisson–Boltzmann Equation for Biomolecular Electrostatics: A Tool for Structural Biology. J. Mol. Recognit. 2002, 15, 377–392. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Wang, B.; Wei, G.-W. Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies. J. Comput. Chem. 2017, 38, 941–948. [Google Scholar] [CrossRef]
- Vorobjev, Y.N.; Scheraga, H.A. A Fast Adaptive Multigrid Boundary Element Method for Macromolecular Electrostatic Computations in a Solvent. J. Comput. Chem. 1997, 18, 569–583. [Google Scholar] [CrossRef]
- Augspurger, J.D.; Scheraga, H.A. An Efficient, Differentiable Hydration Potential for Peptides and Proteins. J. Comput. Chem. 1996, 17, 1549–1558. [Google Scholar] [CrossRef]
- Makowski, M.; Liwo, A.; Maksimiak, K.; Makowska, J.; Scheraga, H.A. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force for the Interaction of Amino Acid Side Chains in Water. 2. Tests with Simple Spherical Systems. J. Phys. Chem. B 2007, 111, 2917–2924. [Google Scholar] [CrossRef]
- Makowski, M.; Liwo, A.; Scheraga, H.A. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force for the Interaction of Amino Acid Side Chains in Water. 1. Approximate Expression for the Free Energy of Hydrophobic Association Based on a Gaussian-Overlap Model. J. Phys. Chem. B 2007, 111, 2910–2916. [Google Scholar] [CrossRef] [PubMed]
- Sigalov, G.; Scheffel, P.; Onufriev, A. Incorporating Variable Dielectric Environments into the Generalized Born Model. J. Chem. Phys. 2005, 122, 094511. [Google Scholar] [CrossRef] [PubMed]
- Onufriev, A.; Case, D.A.; Bashford, D. Effective Born Radii in the Generalized Born Approximation: The Importance of Being Perfect. J. Comput. Chem. 2002, 23, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Cai, W. Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations. SIAM Rev. Soc. Ind. Appl. Math. 2011, 53, 683–720. [Google Scholar] [CrossRef]
- Im, W.; Lee, M.S.; Brooks, C.L. Generalized Born Model with a Simple Smoothing Function. J. Comput. Chem. 2003, 24, 1691–1702. [Google Scholar] [CrossRef]
- Lazaridis, T.; Karplus, M. Effective Energy Function for Proteins in Solution. Proteins Struct. Funct. Genet. 1999, 35, 133–152. [Google Scholar] [CrossRef]
- Nicholls, A.; Honig, B. A Rapid Finite Difference Algorithm, Utilizing Successive Over-relaxation to Solve the Poisson–Boltzmann Equation. J. Comput. Chem. 1991, 12, 435–445. [Google Scholar] [CrossRef]
- Rocchia, W.; Alexov, E.; Honig, B. Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions. J. Phys. Chem. B 2001, 105, 6754. [Google Scholar] [CrossRef]
- Li, C.; Jia, Z.; Chakravorty, A.; Pahari, S.; Peng, Y.; Basu, S.; Koirala, M.; Panday, S.K.; Petukh, M.; Li, L.; et al. DelPhi Suite: New Developments and Review of Functionalities. J. Comput. Chem. 2019, 40, 2502–2508. [Google Scholar] [CrossRef]
- Sharp, K.A.; Honig, B. Electrostatic Interactions in Macromolecules: Theory and Applications. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 301–332. [Google Scholar] [CrossRef] [PubMed]
- Rashin, A.A.; Malinsky, J. New Method for the Computation of Ionic Distribution around Rod-like Polyelectrolytes with the Helical Distribution of Charges. I. General Approach and a Nonlinearized Poisson–Boltzmann Equation. J. Comput. Chem. 1991, 12, 981–993. [Google Scholar] [CrossRef]
- Cortis, C.M.; Friesner, R.A. Numerical Solution of the Poisson–Boltzmann Equation Using Tetrahedral Finite-Element Meshes. J. Comput. Chem. 1997, 18, 1591–1608. [Google Scholar] [CrossRef]
- Allison, S.A.; Sines, J.J.; Wierzbicki, A. Solutions of the Full Poisson-Boltzmann Equation with Application to Diffusion-Controlled Reactions. J. Phys. Chem. 1989, 93, 5819–5823. [Google Scholar] [CrossRef]
- Davis, M.E.; McCammon, J.A. Solving the finite difference linearized Poisson-Boltzmann equation: A comparison of relaxation and conjugate gradient methods. J. Comput. Chem. 1989, 10, 386–391. [Google Scholar] [CrossRef]
- Yoon, B.J.; Lenhoff, A.M. A Boundary Element Method for Molecular Electrostatics with Electrolyte Effects. J. Comput. Chem. 1990, 11, 1080–1086. [Google Scholar] [CrossRef]
- Cortis, C.M.; Friesner, R.A. An Automatic Three-Dimensional Finite Element Mesh Generation System for the Poisson–Boltzmann Equation. J. Comput. Chem. 1997, 18, 1570–1590. [Google Scholar] [CrossRef]
- Holst, M.; Baker, N.; Wang, F. Adaptive Multilevel Finite Element Solution of the Poisson–Boltzmann Equation I. Algorithms and Examples. J. Comput. Chem. 2000, 21, 1319–1342. [Google Scholar] [CrossRef]
- Baker, N.; Holst, M.; Wang, F. Adaptive Multilevel Finite Element Solution of the Poisson–Boltzmann Equation II. Refinement at Solvent-Accessible Surfaces in Biomolecular Systems. J. Comput. Chem. 2000, 21, 1343–1352. [Google Scholar] [CrossRef]
- Juneja, A.; Ito, M.; Nilsson, L. Implicit Solvent Models and Stabilizing Effects of Mutations and Ligands on the Unfolding of the Amyloid β-Peptide Central Helix. J. Chem. Theory Comput. 2013, 9, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Holehouse, A.S.; Das, R.K.; Ahad, J.N.; Richardson, M.O.G.; Pappu, R.V. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. Biophys. J. 2017, 112, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Pavlović-Lažetić, G.M.; Mitić, N.S.; Kovačević, J.J.; Obradović, Z.; Malkov, S.N.; Beljanski, M.V. Bioinformatics Analysis of Disordered Proteins in Prokaryotes. BMC Bioinform. 2011, 12, 66. [Google Scholar] [CrossRef]
- Pancsa, R.; Tompa, P. Structural Disorder in Eukaryotes. PLoS ONE 2012, 7, e34687. [Google Scholar] [CrossRef]
- Asthagiri, D.; Pratt, L.R.; Ashbaugh, H.S. Absolute Hydration Free Energies of Ions, Ion-Water Clusters, and Quasi-Chemical Theory. J. Chem. Phys. 2003, 119, 2702–2708. [Google Scholar] [CrossRef]
- Pratt, L.R.; Rempe, S.B. Quasi-Chemical Theory and Implicit Solvent Models for Simulations. In Proceedings of the Simulation and Theory of Electrostatic Interactions in Solution, Santa Fe, NM, USA, 23–25 June 1999; pp. 172–201. [Google Scholar]
- Beck, T.L.; Paulaitis, M.E.; Pratt, L.R. The Potential Distribution Theorem and Models of Molecular Solutions; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Paulaitis, M.E.; Rpratt, L. Hydration Theory for Molecular Biophysics. In Advances in Protein Chemistry; Unfolded Proteins; Academic Press: Cambridge, MA, USA, 2002; Volume 62, pp. 283–310. [Google Scholar]
- Widom, B. Potential-Distribution Theory and the Statistical Mechanics of Fluids. J. Phys. Chem. 1982, 86, 869–872. [Google Scholar] [CrossRef]
- Weber, O.C.; Uversky, V.N. How Accurate Are Your Simulations? Effects of Confined Aqueous Volume and AMBER FF99SB and CHARMM22/CMAP Force Field Parameters on Structural Ensembles of Intrinsically Disordered Proteins: Amyloid-β42 in Water. Intrinsically Disord. Proteins 2017, 5, e1377813. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Izadi, S.; Aguilar, B.; Onufriev, A.V. Protein–Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation. J. Chem. Theory Comput. 2015, 11, 4450–4459. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Li, Y.; Lei, T.; Wang, E.; Li, D.; Kang, Y.; Zhu, F.; Hou, T. farPPI: A Webserver for Accurate Prediction of Protein-Ligand Binding Structures for Small-Molecule PPI Inhibitors by MM/PB(GB)SA Methods. Bioinformatics 2019, 35, 1777–1779. [Google Scholar] [CrossRef]
- Forouzesh, N. Binding Free Energy of the Novel Coronavirus Spike Protein and the Human ACE2 Receptor: An MMGB/SA Computational Study. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Online, 21 September 2020; ACM: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Tolokh, I.S.; Folescu, D.E.; Onufriev, A.V. Inclusion of Water Multipoles into the Implicit Solvation Framework Leads to Accuracy Gains. J. Phys. Chem. B 2024, 128, 5855–5873. [Google Scholar] [CrossRef] [PubMed]
- Theel, K.L.; Wen, S.; Beran, G.J.O. Communication: Constructing an Implicit Quantum Mechanical/Molecular Mechanics Solvent Model by Coarse-Graining Explicit Solvent. J. Chem. Phys. 2013, 139, 081103. [Google Scholar] [CrossRef] [PubMed]
- Guerard, J.J.; Arey, J.S. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds. J. Chem. Theory Comput. 2013, 9, 5046–5058. [Google Scholar] [CrossRef] [PubMed]
- Chen, D. Modeling and Computation of Heterogeneous Implicit Solvent and Its Applications for Biomolecules. Comput. Math. Biophys. 2014, 2, 107–127. [Google Scholar] [CrossRef]
- Honig, B.; Nicholls, A. Classical Electrostatics in Biology and Chemistry. Science 1995, 268, 1144–1149. [Google Scholar] [CrossRef]
- Baba, T.; Harada, R.; Nakano, M.; Shigeta, Y. On the Induced-fit Mechanism of Substrate-enzyme Binding Structures of Nylon-oligomer Hydrolase—Baba. J. Comput. Chem. 2014, 35, 1240–1247. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Pacifici, L.; Verdicchio, M.; Lago, N.F.; Lombardi, A.; Costantini, A. A High-Level Ab Initio Study of the N2 + N2 Reaction Channel. J. Comput. Chem. 2013, 34, 2668–2676. [Google Scholar] [CrossRef]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Ge, W.; Sato, R.; Wu, H.-L.; Teranishi, T. Simple Surfactant Concentration-Dependent Shape Control of Polyhedral Fe3O4 Nanoparticles and Their Magnetic Properties. Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 2015, 16, 3200–3205. [Google Scholar] [CrossRef]
- Vyboishchikov, S.F.; Voityuk, A.A. Solvation Free Energies for Aqueous and Nonaqueous Solutions Computed Using PM7 Atomic Charges. J. Chem. Inf. Model. 2021, 61, 4544–4553. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Moya, C.; Palomar, J. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. J. Chem. Theory Comput. 2015, 11, 4220–4225. [Google Scholar] [CrossRef] [PubMed]
- Tshepelevitsh, S.; Oss, M.; Pung, A.; Leito, I. Evaluating the COSMO-RS Method for Modeling Hydrogen Bonding in Solution. Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 2013, 14, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Eslami, H.; Khanjari, N.; Müller-Plathe, F. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation. J. Chem. Theory Comput. 2017, 13, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A. The COSMO and COSMO-RS Solvation Models. WIREs Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Arlt, W. COSMO-RS: An Alternative to Simulation for Calculating Thermodynamic Properties of Liquid Mixtures. Annu. Rev. 2010, 1, 101–122. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2 1993, 799–805. [Google Scholar] [CrossRef]
- Franke, R.; Hannebauer, B. On the Influence of Basis Sets and Quantum Chemical Methods on the Prediction Accuracy of COSMO-RS. Phys. Chem. Chem. Phys. 2011, 13, 21344–21350. [Google Scholar] [CrossRef]
- Jiang, W. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS). J. Chem. Theory Comput. 2019, 15, 2179–2186. [Google Scholar] [CrossRef]
- Cazzaniga, M.; Cargnoni, F.; Penconi, M.; Bossi, A.; Ceresoli, D. Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes. J. Chem. Theory Comput. 2020, 16, 1188–1199. [Google Scholar] [CrossRef]
- Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. Calculation of Solvent Shifts on Electronic G-Tensors with the Conductor-like Screening Model (COSMO) and Its Self-Consistent Generalization to Real Solvents (Direct COSMO-RS). J. Phys. Chem. A 2006, 110, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Jiang, F.; Wu, Y.-D.; Wales, D.J. Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. J. Chem. Theory Comput. 2020, 16, 800–810. [Google Scholar] [CrossRef]
- Sachet, E.; Aspnes, D.E.; Maria, J.-P.; Franzen, S. Critical Test of the Interaction of Surface Plasmon Resonances with Molecular Vibrational Transitions. J. Phys. Chem. A 2020, 124, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Barca, G.M.J.; McKenzie, S.C.; Mannix, E.J.; Gilbert, A.T.B.; Gill, P.M.W. Q-MP2-OS: Møller–Plesset Correlation Energy by Quadrature. J. Chem. Theory Comput. 2020, 16, 1568–1577. [Google Scholar] [CrossRef]
- Lengyel, J.; Pysanenko, A.; Swiderek, P.; Heiz, U.; Fárník, M.; Fedor, J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. J. Phys. Chem. A 2021, 125, 1919–1926. [Google Scholar] [CrossRef]
- Michaelis, M.; Delle Piane, M.; Rothenstein, D.; Perry, C.C.; Colombi Ciacchi, L. Lessons from a Challenging System: Accurate Adsorption Free Energies at the Amino Acid/ZnO Interface. J. Chem. Theory Comput. 2021, 17, 4420–4434. [Google Scholar] [CrossRef]
- Lambert, C.; Hoche, J.; Schreck, M.H.; Holzapfel, M.; Schmiedel, A.; Selby, J.; Turkin, A.; Mitric, R. Ultrafast Energy Transfer Dynamics in a Squaraine Heterotriad. J. Phys. Chem. A 2021, 125, 2504–2511. [Google Scholar] [CrossRef]
- Giesen, D.J.; Hawkins, G.D.; Liotard, D.A.; Cramer, C.J.; Truhlar, D.G. A Universal Model for the Quantum Mechanical Calculation of Free Energies of Solvation in Non-Aqueous Solvents. Theor. Chem. Acc. 1997, 98, 85–109. [Google Scholar] [CrossRef]
- Chamberlin, A.C.; Cramer, C.J.; Truhlar, D.G. Performance of SM8 on a Test To Predict Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2008, 112, 8651–8655. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. A Universal Approach to Solvation Modeling. Acc. Chem. Res. 2008, 41, 760–768. [Google Scholar] [CrossRef]
- Liu, C.; Qi, R.; Wang, Q.; Piquemal, J.-P.; Ren, P. Capturing Many-Body Interactions with Classical Dipole Induction Models. J. Chem. Theory Comput. 2017, 13, 2751–2761. [Google Scholar] [CrossRef]
- Kromann, J.C.; Steinmann, C.; Jensen, J.H. Improving Solvation Energy Predictions Using The SMD Solvation Method and Semiempirical Electronic Structure Methods. J. Chem. Phys. 2018, 149, 104102. [Google Scholar] [CrossRef]
- Xu, L.; Coote, M.L. Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous pKa Values: Comparison between Choosing an Optimal Theoretical Level, Solute Cavity Scaling, and Using Explicit Solvent Molecules. J. Phys. Chem. A 2019, 123, 7430–7438. [Google Scholar] [CrossRef] [PubMed]
- Bernales, V.S.; Marenich, A.V.; Contreras, R.; Cramer, C.J.; Truhlar, D.G. Quantum Mechanical Continuum Solvation Models for Ionic Liquids. J. Phys. Chem. B 2012, 116, 9122–9129. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.A. Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids. Top. Curr. Chem. J. 2017, 375, 59. [Google Scholar] [CrossRef] [PubMed]
- Kaliakin, D.; Shajan, A.; Liang, F.; Merz, K.M., Jr. Implicit Solvent Sample-Based Quantum Diagonalization. J. Phys. Chem. B 2025, 129, 5788–5796. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Y.; Yang, X.; Cang, Z.; Geng, W.; Wei, G.-W. Poisson-Boltzmann-Based Machine Learning Model for Electrostatic Analysis. Biophys. J. 2024, 123, 2807–2814. [Google Scholar] [CrossRef]
- Yao, S.; Van, R.; Pan, X.; Park, J.H.; Mao, Y.; Pu, J.; Mei, Y.; Shao, Y. Machine Learning Based Implicit Solvent Model for Aqueous-Solution Alanine Dipeptide Molecular Dynamics Simulations. RSC Adv. 2023, 13, 4565–4577. [Google Scholar] [CrossRef]
- Cain, S.; Risheh, A.; Forouzesh, N. A Physics-Guided Neural Network for Predicting Protein–Ligand Binding Free Energy: From Host–Guest Systems to the PDBbind Database. Biomolecules 2022, 12, 919. [Google Scholar] [CrossRef]
- Bass, L.; Elder, L.H.; Folescu, D.E.; Forouzesh, N.; Tolokh, I.S.; Karpatne, A.; Onufriev, A.V. Improving the Accuracy of Physics-Based Hydration-Free Energy Predictions by Machine Learning the Remaining Error Relative to the Experiment. J. Chem. Theory Comput. 2024, 20, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Mandaci, S.Y.; Caliskan, M.; Sariaslan, M.F.; Uversky, V.N.; Coskuner-Weber, O. Epitope Region Identification Challenges of Intrinsically Disordered Proteins in Neurodegenerative Diseases: Secondary Structure Dependence of α-Synuclein on Simulation Techniques and Force Field Parameters. Chem. Biol. Drug Des. 2020, 96, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Pietrek, L.M.; Stelzl, L.S.; Hummer, G. Hierarchical Ensembles of Intrinsically Disordered Proteins at Atomic Resolution in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Katkova, E.V.; Onufriev, A.V.; Aguilar, B.; Sulimov, V.B. Accuracy Comparison of Several Common Implicit Solvent Models and Their Implementations in the Context of Protein-Ligand Binding. J. Mol. Graph. Model. 2017, 72, 70–80. [Google Scholar] [CrossRef]
- Guo, Z.; Li, B.; Cheng, L.-T.; Zhou, S.; McCammon, J.A.; Che, J. Identification of Protein–Ligand Binding Sites by the Level-Set Variational Implicit-Solvent Approach. J. Chem. Theory Comput. 2015, 11, 753–765. [Google Scholar] [CrossRef]
- Chocholoušová, J.; Feig, M. Implicit Solvent Simulations of DNA and DNA−Protein Complexes: Agreement with Explicit Solvent vs Experiment. J. Phys. Chem. B 2006, 110, 17240–17251. [Google Scholar] [CrossRef]
- Prabhu, N.V.; Panda, M.; Yang, Q.; Sharp, K.A. Explicit Ion, Implicit Water Solvation for Molecular Dynamics of Nucleic Acids and Highly Charged Molecules. J. Comput. Chem. 2008, 29, 1113–1130. [Google Scholar] [CrossRef]
Model | Key Feature | Mathematical Approach | Advantages | Applications | Mathematical Approach |
---|---|---|---|---|---|
SM 5.4 | Designed for fast and efficient calculations. | Uses the GB model for electrostatic terms. Non-electrostatic terms (cavitation, dispersion, repulsion) are modeled using surface area and volume. | Computationally efficient. Suitable for high-throughput screening. | Studying neutral molecules in aqueous solutions. | Electrostatics: GB. Non-electrostatics: ASA/volume-based (cavitation, dispersion, repulsion). |
SM 6 | An improved version of SM5.4. Includes more accurate parameterization. | Uses PCM or GB for electrostatic terms. Non-electrostatic terms are modeled with more detailed parameters. | Higher accuracy than SM5.4. Still computationally efficient. | Studying ionic solutions and solubility of organic molecules. | Electrostatics: PCM/GB. Non-electrostatics: Parametrized (detailed parameters). |
SM 7 | Focuses on improving non-electrostatic terms. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled with advanced empirical parameters. | Better accuracy for non-electrostatic effects. | Solvation of polar and nonpolar molecules in various solvents. | Electrostatics: PCM Non-electrostatics: Improved parametrization for cavitation, dispersion, repulsion |
SM 8 | A universal model optimized for both ionic and neutral molecules. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled using surface area, volume and advanced empirical parameters. | High accuracy for a wide range of solvents and solutes. | Drug design, ionic solutions, and solubility of organic molecules. | Electrostatics: PCM. Non-electrostatics: ASA/volume + advanced empirical parameters. |
SMD | The most advanced SMx model. Designed as a universal solvation model. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled using surface area, volume and empirical parameters (γγ, αα, ββ). | High accuracy across a wide range of solvents and solutes. Compatible with DFT. | Drug design, materials science, environmental chemistry (e.g., solubility of pollutants). | Electrostatics: PCM. Non-electrostatics: ASA/volume + empirical parameters (γγ, αα, ββ). |
SM 12 | An extension of SMD with improved parameterization. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled with more refined empirical parameters. | Enhanced accuracy for specific solvent-solute systems. | High-precision calculations for solvation free energies in complex systems. | Electrostatics: PCM. Non-electrostatics: ASA/volume + refined parameters. |
SM x-NP | Designed for nonpolar solvents and solutes. | Uses GB or PCM for electrostatic terms. Non-electrostatic terms are modeled with parameters optimized for nonpolar interactions. | Accurate for nonpolar systems. | Studying organic semiconductors and polymers in nonpolar solvents. | Electrostatics: GB/PCM. Non-electrostatics: Parameters optimized for nonpolar interactions. |
SM x-IL | Tailored for ionic liquids. | Uses PCM for electrostatic terms. Non-electrostatic terms are modeled with parameters optimized for ionic liquids. | High accuracy for ionic liquid systems. | Studying solvation and reactivity in ionic liquids | Electrostatics: PCM. Non-electrostatics: Parameters optimized for ionic liquids. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severoglu, Y.B.; Yuksel, B.; Sucu, C.; Aral, N.; Uversky, V.N.; Coskuner-Weber, O. Implicit Solvent Models and Their Applications in Biophysics. Biomolecules 2025, 15, 1218. https://doi.org/10.3390/biom15091218
Severoglu YB, Yuksel B, Sucu C, Aral N, Uversky VN, Coskuner-Weber O. Implicit Solvent Models and Their Applications in Biophysics. Biomolecules. 2025; 15(9):1218. https://doi.org/10.3390/biom15091218
Chicago/Turabian StyleSeveroglu, Yusuf Bugra, Betul Yuksel, Cagatay Sucu, Nese Aral, Vladimir N. Uversky, and Orkid Coskuner-Weber. 2025. "Implicit Solvent Models and Their Applications in Biophysics" Biomolecules 15, no. 9: 1218. https://doi.org/10.3390/biom15091218
APA StyleSeveroglu, Y. B., Yuksel, B., Sucu, C., Aral, N., Uversky, V. N., & Coskuner-Weber, O. (2025). Implicit Solvent Models and Their Applications in Biophysics. Biomolecules, 15(9), 1218. https://doi.org/10.3390/biom15091218