β-Catenin: A Key Molecule in Osteoblast Differentiation
Abstract
1. Introduction
Review Methodology
2. Functional Implications of β-Catenin’s Molecular Structure
2.1. Molecular Architecture of β-Catenin
2.2. β-Catenin and Its Interactions with Adhesion Molecule
2.3. β-Catenin’s Involvement in Cytoplasmic Interactions
2.4. β-Catenin’s Nuclear Activity and Its Implications
3. Wnt/β-Catenin Pathway in Bone Formation
3.1. Major Molecules Involved in Canonical Signaling in Bone
Proteins | Function in the Wnt/β-Catenin Signaling Pathway | Reference |
---|---|---|
APC | Forms the β-catenin destruction complex with CK1, AXIN, and GSK3β | [42] Clevers & Nusse, 2012 |
AXIN | Scaffold protein in the β-catenin destruction complex with CK1, APC, and GSK3β | [62] Stamos & Weis, 2013 |
β-catenin | Central mediator of the Wnt/β-catenin pathway; translocates to the nucleus to regulate TCF/LEF-dependent gene transcription | [45] MacDonald et al., 2009 |
CK1α | Participates in the phosphorylation of β-catenin within the destruction complex | [90] Amit et al., 2002 |
DKKs | Extracellular antagonists blocking Wnt-FZD-LRP5/6 complex formation | [91] Niehrs, 2006 |
DVL | Cytoplasmic protein transmitting Wnt signals from FZD-LRP5/6 to downstream effectors | [92] Gammons & Bienz, 2018 |
FZD | Cell surface receptor for Wnt ligands, initiating pathway activation | [93] Schulte, 2010 |
GSK3β | Kinase phosphorylating β-catenin (Thr41, Ser33, Ser37), marking it for degradation | [94] Wu & Pan, 2010 |
LRP5/6 | Co-receptors forming a complex with FZD to bind Wnt ligands | [95] He et al., 2004 |
PP2A | Dephosphorylates β-catenin, regulating its stability | [42] Clevers & Nusse, 2012 |
sFRP | Extracellular inhibitors sequestering Wnt ligands, preventing receptor binding | [20] Cadigan & Waterman, 2012 |
TCF/LEF | Nuclear transcription factors that partner with β-catenin to activate gene expression | [20] Cadigan & Waterman, 2012 |
WIF1 | Binds Wnt ligands, preventing interaction with FZD-LRP5/6 receptors | [96] Hsieh et al., 1999 |
Wnt | Secreted ligands activating the canonical Wnt/β-catenin signaling cascade | [59] Nusse & Clevers, 2017 |
3.2. Wnt/β-Catenin Ppthway as a Regulator of Osteoblast Differentiation
4. Modulators of Canonical Wnt/β-Catenin Pathway in Osteoblast Function and Bone Tumorigenesis: Role of Intracellular, miRNAs, Mechanical Loading, and Extracellular Signals
4.1. Intracellular Regulators of β-Catenin in Osteoblasts
4.2. Role of β-Catenin in Mesenchymal and Other Progenitor Cell Lineages
4.3. Post-Transcriptional Regulation of β-Catenin by miRNAs and Extracellular Signals Modulating β-Catenin Signaling
4.4. Mechanical Loading as a β-Catenin Activator
4.5. β-Catenin Signaling in Osteosarcoma and Bone Tumorigenesis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT | Serine/threonine-specific protein kinase B |
ALP | Alkaline phenyl phosphatase |
APC | Adenoma polyposis coli |
ARM | Armadillo repeat proteins |
ATF 4 | Activating transcription factor 4 |
BCL9 | B-cell lymphoma 9 |
BMSCs | Bone marrow mesenchymal stem cells |
BSP | Sialoprotein |
CBP | CREB-binding protein |
CK1α | Casein kinase 1 alpha |
Cbfa1 | Core-binding factor α1 |
CDK 14 | Cyclin-dependent kinase 14 |
CTD | C-terminal domain |
DEX | Dexamethasone |
Dkk | Dickkopf |
Dlx5 | Distal-less homeobox 5 |
Dok 5 | Docking protein 5 |
p300 | E1A-associated protein p300 |
FZD | Frizzled receptor |
GSK3 | Glycogen synthase kinase 3 |
hASCs | Human adipose-derived stem cells |
hMSCs | Human mesenchymal stem cells |
HOB | Primary human bone cells |
HOS | Human osteosarcoma cells |
LRP5/6 | Low-density lipoprotein receptor-related protein 5/6 |
MLL1/2 | Mixed-lineage leukemia 1 and 2 |
NELL-1 | Neural epidermal growth factor-like 1 protein |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NTD | N-terminal domain |
OPG | Osteoprotegerin |
Osx | Osterix |
PCP | Planar cell polarity |
PKC | Protein kinase C |
PPARγ | Peroxisome proliferator-activated receptor-γ |
PTH | Parathyroid hormone |
RANK | Receptor activator of nuclear factor NF-κB |
RANKL | Receptor activator of nuclear factor NF-κB Ligand |
Runx2 | Runt-related transcription factor 2 |
SCFβ-TrCP | Ubiquitin ligase complex |
sFRP | Secreted frizzled-related protein |
SMSCs | Skeletal muscle satellite cells |
SOST | Sclerostin |
TCF | T cell factor |
TCF/LEF | T-cell factor/Lymphoid enhancer factor |
TERT | Telomerase reverse transcriptase |
TLE | Transducin-like enhancer |
WIF 1 | Wnt inhibitory factor 1 |
Wnt | Wingless |
β-TrCP | Beta-transducin repeat containing E3 ubiquitin protein ligase |
References
- Steinhart, Z.; Angers, S. Wnt signaling in development and tissue homeostasis. Development 2018, 145, dev146589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, L.; Chen, W.; Qian, A.; Li, Y.-P. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024, 12, 39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lojk, J.; Marc, J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int. J. Mol. Sci. 2021, 22, 10840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agostino, M.; Pohl, S.Ö.-G. The structural biology of canonical Wnt signalling. Biochem. Soc. Trans. 2020, 48, 1765–1780. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ozawa, M.; Baribault, H.; Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989, 8, 1711–1717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemler, R.; Ozawa, M. Uvomorulin-catenin complex: Cytoplasmic anchorage of a Ca2+-dependent cell adhesion molecule. Bioessays 1989, 11, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Wieschaus, E.; Nüsslein-Volhard, C.; Jürgens, G. Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster: III. Zygotic loci on the X-chromosome and fourth chromosome. Wilehm Roux Arch. Dev. Biol. 1984, 193, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Riggleman, B.; Schedl, P.; Wieschaus, E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell 1990, 63, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Klingensmith, J.; Nusse, R. Signaling by wingless in Drosophila. Dev. Biol. 1994, 166, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Behrens, J.; von Kries, J.P.; Kühl, M.; Bruhn, L.; Wedlich, D.; Grosschedl, R.; Birchmeier, W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996, 382, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2001, 2, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J. 2012, 31, 2714–2736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hausmann, G.; Bänziger, C.; Basler, K. Helping Wingless take flight: How WNT proteins are secreted. Nat. Rev. Mol. Cell Biol. 2007, 8, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Caetano-Lopes, J.; Canhão, H.; Fonseca, J.E. Osteoblasts and bone formation. Acta Reumatol. Port. 2007, 32, 103–110. [Google Scholar] [PubMed]
- Milat, F.; Ng, K.W. Is Wnt signalling the final common pathway leading to bone formation? Mol. Cell Endocrinol. 2009, 310, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Uehara, S.; Koide, M.; Takahashi, N. The regulation of osteoclast differentiation by Wnt signals. Bonekey Rep. 2015, 4, 713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xing, Y.; Takemaru, K.-I.; Liu, J.; Berndt, J.D.; Zheng, J.J.; Moon, R.T.; Xu, W. Crystal structure of a full-length beta-catenin. Structure 2008, 16, 478–487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shapiro, L. The multi-talented beta-catenin makes its first appearance. Structure 1997, 5, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Cadigan, K.M.; Waterman, M.L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 2012, 4, a007906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schuijers, J.; Mokry, M.; Hatzis, P.; Cuppen, E.; Clevers, H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 2014, 33, 146–156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gottardi, C.J.; Peifer, M. Terminal regions of beta-catenin come into view. Structure 2008, 16, 336–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duan, P.; Bonewald, L.F. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int. J. Biochem. Cell Biol. 2016, 77, 23–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, T.J.; Peifer, M. Decisions, decisions: Beta-catenin chooses between adhesion and transcription. Trends Cell Biol. 2005, 15, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, C.J.; Gumbiner, B.M. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 2004, 167, 339–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huber, A.H.; Weis, W.I. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 2001, 105, 391–402. [Google Scholar] [CrossRef] [PubMed]
- van Noort, M.; Meeldijk, J.; van der Zee, R.; Destree, O.; Clevers, H. Wnt signaling controls the phosphorylation status of beta-catenin. J. Biol. Chem. 2002, 277, 17901–17905. [Google Scholar] [CrossRef] [PubMed]
- Hecht, A.; Vleminckx, K.; Stemmler, M.P.; van Roy, F.; Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000, 19, 1839–1850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aberle, H.; Bauer, A.; Stappert, J.; Kispert, A.; Kemler, R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997, 16, 3797–3804. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Polakis, P. Wnt signaling and cancer. Genes. Dev. 2000, 14, 1837–1851. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.H.; Nelson, W.J.; Weis, W.I. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 1997, 90, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.N.; Komm, B.S.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 2005, 280, 33132–33140. [Google Scholar] [CrossRef] [PubMed]
- Kansara, M.; Tsang, M.; Kodjabachian, L.; Sims, N.A.; Trivett, M.K.; Ehrich, M.; Dobrovic, A.; Slavin, J.; Choong, P.F.; Simmons, P.J.; et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J. Clin. Investig. 2009, 119, 837–851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simcha, I.; Kirkpatrick, C.; Sadot, E.; Shtutman, M.; Polevoy, G.; Geiger, B.; Peifer, M.; Ben-Ze’ev, A.; Brugge, J.S. Cadherin sequences that inhibit beta-catenin signaling: A study in yeast and mammalian cells. Mol. Biol. Cell 2001, 12, 1177–1188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hülsken, J.; Birchmeier, W.; Behrens, J. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J. Cell Biol. 1994, 127, 2061–2069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeanes, A.; Gottardi, C.J.; Yap, A.S. Cadherins and cancer: How does cadherin dysfunction promote tumor progression? Oncogene 2008, 27, 6920–6929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graham, L.S.; Parhami, F.; Tintut, Y.; Kitchen, C.M.; Demer, L.L.; Effros, R.B. Oxidized lipids enhance RANKL production by T lymphocytes: Implications for lipid-induced bone loss. Clin. Immunol. 2009, 133, 265–275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koelman, E.M.R.; Yeste-Vázquez, A.; Grossmann, T.N. Targeting the interaction of β-catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorg Med. Chem. 2022, 70, 116920. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.A.; Weaver, C.; Mao, F.; Kimelman, D.; Xu, W. Crystal structure of a beta-catenin/Tcf complex. Cell 2000, 103, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Solanas, G.; Miravet, S.; Casagolda, D.; Castaño, J.; Raurell, I.; Corrionero, A.; de Herreros, A.G.; Duñach, M. Beta-Catenin and plakoglobin N- and C-tails determine ligand specificity. J. Biol. Chem. 2004, 279, 49849–49856, Erratum in J. Biol. Chem. 2016, 291, 23925–23927. [Google Scholar] [CrossRef] [PubMed]
- Pokutta, S.; Weis, W.I. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell Dev. Biol. 2007, 23, 237–261. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brembeck, F.H.; Rosário, M.; Birchmeier, W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr. Opin. Genet. Dev. 2006, 16, 51–59. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hatzfeld, M. The armadillo family of structural proteins. Int. Rev. Cytol. 1999, 186, 179–224. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.T.; Pai, L.-M.; Miller, J.R.; Orsulic, S.; Stein, J.; McCormick, C.A.; Audeh, Y.; Wang, W.; Moon, R.T.; Peifer, M. Membrane-tethered Drosophila Armadillo cannot transduce Wingless signal on its own. Development 1999, 126, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Dannappel, M.; Wan, C.; Firestein, R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020, 9, 2125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mège, R.M.; Ishiyama, N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harb. Perspect. Biol. 2017, 9, a028738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oda, H.; Takeichi, M. Evolution: Structural and functional diversity of cadherin at the adherens junction. J. Cell Biol. 2011, 193, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 1977, 75, 464–474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shapiro, L.; Weis, W.I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 2009, 1, a003053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steinberg, M.S.; McNutt, P.M. Cadherins and their connections: Adhesion junctions have broader functions. Curr. Opin. Cell Biol. 1999, 11, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, Z.; Niu, B.; Zhang, J.; Tan, T.K.; Lee, S.R.; Zhao, Y.; Harris, D.C.H.; Zheng, G. E-cadherin/β-catenin complex and the epithelial barrier. J. Biomed. Biotechnol. 2011, 2011, 567305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hulpiau, P.; van Roy, F. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 2009, 41, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, E.; Brzóska, E.; Moraczewski, J. M-cadherin and beta-catenin participate in differentiation of rat satellite cells. Eur. J. Cell Biol. 2007, 86, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.R.; Ahmed, F.; Sarabipour, S.; Hristova, K. Intracellular Domain Contacts Contribute to Ecadherin Constitutive Dimerization in the Plasma Membrane. J. Mol. Biol. 2017, 429, 2231–2245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Roy, F.; Berx, G. The cell-cell adhesion molecule E-cadherin. Cell Mol. Life Sci. 2008, 65, 3756–3788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Kimelman, D.; Xu, W. beta-catenin destruction complex: Insights and questions from a structural perspective. Oncogene 2006, 25, 7482–7491. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, M.; Hatakeyama, S.; Shirane, M.; Matsumoto, M.; Ishida, N.; Hattori, K.; Nakamichi, I.; Kikuchi, A.; Nakayama, K.; Nakayama, K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J. 1999, 18, 2401–2410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stamos, J.L.; Weis, W.I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, Y.; Fu, C.; Ishikawa, S.; Stella, A.; Kojima, M.; Shitoh, K.; Schreiber, E.M.; Day, B.W.; Liu, B. APC is essential for targeting phosphorylated beta-catenin to the SCFbeta-TrCP ubiquitin ligase. Mol. Cell. 2008, 32, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Hartsock, A.; Nelson, W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 2008, 1778, 660–669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niessen, C.M.; Leckband, D.; Yap, A.S. Tissue organization by cadherin adhesion molecules: Dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol. Rev. 2011, 91, 691–731. [Google Scholar] [CrossRef] [PubMed]
- Piedra, J.; Miravet, S.; Castano, J.; Palmer, H.G.; Heisterkamp, N.; Garcia de Herreros, A.; Dunach, M. p120 Catenin-Associated Fer and Fyn Tyrosine Kinases Regulate β-Catenin Tyr-142 Phosphorylation and β-Catenin-α-Catenin Interaction. Mol. Cell. Biol. 2003, 23, 2287–2297. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Bryant, H.U.; Macdougald, O.A. Regulation of bone mass by Wnt signaling. J. Clin. Investig. 2006, 116, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kühl, M. Non-canonical Wnt signaling in Xenopus: Regulation of axis formation and gastrulation. Semin. Cell Dev. Biol. 2002, 13, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Yamamoto, H.; Kishida, S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal. 2007, 19, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, N.; Fu, Z.; Zhang, Q. Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023, 13, 483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mikels, A.J.; Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006, 4, e115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Z.H.; Xiao, J.R. Regulation of Wnt/β-catenin signaling in bone development and bone tumor. Zhonghua Wai Ke Za Zhi 2018, 56, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, R.; Lacombe, D.; de Vernejoul, M.C. LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders. Joint Bone Spine 2005, 72, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liao, J.; Zhao, C.; Cai, D. Effects of the 1, 4-dihydropyridine L-type calcium channel blocker benidipine on bone marrow stromal cells. Cell Tissue Res. 2015, 361, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Cawthorn, W.P.; Bree, A.J.; Yao, Y.; Du, B.; Hemati, N.; Martinez-Santibañez, G.; MacDougald, O.A. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012, 50, 477–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mosimann, C.; Hausmann, G.; Basler, K. Beta-catenin hits chromatin: Regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 2009, 10, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.L.; Weis, W.I. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 2005, 12, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Regulation of osteoblast differentiation by Runx2. Adv. Exp. Med. Biol. 2010, 658, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Ring, L.; Neth, P.; Weber, C.; Steffens, S.; Faussner, A. β-Catenin-dependent pathway activation by both promiscuous “canonical” WNT3a-, and specific “noncanonical” WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell Signal. 2014, 26, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.N.; Longo, K.A.; Wright, W.S.; Suva, L.J.; Lane, T.F.; Hankenson, K.D.; MacDougald, O.A. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA 2005, 102, 3324–3329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christodoulides, C.; Lagathu, C.; Sethi, J.K.; Vidal-Puig, A. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 2009, 20, 16–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosen, C.J.; Bouxsein, M.L. Mechanisms of disease: Is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2006, 2, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Sarantopoulos, C.N.; Banyard, D.A.; Ziegler, M.E.; Sun, B.; Shaterian, A.; Widgerow, A.D. Elucidating the Preadipocyte and Its Role in Adipocyte Formation: A Comprehensive Review. Stem Cell Rev. Rep. 2018, 14, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Glass, D.A., 2nd; Karsenty, G. Canonical Wnt signaling in osteoblasts is required for osteoclast differentiation. Ann. N. Y. Acad. Sci. 2006, 1068, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Westendorf, J.J.; Kahler, R.A.; Schroeder, T.M. Wnt signaling in osteoblasts and bone diseases. Gene 2004, 341, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.O.; Insogna, K.L. Where Wnts went: The exploding field of Lrp5 and Lrp6 signaling in bone. J. Bone Miner. Res. 2009, 24, 171–178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Liu, P.; Liu, W.; Maye, P.; Zhang, J.; Zhang, Y.; Hurley, M.; Guo, C.; Boskey, A.; Sun, L.; et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 2005, 37, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Branco, J.C. Rank/Rankl/opg: Literature review. Acta Reumatol. Port. 2011, 36, 209–218. [Google Scholar] [PubMed]
- Amit, S.; Hatzubai, A.; Birman, Y.; Andersen, J.S.; Ben-Shushan, E.; Mann, M.; Ben-Neriah, Y.; Alkalay, I. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: A molecular switch for the Wnt pathway. Genes. Dev. 2002, 16, 1066–1076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006, 25, 7469–7481. [Google Scholar] [CrossRef] [PubMed]
- Gammons, M.; Bienz, M. Multiprotein complexes governing Wnt signal transduction. Curr. Opin. Cell Biol. 2018, 51, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Schulte, G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol. Rev. 2010, 62, 632–667. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Pan, W. GSK3: A multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 2010, 35, 161–168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, X.; Semenov, M.; Tamai, K.; Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development 2004, 131, 1663–1677. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.-C.; Rattner, A.; Smallwood, P.M.; Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. USA 1999, 96, 3546–3551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Day, T.F.; Guo, X.; Garrett-Beal, L.; Yang, Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 2005, 8, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Rahim, F.; Hajizamani, S.; Mortaz, E.; Ahmadzadeh, A.; Shahjahani, M.; Shahrabi, S.; Saki, N. Molecular regulation of bone marrow metastasis in prostate and breast cancer. Bone Marrow Res. 2014, 2014, 405920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The cell biology of bone metabolism. J. Clin. Pathol. 2008, 61, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Katsimbri, P. The biology of normal bone remodelling. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Kamel, M.A. The Wnt signaling pathway and bone metabolism. Curr. Opin. Rheumatol. 2007, 19, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Ariffin, S.H.Z.; Lim, K.W.; Wahab, R.M.A.; Ariffin, Z.Z.; Din, R.D.R.; Shahidan, M.A.; Johari, A.N.; Abidin, I.Z.Z. Gene expression profiles for in vitro human stem cell differentiation into osteoblasts and osteoclasts: A systematic review. PeerJ 2022, 10, e14174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katagiri, T.; Takahashi, N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral. Dis. 2002, 8, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Hilton, M.J.; Tu, X.; Yu, K.; Ornitz, D.M.; Long, F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005, 132, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Sardar, A.; Gautam, S.; Sinha, S.; Rai, D.; Tripathi, A.K.; Dhaniya, G.; Mishra, P.R.; Trivedi, R. Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci. 2022, 309, 121020. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Li, Q.; Luo, S.; Liu, Z.; Luo, D.; Zhang, B.; Zhang, D.; Rao, P.; Xiao, J. PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. Curr. Stem Cell Res. Ther. 2016, 11, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Yavropoulou, M.P.; Yovos, J.G. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones 2007, 6, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Verkaar, F.; Zaman, G.J. New avenues to target Wnt/β-catenin signaling. Drug Discov. Today. 2011, 16, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, A.; Norozi, F.; Shahrabi, S.; Shahjahani, M.; Saki, N. Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res. 2016, 363, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Albers, J.; Keller, J.; Baranowsky, A.; Beil, F.T.; Catala-Lehnen, P.; Schulze, J.; Amling, M.; Schinke, T. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J. Cell Biol. 2013, 200, 537–549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobayashi, Y.; Uehara, S.; Udagawa, N.; Takahashi, N. Regulation of bone metabolism by Wnt signals. J. Biochem. 2016, 159, 387–392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bao, Q.; Chen, S.; Qin, H.; Feng, J.; Liu, H.; Liu, D.; Li, A.; Shen, Y.; Zhong, X.; Li, J.; et al. Constitutive β-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality. Exp. Cell Res. 2017, 350, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Salazar, V.S.; Zarkadis, N.; Huang, L.; Watkins, M.; Kading, J.; Bonar, S.; Norris, J.; Mbalaviele, G.; Civitelli, R. Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with β-catenin. J. Cell Sci. 2013, 126, 5598–5609. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Xie, Z.; Li, M.; Liu, Y.; Tu, X. Activating Wnt/β-Catenin Signaling in Osteocytes Promotes Osteogenic Differentiation of BMSCs through BMP-7. Int. J. Mol. Sci. 2022, 23, 16045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arya, P.N.; Saranya, I.; Selvamurugan, N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J. Stem Cells. 2024, 16, 102–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.-E.; Yang, Z.; Gao, Z.; Ge, J.; Wei, Q.; Ma, B. 6-Bromoindirubin-3′-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway. An. Acad. Bras. Cienc. 2019, 91, e20180459. [Google Scholar] [CrossRef] [PubMed]
- Iizumi, R.; Honda, M. Wnt/β-Catenin Signaling Inhibits Osteogenic Differentiation in Human Periodontal Ligament Fibroblasts. Biomimetics 2022, 7, 224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arioka, M.; Takahashi-Yanaga, F.; Sasaki, M.; Yoshihara, T.; Morimoto, S.; Hirata, M.; Mori, Y.; Sasaguri, T. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochem. Pharmacol. 2014, 90, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Silkstone, D.; Hong, H.; Alman, B.A. Beta-catenin in the race to fracture repair: In it to Wnt. Nat. Clin. Pract. Rheumatol. 2008, 4, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Yu, K.; Jiang, Z.; Wang, Y.; Yang, G. HOXA10 inhibit the osteogenic differentiation of periodontal ligament stem cells by regulating β-catenin localization and DKK1 expression. Connect. Tissue Res. 2021, 62, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Alman, B.A. Wnt pathway, an essential role in bone regeneration. J. Cell. Biochem. 2009, 106, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Yu, M.; Fan, J.; Wang, H.; Zhao, P.; Zhao, G.; Zeng, W.; Chen, C.; Wang, Y.; Wang, A.; et al. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes. Dis. 2023, 11, 103–134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Wu, J.; Yu, Y.; Li, H.; Sun, S.; Zhang, T.; Wang, M. Dok5 regulates proliferation and differentiation of osteoblast via canonical Wnt/β-catenin signaling. J. Musculoskelet. Neuronal Interact. 2022, 22, 113–122. [Google Scholar] [PubMed] [PubMed Central]
- Zhou, Z.; Jin, Z.; Tian, Y.; Huangfu, C.; Fan, Z.; Liu, D. CDK14 is regulated by IGF2BP2 and involved in osteogenic differentiation via Wnt/β-catenin signaling pathway in vitro. Life Sci. 2024, 358, 123148. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C. Wnt signaling and osteoporosis. Maturitas 2014, 78, 233–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsukune, N.; Naito, M.; Ohashi, A.; Ninomiya, T.; Sato, S.; Takahashi, T. Forced expression of mouse progerin attenuates the osteoblast differentiation interrupting β-catenin signal pathway in vitro. Cell Tissue Res. 2019, 375, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Boland, G.M.; Perkins, G.; Hall, D.J.; Tuan, R.S. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J. Cell. Biochem. 2004, 93, 1210–1230. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Gopalakrishnan, R.; Jiang, D.; Reith, E.; Benson, M.D.; Franceschi, R.T. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 2002, 17, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Hamidouche, Z.; Haÿ, E.; Vaudin, P.; Charbord, P.; Schüle, R.; Marie, P.J.; Fromigué, O. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J. 2008, 22, 3813–3822. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Sun, H.; Song, X.; Zhao, J.; Xu, D.; Liu, M. The Wnt/β-catenin signaling pathway inhibits osteoporosis by regulating the expression of TERT: An in vivo and in vitro study. Aging 2023, 15, 11471–11488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Z.; Da, W.; Zhao, Y.; Wang, T.; Xu, H.; Shu, B.; Gao, X.; Shi, Q.; Ma, Y.; Zhang, Y.; et al. Role of skeletal muscle satellite cells in the repair of osteoporotic fractures mediated by β-catenin. J. Cachexia Sarcopenia Muscle. 2022, 13, 1403–1417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, Y.; Mu, Z.; Pan, D.; Liu, R.; Hong, S.; Xiong, Z. The role and mechanism of β-catenin-mediated skeletal muscle satellite cells in osteoporotic fractures by Jian-Pi-Bu-Shen formula. J. Mol. Histol. 2024, 55, 875–893. [Google Scholar] [CrossRef] [PubMed]
- Trompet, D.; Melis, S.; Chagin, A.S.; Maes, C. Skeletal stem and progenitor cells in bone development and repair. J. Bone Miner. Res. 2024, 39, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Felber, K.; Elks, P.M.; Lecca, M.; Roehl, H.H. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation. PLoS ONE 2015, 10, e0144982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, L.; Liu, M.; Ono, N.; Bringhurst, F.R.; Kronenberg, H.M.; Guo, J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J. Bone Miner. Res. 2012, 27, 2344–2358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hill, T.P.; Später, D.; Taketo, M.M.; Birchmeier, W.; Hartmann, C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 2005, 8, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, X.; Bikle, D.D. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J. Cell Physiol. 2017, 232, 913–921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Julien, A.; Perrin, S.; Martínez-Sarrà, E.; Kanagalingam, A.; Carvalho, C.; Luka, M.; Ménager, M.; Colnot, C. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. J. Bone Miner. Res. 2022, 37, 1545–1561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; He, X.; Deng, Y.; Wang, X.; Shen, J.; Xu, W.; Cai, R.; Lan, X.; Chen, J.; He, Y. Human dental follicle cell-derived conditioned media enhance periodontal regeneration by regulating the osteogenic differentiation and inflammation of periodontal ligament stem cells and macrophage polarization. Mol. Cell Biochem. 2025, 480, 4431–4448. [Google Scholar] [CrossRef] [PubMed]
- Silvério, K.G.; Davidson, K.C.; James, R.G.; Adams, A.M.; Foster, B.L.; Nociti, F.H., Jr.; Somerman, M.J.; Moon, R.T. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J. Periodontal Res. 2012, 47, 309–319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laxman, N.; Rubin, C.-J.; Mallmin, H.; Nilsson, O.; Tellgren-Roth, C.; Kindmark, A. Second generation sequencing of microRNA in Human Bone Cells treated with Parathyroid Hormone or Dexamethasone. Bone 2016, 84, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, B.; Vishal, M.; Shreya, S.; Malavika, D.; Rajpriya, V.; He, Z.; Partridge, N.C.; Selvamurugan, N. Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of lnc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie 2019, 158, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Vishal, M.; Vimalraj, S.; Ajeetha, R.; Gokulnath, M.; Keerthana, R.; He, Z.; Partridge, N.C.; Selvamurugan, N. MicroRNA-590-5p Stabilizes Runx2 by Targeting Smad7 During Osteoblast Differentiation. J. Cell Physiol. 2017, 232, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Peng, K.; Wang, G.; Chen, W.; Liu, P.; Chen, F.; Kang, Y. miR-483-3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway. Int. J. Mol. Med. 2020, 46, 1571–1581. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, W.-B.; Zhong, W.-J.; Wang, L. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 2014, 58, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Baglìo, S.R.; Devescovi, V.; Granchi, D.; Baldini, N. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 2013, 527, 321–331, Erratum in Gene 2014, 535, 380. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, T.; Neshati, Z. Role of microRNAs in osteogenesis of stem cells. J. Cell. Biochem. 2019, 120, 14136–14155. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Gao, D.; Gao, C.; Wei, P.; Niu, M.; Shuai, C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol. Med. Rep. 2016, 14, 623–629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olali, A.Z.; Wallace, J.; Gonzalez, H.; Carpenter, K.A.; Patel, N.; Winchester, L.C.; Podany, A.T.; Venkatesh, I.; Narasipura, S.D.; Al-Harthi, L.; et al. The anti-HIV drug abacavir stimulates β-catenin activity in osteoblast lineage cells. JBMR Plus 2024, 8, ziae037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butler, J.S.; Dunning, E.C.; Murray, D.W.; Doran, P.P.; O’Byrne, J.M. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism. J. Orthop. Res. 2013, 31, 218–226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moran, C.A.; Weitzmann, M.N.; Ofotokun, I. Bone Loss in HIV Infection. Curr. Treat. Options Infect. Dis. 2017, 9, 52–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossini, M.; Gatti, D.; Adami, S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif. Tissue Int. 2013, 93, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, L.; Ma, Q.; Wang, Q.; Chu, P.K.; Zhang, Y. The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation. Biomaterials 2012, 33, 7993–8002. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.; Cheng, X.; Yin, F.; Zhao, Y.; Zhu, Y.; Yan, Z.; Khodaei, F.; Ommati, M.M.; Manthari, R.K.; et al. Influence of Calcium Supplementation against Fluoride-Mediated Osteoblast Impairment in Vitro: Involvement of the Canonical Wnt/β-Catenin Signaling Pathway. J. Agric. Food Chem. 2019, 67, 10285–10295. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Shi, X.; Liu, S.; Guo, X.; Zhao, M.; Cai, R.; Sun, G. Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway. Toxicol. Lett. 2014, 225, 34–42. [Google Scholar] [CrossRef] [PubMed]
- James, A.W.; Shen, J.; Zhang, X.; Asatrian, G.; Goyal, R.; Kwak, J.H.; Jiang, L.; Bengs, B.; Culiat, C.T.; Turner, A.S.; et al. NELL-1 in the treatment of osteoporotic bone loss. Nat. Commun. 2015, 6, 7362, Erratum in Nat. Commun. 2021, 12, 453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, X.Y.; Zhao, H.X.; Zhang, Q.; Chen, F.; Lin, J.X. NELL-1: A novel highly efficient and specific growth factor. Beijing Da Xue Xue Bao Yi Xue Ban 2016, 48, 380–383. [Google Scholar] [PubMed]
- Shen, J.; James, A.W.; Chung, J.; Lee, K.; Zhang, J.B.; Ho, S.; Lee, K.S.; Kim, T.M.; Niimi, T.; Kuroda, S.; et al. NELL-1 promotes cell adhesion and differentiation via Integrinβ1. J. Cell. Biochem. 2012, 113, 3620–3628. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, X.; Zheng, Z.; Nguyen, A.; Ting, K.; Soo, C. Nell-1 Is a Key Functional Modulator in Osteochondrogenesis and Beyond. J. Dent. Res. 2019, 98, 1458–1468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, S.S.; Zhang, X.; Soo, C.; Hsu, T.; Napoli, A.; Aghaloo, T.; Wu, B.M.; Tsou, P.; Ting, K.; Wang, J.C. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007, 7, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.A.; Chatterjee-Kishore, M.; Yaworsky, P.J.; Cullen, D.M.; Zhao, W.; Li, C.; Kharode, Y.; Sauter, L.; Babij, P.; Brown, E.L.; et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J. Biol. Chem. 2006, 281, 31720–31728. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Guo, J.; Zhang, L.; Tong, X.; Zhang, S.; Zhou, X.; Zhang, M.; Chen, X.; Lei, L.; Li, H.; et al. MiR-214 Attenuates the Osteogenic Effects of Mechanical Loading on Osteoblasts. Int. J. Sports Med. 2019, 40, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; He, G.; Song, F.; Wang, Z.; Liu, X.; Liao, L.; Ni, J.; Silva, M.J.; Long, F. Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res. 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Ji, X.; Lee, W.C.; Shi, Y.; Li, B.; Abel, E.D.; Jiang, D.; Huang, W.; Long, F. Increased glycolysis mediates Wnt7b-induced bone formation. FASEB J. 2019, 33, 7810–7821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Chai, Y.; Li, C.; Liu, H.; Su, W.; Liu, X.; Yu, B.; Lei, W.; Yu, B.; Crane, J.L.; et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, C.; Shi, X.; Zhou, G.; Liu, X.; Wu, S.; Zhao, J. The canonical Wnt-beta-catenin pathway in development and chemotherapy of osteosarcoma. Front Biosci. 2013, 18, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Ji, T.; Chen, C.-F.; Hoang, B.H. Wnt signaling in osteosarcoma. Adv. Exp. Med. Biol. 2014, 804, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ren, Y.; Han, E.Q.; Li, H.; Chen, D.; Jacobs, J.J.; Gitelis, S.; O’Keefe, R.J.; Konttinen, Y.T.; Yin, G.; et al. Inhibition of the Wnt-β-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem. Biophys. Res. Commun. 2013, 431, 274–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.-C.; Liu, J.-X.; Shao, Z.-W.; Pu, F.-F.; Wang, B.-C.; Wu, Q.; Zhang, Y.-K.; Zeng, X.-L.; Guo, X.-D.; Yang, S.-H.; et al. In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma. Medicine 2017, 96, e7245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rongxin, S.; Pengfei, L.; Li, S.; Xiaochen, J.; Yihe, H. MicroRNA-340-5p suppresses osteosarcoma development by down-regulating the Wnt/β-catenin signaling pathway via targeting the STAT3 gene. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.; Alemi, F.; Malakoti, F.; Mahmoodpoor, A.; Younesi, S.; Yousefi, B.; Asemi, Z. Targeting Wnt/β-catenin signaling by microRNAs as a therapeutic approach in chemoresistant osteosarcoma. Biochem. Pharmacol. 2021, 193, 114758. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhong, L.; Li, X.; Liu, W.; Zhao, Y.; Li, J. Down-regulation of microRNA-31-5p inhibits proliferation and invasion of osteosarcoma cells through Wnt/β-catenin signaling pathway by enhancing AXIN1. Exp. Mol. Pathol. 2019, 108, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, B.; Wang, X.; Shen, Y.; Li, J.; Li, S.; Li, Y.; Wang, R. Interleukin-24 inhibits the phenotype and tumorigenicity of cancer stem cell in osteosarcoma via downregulation Notch and Wnt/β-catenin signaling. J. Bone Oncol. 2021, 31, 100403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aggelidakis, J.; Berdiaki, A.; Nikitovic, D.; Papoutsidakis, A.; Papachristou, D.J.; Tsatsakis, A.M.; Tzanakakis, G.N. Biglycan Regulates MG63 Osteosarcoma Cell Growth Through a LPR6/β-Catenin/IGFR-IR Signaling Axis. Front. Oncol. 2018, 8, 470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giatagana, E.-M.; Berdiaki, A.; Gaardløs, M.; Samsonov, S.A.; Tzanakakis, G.N.; Nikitovic, D. Biglycan Interacts with Type I Insulin-like Receptor (IGF-IR) Signaling Pathway to Regulate Osteosarcoma Cell Growth and Response to Chemotherapy. Cancers 2022, 14, 1196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Domain/Region | Amino Acid Range | Main Functions | References |
---|---|---|---|
N-terminal domain (NTD) | ~1–140 | Contains phosphorylation sites (Ser33, Ser37, Thr41, Ser45) critical for β-catenin degradation by the destruction complex (Axin, APC, GSK3β) | Valenta et al., 2012 [13] |
Armadillo (ARM) repeat domain | 141–664 | Composed of 12 armadillo repeats forming a superhelix; mediates interactions with cadherins at the plasma membrane and transcription factors (TCF/LEF) in the nucleus | Huber & Weis, 2001 [26] |
C-terminal domain (CTD) | 665–781 | Involved in transcriptional activation; includes a C-terminal helix and unstructured regions that interact with co-activators | García de Herreros, 2002 [24] |
C-helix | ~within 665–781 | Stabilizes the β-catenin structure and contributes to its transcriptional activity | Gottardi & Peifer, 2008 [22] |
Unstructured regions (N- and C-terminal ends) | 1–~50 (N-term), ~750–781 (C-term) | Flexible regions facilitating interactions with various regulatory proteins | Xing et al., 2008 [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, E.; Wojdasiewicz, P.; Mikulska, A.; Szukiewicz, D. β-Catenin: A Key Molecule in Osteoblast Differentiation. Biomolecules 2025, 15, 1043. https://doi.org/10.3390/biom15071043
Wróbel E, Wojdasiewicz P, Mikulska A, Szukiewicz D. β-Catenin: A Key Molecule in Osteoblast Differentiation. Biomolecules. 2025; 15(7):1043. https://doi.org/10.3390/biom15071043
Chicago/Turabian StyleWróbel, Edyta, Piotr Wojdasiewicz, Agnieszka Mikulska, and Dariusz Szukiewicz. 2025. "β-Catenin: A Key Molecule in Osteoblast Differentiation" Biomolecules 15, no. 7: 1043. https://doi.org/10.3390/biom15071043
APA StyleWróbel, E., Wojdasiewicz, P., Mikulska, A., & Szukiewicz, D. (2025). β-Catenin: A Key Molecule in Osteoblast Differentiation. Biomolecules, 15(7), 1043. https://doi.org/10.3390/biom15071043