Targeting Programmed Cell Death in Flap Ischemia/Reperfusion Injury
Abstract
1. Introduction
2. Methodology
3. Signaling Pathways and Regulatory Networks of Programmed Cell Death
4. Mechanisms and Therapeutic Strategies of Programmed Cell Death in Flap Necrosis
4.1. Mechanisms of Apoptotic in Flap Necrosis and Targeted Therapeutic Strategies
4.2. Autophagy in Flap Necrosis: A Double-Edged Sword and Therapeutic Modulation Strategies
4.3. Pyroptosis in Flap Necrosis: Inflammatory Pathways and Therapeutic Modulation
4.4. Necroptosis in Flap Necrosis: Pathophysiology and Targeted Inhibition Strategies
4.5. Ferroptosis in Flap Necrosis: Iron Overload, Lipid Peroxidation, and Therapeutic Interventions
4.6. PANoptosis in Flap Necrosis: A Multifaceted Cell Death Mechanism and Potential Therapeutic Strategies
5. Crosstalk Among PCD-Related Signaling Pathways in Flap Necrosis
6. Novel Biomaterials for Enhancing Flap Survival: Therapeutic Applications and Prospects
7. Limitations and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABs | apoptotic bodies |
ALDH2 | aldehyde dehydrogenase-2 |
Alp | alprostadil |
LD | linear dichroism |
BA | betulinic acid |
BAK | BCL-2 antagonist or killer |
BAX | BCL-2-associated X |
Bv | biliverdin |
CHBP | cyclic helix B peptide |
CR | caloric restriction |
CS-HSA | calcium silicate–human serum albumin |
DAMPs | damage-associated molecular patterns |
d-ECM | decellularized dermal matrix |
DED | death effector domain |
DHC | dihydrocapsaicin |
DISC | death-inducing signaling complex |
DMOG | dimethyl-2-oxoglutarate |
E2 | estradiol |
EMPA | empagliflozin |
FEXO | exosomes derived from FGF1-pretreated adipose-derived stem cells |
FGF1 | fibroblast growth factor 1 |
FSCTs | fibroblast-like cells |
GLPP | Ganoderma lucidum polysaccharide peptide |
GPX4 | glutathione peroxidase 4 |
HBO | hyperbaric oxygen |
4-HNE | 4-hydroxynonenal |
I/R | ischemia/reperfusion |
IRI | ischemia/reperfusion injury |
KAM | kaempferol |
Leo | leonurine |
LMP | lysosomal membrane permeabilization |
MaR1 | maresin 1 |
MDA | malondialdehyde |
MLKL | mixed lineage kinase domain-Like |
modRNA | modified mRNA |
MOMP | mitochondrial outer membrane permeabilization |
MX-HF | MXene-incorporated hollow fibrous |
NRG1 | neuregulin-1 |
NTs | notoginseng triterpenes |
PAMPs | pathogen-associated molecular patterns |
PB NPs | Prussian blue nanoparticles |
PBzyme | Prussian blue nanozyme |
PCD | programmed cell death |
Pino | pinocembrin |
PL-sEVs | platelet-derived small extracellular vesicles |
PRP | platelet-rich plasma |
PUFAs | polyunsaturated fatty acids |
RIP | receptor-interacting protein |
ROS | reactive oxygen species |
STING | stimulator of interferon genes |
TLR4 | Toll-like receptor 4 |
TMP | tetramethylpyrazine |
References
- Dugbartey, G.J. Cellular and Molecular Mechanisms of Cell Damage and Cell Death in Ischemia–Reperfusion Injury in Organ Transplantation. Mol. Biol. Rep. 2024, 51, 473. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Q.; Van Der Merwe, L.; Lou, D.; Lin, C. Preclinical Efficacy of Stem Cell Therapy for Skin Flap: A Systematic Review and Meta-Analysis. Stem Cell Res. Ther. 2021, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.G.W.; Buurman, W.A.; Bast, A.; van der Hulst, R.R.W.J. Review: Ischaemia-Reperfusion Injury in Flap Surgery. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 721–726. [Google Scholar] [CrossRef]
- Lotfi, M.-S.; Rassouli, F.B. Navigating the Complexities of Cell Death: Insights into Accidental and Programmed Cell Death. Tissue Cell 2024, 91, 102586. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The Molecular Machinery of Regulated Cell Death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef]
- Nadendla, E.K.; Tweedell, R.E.; Kasof, G.; Kanneganti, T.-D. Caspases: Structural and Molecular Mechanisms and Functions in Cell Death, Innate Immunity, and Disease. Cell Discov. 2025, 11, 42. [Google Scholar] [CrossRef]
- Hall-Younger, E.; Tait, S.W.G. Mitochondria and Cell Death Signalling. Curr. Opin. Cell Biol. 2025, 94, 102510. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, C.; Lv, C.; Feng, R.; Zhong, W.; Liu, Y.; Zhou, S.; Zhao, M. Vitexin Enhances Mitophagy and Improves Renal Ischemia-Reperfusion Injury by Regulating the P38/MAPK Pathway. Ren. Fail. 2025, 47, 2463572. [Google Scholar] [CrossRef]
- Robinson, N.; Ganesan, R.; Hegedűs, C.; Kovács, K.; Kufer, T.A.; Virág, L. Programmed Necrotic Cell Death of Macrophages: Focus on Pyroptosis, Necroptosis, and Parthanatos. Redox Biol. 2019, 26, 101239. [Google Scholar] [CrossRef]
- Li, C.; Yu, Y.; Zhu, S.; Hu, Y.; Ling, X.; Xu, L.; Zhang, H.; Guo, K. The Emerging Role of Regulated Cell Death in Ischemia and Reperfusion-Induced Acute Kidney Injury: Current Evidence and Future Perspectives. Cell Death Discov. 2024, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Lukenaite, B.; Griciune, E.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Necroptosis in Solid Organ Transplantation: A Literature Overview. Int. J. Mol. Sci. 2022, 23, 3677. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P.; Galluzzi, L.; Vanden Berghe, T.; Kroemer, G. Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion. Nat. Rev. Mol. Cell Biol. 2010, 11, 700–714. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular Mechanisms and Health Implications. Cell Res. 2020, 31, 107. [Google Scholar] [CrossRef]
- Hirschhorn, T.; Stockwell, B.R. The Development of the Concept of Ferroptosis. Free Radic. Biol. Med. 2018, 133, 130. [Google Scholar] [CrossRef]
- Zheng, M.; Kanneganti, T. The Regulation of the ZBP1-NLRP3 Inflammasome and Its Implications in Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Immunol. Rev. 2020, 297, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, M.; Li, D.; Duc Duong, N.T.; Liu, Y.; Ma, J.; Xin, K.; Zhou, Z. PANoptosis in Autoimmune Diseases Interplay between Apoptosis, Necrosis, and Pyroptosis. Front. Immunol. 2024, 15, 1502855. [Google Scholar] [CrossRef]
- Sun, C.; Gui, J.; Sheng, Y.; Huang, L.; Zhu, X.; Huang, K. Specific Signaling Pathways Mediated Programmed Cell Death in Tumor Microenvironment and Target Therapies. Discov. Oncol. 2025, 16, 776. [Google Scholar] [CrossRef]
- Duan, W.-L.; Gu, L.-H.; Guo, A.; Wang, X.-J.; Ding, Y.-Y.; Zhang, P.; Zhang, B.-G.; Li, Q.; Yang, L.-X. Molecular Mechanisms of Programmed Cell Death and Potential Targeted Pharmacotherapy in Ischemic Stroke (Review). Int. J. Mol. Med. 2025, 56, 103. [Google Scholar] [CrossRef]
- Ding, Q.; Rha, H.; Yoon, C.; Kim, Y.; Hong, S.J.; Kim, H.J.; Li, Y.; Lee, M.H.; Kim, J.S. Regulated Cell Death Mechanisms in Mitochondria-Targeted Phototherapy. J. Control. Release 2025, 382, 113720. [Google Scholar] [CrossRef]
- Huang, C.; Qing, L.; Pang, X.; Fu, J.; Xiao, Y.; Tang, J.; Wu, P. Melatonin Improved the Survival of Multi-Territory Perforator Flaps by Promoting Angiogenesis and Inhibiting Apoptosis via the NRF2/FUNDC1 Axis. Front. Pharmacol. 2022, 13, 921189. [Google Scholar] [CrossRef]
- Lin, J.; Jia, C.; Wang, Y.; Jiang, S.; Jia, Z.; Chen, N.; Sheng, S.; Li, S.; Jiang, L.; Xu, H.; et al. Therapeutic Potential of Pravastatin for Random Skin Flaps Necrosis: Involvement of Promoting Angiogenesis and Inhibiting Apoptosis and Oxidative Stress. Drug Des. Dev. Ther. 2019, 13, 1461–1472. [Google Scholar] [CrossRef]
- Su, L.; Xie, S.; Li, T.; Jia, Y.; Wang, Y. Pretreatment with Platelet-Rich Plasma Protects against Ischemia-Reperfusion Induced Flap Injury by Deactivating the JAK/STAT Pathway in Mice. Mol. Med. 2024, 30, 18. [Google Scholar] [CrossRef] [PubMed]
- Toutain, C.E.; Brouchet, L.; Raymond-Letron, I.; Vicendo, P.; Berges, H.; Favre, J.; Fouque, M.-J.; Krust, A.; Schmitt, A.-M.; Chambon, P.; et al. Prevention of Skin Flap Necrosis by Estradiol Involves Reperfusion of a Protected Vascular Network. Circ. Res. 2009, 104, 245-U231. [Google Scholar] [CrossRef]
- Weinzierl, A.; Coerper, M.; Harder, Y.; Menger, M.D.; Laschke, M.W. Caloric Restriction: A Novel Conditioning Strategy to Improve the Survival of Ischemically Challenged Musculocutaneous Random Pattern Flaps. Nutrients 2023, 15, 4076. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yu, G.; Lai, Y.; Zhao, J.; Chen, Z.; Chen, L.; Fu, Y.; Fang, P.; Gao, W.; Cai, Y.; et al. A Snake Cathelicidin Enhances Transcription Factor EB-Mediated Autophagy and Alleviates ROS-Induced Pyroptosis after Ischaemia-Reperfusion Injury of Island Skin Flaps. Br. J. Pharmacol. 2024, 181, 1068–1090. [Google Scholar] [CrossRef]
- Lou, J.; Zhang, H.; Qi, J.; Xu, Y.; Wang, X.; Jiang, J.; Hu, X.; Ni, L.; Cai, Y.; Wang, X.; et al. Cyclic Helix B Peptide Promotes Random-Pattern Skin Flap Survival via TFE3-Mediated Enhancement of Autophagy and Reduction of ROS Levels. Br. J. Pharmacol. 2022, 179, 301–321. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.-H.; Chen, X.-K.; Wang, K.-Y.; Fu, K.-J.; Dong, C.-J.; Chen, Z.-L.; Lai, Y.-Y.; Gao, W.-Y.; Wang, A.-Y. Calycosin Increases Random-Pattern Skin Flap Survival by Activating TFEB-Mediated Regulation of Cell Death. J. Funct. Foods 2024, 115, 106087. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Deng, H.; Yu, G.; Yang, N.; Al Mamun, A.; Lian, F.; Chen, T.; Zhang, H.; Lai, Y.; et al. Engineering Exosomes from Fibroblast Growth Factor 1 Pre-Conditioned Adipose-Derived Stem Cells Promote Ischemic Skin Flaps Survival by Activating Autophagy. Mater. Today Bio 2024, 29, 101314. [Google Scholar] [CrossRef]
- Hou, R.; Lu, T.; Gao, W.; Shen, J.; Yu, Z.; Li, D.; Zhang, R.; Zheng, Y.; Cai, X. Prussian Blue Nanozyme Promotes the Survival Rate of Skin Flaps by Maintaining a Normal Microenvironment. ACS Nano 2022, 16, 9559–9571. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, D.-H.; Lin, Z.-H.; Wang, Z.-Y.; Peng, H.; Liu, R.-T.; Hu, Z.-C.; He, Y.-H.; Wei, X.-J.; Zhang, C.-Q.; et al. In-Situ Sprayed Platelet-Derived Small Extracellular Vesicles for the Skin Flap Survival by Reducing PANoptosis. Biomaterials 2024, 316, 123001. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lin, Y.; Fang, M.; Liu, Y.; Li, W.; He, J.; Lin, D. Effects of Catalpol from Rehmannia Glutinosa Extract on Skin Flaps. Plast. Reconstr. Surg. 2024, 153, 401–410. [Google Scholar] [CrossRef]
- Wang, K.; Wang, A.; Deng, J.; Yang, J.; Chen, Q.; Chen, G.; Ye, M.; Lin, D. Rivaroxaban Down-Regulates Pyroptosis and the TLR4/NF-xB/NLRP3 Signaling Pathway to Promote Flap Survival. Int. Immunopharmacol. 2024, 128, 111568. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Yang, N.; Zhang, H.; Zhang, X.; Geng, Y.; Zhao, J.; Chen, Z.; Dong, C.; Lin, L.; et al. Apoptotic Bodies Derived from Fibroblast-Like Cells in Subcutaneous Connective Tissue Inhibit Ferroptosis in Ischaemic Flaps via the miR-339-5p/KEAP1/Nrf2 Axis. Adv. Sci. 2024, 11, 2307238. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Cheng, S.; Lai, Y.; Ma, X.; Lu, K.; Lu, J.; Li, G.; Yang, E.; Yang, N.; Gao, W.; et al. Pharmacodynamic Insights into Maresin 1: Enhancing Flap Viability via the Keap1/Nrf2 Axis to Control ROS-Driven Apoptosis and Ferroptosis. Eur. J. Pharm. Sci. 2024, 203, 106923. [Google Scholar] [CrossRef]
- Wang, A.; Yang, J.; Deng, J.; Wang, K.; Chen, G.; Lin, D. Kaempferol Promotes Flap Survival by Inhibiting Ferroptosis and Inflammation through Network Pharmacology and in Vivo Experiments. Wound Repair. Regen. 2025, 33, e13250. [Google Scholar] [CrossRef]
- Yang, J.; Ye, W.; Wang, K.; Wang, A.; Deng, J.; Chen, G.; Cai, Y.; Li, Z.; Chen, Y.; Lin, D. Empagliflozin Promotes Skin Flap Survival by Activating AMPK Signaling Pathway. Eur. J. Pharmacol. 2024, 987, 177207. [Google Scholar] [CrossRef]
- Lai, Y.; Yang, N.; Chen, X.; Ma, X.; Chen, Z.; Dong, C.; Yu, G.; Huang, Y.; Shi, D.; Fang, P.; et al. Dihydrocapsaicin Suppresses the STING-Mediated Accumulation of ROS and NLRP3 Inflammasome and Alleviates Apoptosis after Ischemia-Reperfusion Injury of Perforator Skin Flap. Phytother. Res. 2024, 38, 2539–2559. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yu, G.; Lv, Y.; Yang, N.; Zhao, Y.; Li, F.; Zhao, J.; Chen, Z.; Lai, Y.; Chen, L.; et al. Neuregulin-1, a Member of the Epidermal Growth Factor Family, Mitigates STING-Mediated Pyroptosis and Necroptosis in Ischaemic Flaps. Burn. Trauma 2024, 12, tkae035. [Google Scholar] [CrossRef]
- Wallner, C.; Drysch, M.; Becerikli, M.; Schmidt, S.V.; Hahn, S.; Wagner, J.M.; Reinkemeier, F.; Dadras, M.; Sogorski, A.; von Glinski, M.; et al. Deficiency of Myostatin Protects Skeletal Muscle Cells from Ischemia Reperfusion Injury. Sci. Rep. 2021, 11, 12572. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, P.; Luo, J.; Rui, Y. Exploration of the Protective Mechanism of Bax Removal against Ischemia Reperfusion Injury of Skin Flap through the P38 Mitogen-Activated Protein Kinase Pathway. Oxid. Med. Cell Longev. 2022, 2022, 1175078. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-D.; Liu, Y.-Q.; Li, J.-L.; Ma, X.-M.; Wang, Y.-B.; Liu, Y.-F.; Zhang, M.-Z.; Zhao, P.-X.; Xie, F.; Deng, Z.-X. Hyperbaric Oxygen Preconditioning Inhibits Skin Flap Apoptosis in a Rat Ischemia-Reperfusion Model. J. Surg. Res. 2015, 199, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Liu, Y.; Yin, D.; Zhang, M.; Wang, Y.; Ma, X.; Liu, Y.; Zhao, P. Inhibition of C-Jun N-Terminal Kinase Signaling Suppresses Skin Flap Apoptosis in a Rat Ischemia and/or Reperfusion Model. J. Surg. Res. 2016, 206, 337–346. [Google Scholar] [CrossRef]
- Feng, W.; Feng, X.; Wu, S. The Regulatory Effect of Remifentanil on JNK Signaling during Remission of Flap Ischemia-Reperfusion Injury. Discov. Med. 2024, 36, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Meng, X.; Yin, J.; Sun, J.; Huang, Q.; Yin, Z. Ganoderma Lucidum Polysaccharide Peptide Attenuates Skin Flap Ischemia-Reperfusion Injury in a Thioredoxin-Dependent Manner. Plast. Reconstr. Surg. 2018, 142, 23e–33e. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Wang, A.; Deng, J.; Wang, K.; Ye, M.; Chen, Q.; Wang, X.; Wu, X.; Lin, D. L-Borneol Promotes Skin Flap Survival by Regulating HIF-1α/NF-κB Pathway. J. Ethnopharmacol. 2024, 321, 117543. [Google Scholar] [CrossRef]
- Luo, Z.; Bian, Y.; Zheng, G.; Wang, H.; Yan, B.; Su, W.; Dong, W.; Hu, Z.; Ding, J.; Wang, A.; et al. Chemically Modified SDF-1α mRNA Promotes Random Flap Survival by Activating the SDF-1α/CXCR4 Axis in Rats. Front. Cell Dev. Biol. 2021, 9, 623959. [Google Scholar] [CrossRef]
- Chen, T.; Chen, H.; Fu, Y.; Liu, X.; Huang, H.; Li, Z.; Li, S. The eNOS-Induced Leonurine’s New Role in Improving the Survival of Random Skin Flap. Int. Immunopharmacol. 2023, 124, 111037. [Google Scholar] [CrossRef]
- Qing, L.; Wu, P.; Zhou, Z.; Yu, F.; Tang, J. Tetramethylpyrazine Improved the Survival of Multiterritory Perforator Flaps by Inducing Angiogenesis and Suppressing Apoptosis via the Akt/Nrf2 Pathway. Drug Des. Dev. Ther. 2019, 13, 1437–1447. [Google Scholar] [CrossRef]
- Yao, Z.; Xue, K.; Chen, J.; Zhang, Y.; Zhang, G.; Zheng, Z.; Li, Z.; Li, Z.; Wang, F.; Sun, X.; et al. Biliverdin Improved Angiogenesis and Suppressed Apoptosis via PI3K/Akt-Mediated Nrf2 Antioxidant System to Promote Ischemic Flap Survival. Free Radic. Biol. Med. 2024, 225, 35–52. [Google Scholar] [CrossRef]
- Chen, G.; Shen, H.; Zang, L.; Su, Z.; Huang, J.; Sun, Y.; Wang, H. Protective Effect of Luteolin on Skin Ischemia-Reperfusion Injury through an AKT-Dependent Mechanism. Int. J. Mol. Med. 2018, 42, 3073–3082. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.D.; Korolchuk, V.I.; Murray, J.T.; Lamark, T.; Svenning, S.; Johansen, T. Regulation of Selective Autophagy: The P62/SQSTM1 Paradigm. Essays Biochem. 2017, 61, 609–624. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, X.; Wang, K.; Lin, Y.; Meng, Z.; Lan, Q.; Jiang, Z.; Chen, J.; Lin, Y.; Liu, X.; et al. Activation of Aldehyde Dehydrogenase-2 Improves Ischemic Random Skin Flap Survival in Rats. Front. Immunol. 2023, 14, 1127610. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, X.; Zhang, Y.; Ying, Y.; Cai, X.; Lu, W.; Zhao, J.; Wang, Y.; Lin, W.; Tu, Y.; et al. Notoginseng Triterpenes Inhibited Autophagy in Random Flaps via the Beclin-1/VPS34/LC3 Signaling Pathway to Improve Tissue Survival. Front. Bioeng. Biotechnol. 2021, 9, 771066. [Google Scholar] [CrossRef] [PubMed]
- Takaku, M.; Tomita, S.; Kurobe, H.; Kihira, Y.; Morimoto, A.; Higashida, M.; Ikeda, Y.; Ushiyama, A.; Hashimoto, I.; Nakanishi, H.; et al. Systemic Preconditioning by a Prolyl Hydroxylase Inhibitor Promotes Prevention of Skin Flap Necrosis via HIF-1-Induced Bone Marrow-Derived Cells. PLoS ONE 2012, 7, e42964. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Ma, H.; Huang, Z.; Li, J.; Lou, J.; Li, B.; Tu, Q.; Gao, W. Detrimental Effect of Sitagliptin Induced Autophagy on Multiterritory Perforator Flap Survival. Front. Pharmacol. 2020, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, X.; Chi, F.; Cong, N. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules 2022, 12, 1625. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Zhou, R. NLRP3 Inflammasome Activation and Cell Death. Cell Mol. Immunol. 2021, 18, 2114–2127. [Google Scholar] [CrossRef]
- Li, W.-J.; Liu, Y.-Y.; He, J.-B.; Ma, X.-Y.; Lin, Y.; Zheng, P.; Lin, D.-S. Effect of Paeoniflorin on Distal Survival of Random Flaps. Int. Immunopharmacol. 2022, 105, 108562. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, K.; Lan, Q.; Zhou, T.; Lin, Y.; Jiang, Z.; Chen, J.; Lin, Y.; Liu, X.; Lin, H.; et al. Saxagliptin Promotes Random Skin Flap Survival. Int. Immunopharmacol. 2023, 120, 110364. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wang, X.; Xie, Y.; Lou, J.; Yang, Y.; Jiang, S.; Ye, M.; Chen, H.; Diao, W.; et al. Pinocembrin Alleviates Pyroptosis and Apoptosis through ROS Elimination in Random Skin Flaps via Activation of SIRT3. Phytother. Res. 2023, 37, 4059–4075. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.-Z.; Liu, Y.-F.; Dong, X.-H.; Hao, Y.; Wang, Y.-B. Necroptosis Was Found in a Rat Ischemia/Reperfusion Injury Flap Model. Chin. Med. J. 2019, 132, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Kim, Y.-H.; Kim, M.K.; Kim, M.S.; Chung, K.-J. Effects of Necrox-5 on the Survival of a Random Pattern Skin Flap in Mice. Arch. Plast. Surg. 2015, 42, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.; Dong, X.; Liu, Y.; Hao, Y.; Wang, Y. Necrostatin-1 Protects against Ischemia/Reperfusion Injury by Inhibiting Receptor-Interacting Protein 1 in a Rat Flap Model. J. Plast. Reconstr. Aesthetic Surg. 2019, 72, 194–202. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, G.; Yao, M.; Fang, Y. Rip 1-Dependent Endothelial Necroptosis Participates in Ischemia-Reperfusion Injury of Mouse Flap. J. Dermatol. Sci. 2020, 97, 30–40. [Google Scholar] [CrossRef]
- Lou, J.; Wang, X.; Zhang, H.; Yu, G.; Ding, J.; Zhu, X.; Li, Y.; Wu, Y.; Xu, H.; Xu, H.; et al. Inhibition of PLA2G4E/cPLA2 Promotes Survival of Random Skin Flaps by Alleviating Lysosomal Membrane Permeabilization-Induced Necroptosis. Autophagy 2022, 18, 1841–1863. [Google Scholar] [CrossRef]
- Yu, W.; Lu, J.; Huang, X.; Zhuang, H.; An, Y.; Zhang, M. Exendin-4 Promotes Ischemia-Reperfusion Flap Survival by Upregulating Gpx4 to Inhibit Ferroptosis. Eur. J. Pharmacol. 2024, 984, 177029. [Google Scholar] [CrossRef]
- Li, P.-B.; Bai, J.-Q.; Jiang, W.-X.; Li, H.-H.; Li, C.-M. The Mechanosensitive Piezo1 Channel Exacerbates Myocardial Ischaemia/Reperfusion Injury by Activating Caspase-8-Mediated PANoptosis. Int. Immunopharmacol. 2024, 139, 112664. [Google Scholar] [CrossRef]
- Kim, Y.C.; Guan, K.-L. mTOR: A Pharmacologic Target for Autophagy Regulation. J. Clin. Investig. 2015, 125, 25–32. [Google Scholar] [CrossRef]
- Shih, V.F.-S.; Tsui, R.; Caldwell, A.; Hoffmann, A. A Single NFκB System for Both Canonical and Non-Canonical Signaling. Cell Res. 2011, 21, 86–102. [Google Scholar] [CrossRef]
- Xiao, J.-L.; Liu, H.-Y.; Sun, C.-C.; Tang, C.-F. Regulation of Keap1-Nrf2 Signaling in Health and Diseases. Mol. Biol. Rep. 2024, 51, 809. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, P.; Du, Q.; Hanif, U.; Hu, H.; Li, K. cGAS–STING, an Important Signaling Pathway in Diseases and Their Therapy. MedComm 2024, 5, e511. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, Y.; Zou, Y.; Lu, C.; Li, N.; Shi, Z.; Li, X.; Lai, X. Ultra-Sensitive pH Responsive Hydrogels with Injectable and Self-Healing Performance for Controlled Drug Delivery. Int. J. Pharm. X 2025, 9, 100334. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, Z.; Hetjens, L.; Ni, M.; Lin, K.; Hu, Y.; Shi, X.; Pich, A. Functional Dendrimer Nanogels for DNA Delivery and Gene Therapy of Tumors. Angew. Chem. Int. Ed. 2025, 64, e202505669. [Google Scholar] [CrossRef]
- Xu, P.; Xing, M.; Huang, H.; Xue, K.; Chang, J.; Liu, K. Calcium Silicate-Human Serum Albumin Composite Hydrogel Decreases Random Pattern Skin Flap Necrosis by Attenuating Vascular Endothelial Cell Apoptosis and Inflammation. Chem. Eng. J. 2021, 423, 130285. [Google Scholar] [CrossRef]
- Xiong, X.; Yin, C.; Tong, A.; Zhong, G.; Wu, Z.; Tong, C.; Wang, X.; Liu, B. Dermal Extracellular Matrix Gelatin Delivering Prussian Blue Nanoparticles to Relieve Skin Flap Ischemia. Int. J. Biol. Macromol. 2024, 267, 131361. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Y.; Yang, C.; Shang, L.; Zhao, Y.; Shen, X. Dynamically Responsive Scaffolds from Microfluidic 3D Printing for Skin Flap Regeneration. Adv. Sci. 2022, 9, e2201155. [Google Scholar] [CrossRef]
- Lu, C.; Chen, M.; Zhao, Y.; Zhan, Y.; Wei, X.; Lu, L.; Yang, M.; Gong, X. A Co-MOF Encapsulated Microneedle Patch Activates Hypoxia Induction Factor-1 to Pre-Protect Transplanted Flaps from Distal Ischemic Necrosis. Acta Biomater. 2024, 184, 171–185. [Google Scholar] [CrossRef]
Drugs | Time/Termination | Outcome Measures | Target Spot | Target Pathways | PCD | Therapeutic Effect of the Medication Group | Model of Experiment | Ref. |
---|---|---|---|---|---|---|---|---|
BF-30 | Day 7 after the operation | Blood supply, survival area and microvascular density, collagen damage, ROS, GSH, and MDA levels | TFEB | AMPK/TRPML1/calcineurin | Apoptosis↓, Pyroptosis↓, Autophagy↑ | No significant change in the necrotic area; blood flow and the number of blood vessels increase, while collagen damage decreases | C57BL/6J mice models with I/R-injured island skin flap | N. Yang et al. (2024) [26] |
CHBP | Day 7 after the operation | Blood supply, survival area, tissue edema, collagen damage, microvascular density, ROS, and MDA levels | TFE3 | AMPK/TRPML1/calcineurin | Pyroptosis↓, Necroptosis↓, Autophagy↑ | Blood flow and the number of blood vessels increase, while the necrotic area and tissue edema decrease | C57BL/6J mice models with random-pattern skin flap | Lou et al. (2022) [27] |
CAL | Day 7 after the operation | Blood supply, survival area, microvascular density, tissue edema collagen volume fraction, ROS, SOD, MDA, and GSH levels | SOD1 | AMPK/mTOR | Apoptosis↓, Ferroptosis↓, Autophagy↑ | Blood flow and the number of blood vessels increase, while the necrotic area, tissue edema and subcutaneous venous congestion decrease | Rat models with modified McFarlane flap model | Jiang et al. (2024) [28] |
FEXO | Day 7 after the operation | Blood supply, survival area, the temperature of skin flaps, and ROS levels | GPR137 | PI3K/AKT/mTOR | Apoptosis↓, Pyroptosis↓ | Blood flow and the number of blood vessels increase, while the necrotic area, the temperature of skin flaps and ROS levels decrease | C57BL/6J mice models with random-pattern skin flap | Zhang et al. (2024) [29] |
PBzymes | Day 7 after the operation | Blood supply, survival area, microvascular density, and ROS levels | PPAR-γ, NF-κB, Bax, Bcl-2, caspase-3 | PPAR-γ/NF-κB; Bax/Bcl-2/Caspase-3 | Apoptosis↓, Necroptosis↓ | Blood flow and microvascular density increase, while the necrotic area and ROS level decrease | Mice models with I/R-injured skin flap; HUVEC hypoxia-reoxygenation model. | Hou et al. (2022) [30] |
PL-sEV | Day 7 after the operation | Blood supply, survival area, microvascular density, collagen volume fraction, the temperature of skin flaps, and ROS levels | p-IκBα, p-P65 | NF-κB | PANoptosis↓ | Blood flow, microvascular density, and collagen volume fraction increase, while the necrotic area, temperature of skin flaps and ROS level decrease | C57BL/6J mice models with random-pattern skin flap; oxygen–glucose deprivation/reoxygenation (OGD/R) injury on HUVEC | Liu et al. (2024) [31] |
Catalpol | Day 7 after the operation | Blood supply, survival area, microvascular density, SOD, and MDA levels | TLR4, NF-κB | TLR4/NF-κB | Pyroptosis↓ | Blood flow, microvascular density, and SOD level increase, while the necrotic area, and MDA level decrease | Rat models with skin flap | Ma et al. (2024) [32] |
Rivaroxaban | Day 7 after the operation | Blood supply, survival area and microvascular density | TLR4, NF-κB | TLR4/NF-κB | Pyroptosis↓ | Blood flow, microvascular density, and increase, while the necrotic area decreases | Rat models with McFarlane flaps | Wang et al. (2024) [33] |
ABs | Day 7 after the operation | Blood supply, survival area, the temperature of skin flaps, collagen content, MDA, and GSH levels | KEAP1 | miR-339-5p/KEAP1/Nrf2 | Ferroptosis↓ | Blood flow, microvascular density collagen content, and GSH level increase, while the necrotic area, the temperature of skin flaps, and MDA level decrease | C57BL/6J mice models with random-pattern skin flap | G. Yu et al. (2024) [34] |
MaR1 | Day 7 after the operation | Blood supply, survival area, microvascular density, collagen content, ROS, SOD, MDA, and GSH levels | KEAP1, Nrf2 | KEAP1/Nrf2 | Apoptosis↓, Ferroptosis↓ | Blood flow, microvascular density collagen content, SOD, and GSH levels increase, while the necrotic area, ROS, and MDA levels decrease | Rat models with McFarlane flaps | Fang et al. (2024) [35] |
KAM | Day 7 after the operation | Blood supply, survival area, SOD, and MDA levels | Nrf2, SIRT1,TNF, NF-κB, Toll-like receptor, and NOD-like receptor | HMGB1/TLR4/NF-κB and Nrf2/SLC7A11/GPX4 | Ferroptosis↓ | Blood flow and SOD level increase, while the necrotic area and MDA level decrease | Rat models with McFarlane flaps | Wang et al. (2025) [36] |
EMPA | Day 7 after the operation | Blood supply, survival area, SOD, and MDA levels | AMPK, Nrf2, GPX4 | AMPK/Nrf2/GPX4 | Ferroptosis↓ | Blood flow and SOD level increase, while the necrotic area and MDA level decrease | Rat models with modified McFarlane flap model | Yang et al. (2025) [37] |
DHC | Day 7 after the operation | Blood supply, survival area, collagen damage, microvascular density, ROS, GSH, and MDA levels | NLRP3 | c-GAS/STING | PANoptosis↓ | Blood flow and microvascular density increase, while the necrotic area, collagen damage, ROS, GSH, and MDA levels decrease | Rat models with deep circumflex iliac artery (DCIA-flap) | Lai et al. (2024) [38] |
NRG1 | Day 7 after the operation | Blood supply, survival area, microvascular density | AKT, FOXO3a | Cgas/STING | Pyroptosis↓, Necroptosis↓ | Blood flow and microvascular density increase, while the necrotic area decreases | C57BL/6 mice models with modified McFarlane flap model | Zhu et al. (2024) [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xiong, X.; Chen, L.; Hu, J.; Luo, P.; Ou, Z.; Zhang, F. Targeting Programmed Cell Death in Flap Ischemia/Reperfusion Injury. Biomolecules 2025, 15, 911. https://doi.org/10.3390/biom15070911
Liu S, Xiong X, Chen L, Hu J, Luo P, Ou Z, Zhang F. Targeting Programmed Cell Death in Flap Ischemia/Reperfusion Injury. Biomolecules. 2025; 15(7):911. https://doi.org/10.3390/biom15070911
Chicago/Turabian StyleLiu, Shengyue, Xiaohe Xiong, Lei Chen, Jiaqi Hu, Ping Luo, Zhanpeng Ou, and Fugui Zhang. 2025. "Targeting Programmed Cell Death in Flap Ischemia/Reperfusion Injury" Biomolecules 15, no. 7: 911. https://doi.org/10.3390/biom15070911
APA StyleLiu, S., Xiong, X., Chen, L., Hu, J., Luo, P., Ou, Z., & Zhang, F. (2025). Targeting Programmed Cell Death in Flap Ischemia/Reperfusion Injury. Biomolecules, 15(7), 911. https://doi.org/10.3390/biom15070911