Effects of Isaria cateniannulata and Beauveria bassiana on Buckwheat Growth and Associated Insect Pest
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Formulation of Test Medium
2.3. Preparation of Test Entomopathogenic Fungi Spore Suspension
2.4. Planting of Tested Buckwheat
2.5. Feeding of Test Mites
2.6. Screening of the Concentration of Entomopathogenic Fungi with the Best Growth Promoting Effect on Buckwheat
2.7. Screening for the Optimal Buckwheat Varieties and Entomogenous Fungal Strains for Promoting Buckwheat Growth
2.8. Screening for the Optimal Concentration of Entomopathogenic Fungi with the Highest Mortality Rate of T. urticae
2.9. Determination of the Control Effect of Entomopathogenic Fungi Colonized Buckwheat Against T. urticae
2.10. Effects of Entomopathogenic Fungi-Colonized Buckwheat on the Behavior of Predatory Mites
2.11. Statistical Analysis
3. Results
3.1. The Concentration of Entomopathogenic Fungi with the Best Growth Promoting Effect on Buckwheat Was Obtained
3.2. Effects of Different Entomopathogenic Fungi Strains on the Growth of Different Buckwheat Varieties
3.3. The Concentration of Entomopathogenic Fungi with the Highest Mortality to T. urticae Was Obtained
3.4. Effects of Entomopathogenic Fungi Colonization on the Population Growth of T. urticae
3.5. Effects of Entomopathogenic Fungi Colonization on the Behavior of E. nicholsi
3.6. Effects of Entomopathogenic Fungi and E. nicholsi on Population Behavior of T. urticae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Gu, Z.; Zhu, L.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Buckwheat digestibility affected by the chemical and structural features of its main components. Food Hydrocoll. 2019, 96, 596–603. [Google Scholar] [CrossRef]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021, 335, 127653. [Google Scholar] [CrossRef] [PubMed]
- Kreft, M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016, 29, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-N.; Zhou, P.; Li, B.; Li, H.-Y.; Deng, J.; Meng, Z.-Y.; Huang, J.; Shi, T.-X.; Huang, K.-F.; Chen, Q.-F. A study of the species of buckwheat aphids and their fluctuation patterns in Guizhou Province. J. Southwest Univ. Nat. Sci. Ed. 2019, 41, 32–38. [Google Scholar]
- Płażek, A.; Słomka, A.; Kopeć, P.; Dziurka, M.; Hornyák, M.; Sychta, K.; Pastuszak, J.; Dubert, F. Effects of high temperature on embryological development and hormone profile in flowers and leaves of common buckwheat (Fagopyrum esculentum Moench). Int. J. Mol. Sci. 2019, 20, 1705. [Google Scholar] [CrossRef] [PubMed]
- Mantzoukas, S.; Eliopoulos, P.A. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef]
- Chouikhi, S.; Assadi, B.H.; Lebdi, K.G.; Belkadhi, M.S. Efficacy of the entomopathogenic fungus, Beauveria bassiana and Lecanicillium muscarium against two main pests, Bemisia tabaci (Genn.) and Tetranychus urticae (Koch), under geothermal greenhouses of Southern Tunisia. Egypt. J. Biol. Pest Control. 2022, 32, 125. [Google Scholar] [CrossRef]
- Ahmed, N. Compatibility of Phytoseiulus persimilis with Isaria fumosorosea against Two-Spotted Spider Mites (Tetranychus urticae) on Soybean. Egypt. Acad. J. Biol. Sci. A Entomol. 2019, 12, 69–79. [Google Scholar] [CrossRef]
- Basso, V.; Dillon, A.J.P.; Toldi, M.; Kramer, C.G.; Bonato, C.V. Beauveria bassiana submerged spores for control of two-spotted spider mite (Tetranychus urticae Koch (Acari: Tetranychidae)): Production, stability, and virulence. Arch. Microbiol. 2024, 206, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jin, D.; Zou, X.; Guo, J. Laboratory and field evaluation of an entomopathogenic fungus, Isaria cateniannulata strain 08XS-1, against Tetranychus urticae (Koch). Pest Manag. Sci. 2016, 72, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.N.; Jin, D.C.; Zou, X.; Guo, J.J.; Qu, J.J. Screening of highly virulent strain of Isaria cateniannulata against Tetranychus urticae and its effect to Euseius nicholsi. J. Environ. Entomol. 2014, 36, 372–380. [Google Scholar]
- Ullah, M.S.; Lim, U.T. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J. Invertebr. Pathol. 2017, 148, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-N.; Guo, J.-J.; Zou, X.; Jin, D.-C. Pathogenic differences of the entomopathogenic fungus Isaria cateniannulata to the spider mite Tetranychus urticae (Trombidiformes: Tetranychidae) and its predator Euseius nicholsi (Mesostigmata: Phytoseiidae). Exp. Appl. Acarol. 2018, 75, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Senthilraja, G.; Anand, T.; Durairaj, C.; Kennedy, J.S.; Suresh, S.; Raguchander, T.; Samiyappan, R. A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizofungal suspension, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Sci. Technol. 2010, 20, 449–464. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, B. Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter. Sci. Rep. 2022, 12, 15706. [Google Scholar] [PubMed]
- Sui, L.; Lu, Y.; Zhou, L.; Li, N.; Li, Q.; Zhang, Z. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front. Microbiol. 2023, 14, 1227269. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.Q. Construction of Symbiont of Isaria cateniannulata and Tomato and Its Effect on Tetranychus urticae; Guizhou University: Guiyang, China, 2022. [Google Scholar]
- Yang, G.; Liu, C.; Gu, L.; Chen, Q.; Zhang, X. Studies on the Phosphorus-Solubilizing ability of Isaria cateinannulata and its Influence on the growth of Fagopyrum tataricum Plants. Plants 2024, 13, 1694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, G.; Gu, L.; Liu, C.; Chen, Q. Identification of Fungus GZ in Buckwheat Rhizosphere and Its Promoting Effect in Buckwheat Seed Germination. Plants 2024, 13, 3360. [Google Scholar] [CrossRef] [PubMed]
- Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Naeem, A.; Ghazanfar, M.U.; Alhewairini, S.S. Impact of three entomopathogenic fungal isolates on the growth of tomato plants—Ectoapplication to explore their effect on Tetranychus urticae. Agronomy 2024, 14, 665. [Google Scholar] [CrossRef]
- Jaber, L.R.; Enkerli, J. Fungal entomopathogens as endophytes: Can they promote plant growth? Biocontrol Sci. Technol. 2017, 27, 28–41. [Google Scholar] [CrossRef]
- Qin, X.; Zhao, X.; Huang, S.; Deng, J.; Li, X.; Luo, Z.; Zhang, Y. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Manag. Sci. 2021, 77, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; He, Z.; Wang, E.; Xu, X.; Lei, Z. Application of Beauveria bassiana and Neoseiulus barkeri for improved control of Frankliniella occidentalis in greenhouse cucumber. Crop Prot. 2017, 96, 83–87. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Lee, I.-J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.E. The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia 2018, 110, 4–30. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Moraga, E.; Garrido-Jurado, I.; Yousef-Yousef, M.; González-Mas, N. Multitrophic interactions of entomopathogenic fungi in BioControl. BioControl 2022, 67, 457–472. [Google Scholar] [CrossRef]
- Cachapa, J.C.; Meyling, N.V.; Burow, M.; Hauser, T.P. Induction and priming of plant defense by root-associated insect-pathogenic fungi. J. Chem. Ecol. 2021, 47, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.K.; Choudhary, K.K. Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Mantzoukas, S.; Chondrogiannis, C.; Grammatikopoulos, G. Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomol. Exp. Appl. 2015, 154, 78–87. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Lagogiannis, I. Endophytic colonization of pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer). Appl. Sci. 2019, 9, 2239. [Google Scholar] [CrossRef]
- Barta, M. In planta bioassay on the effects of endophytic Beauveria strains against larvae of horse-chestnut leaf miner (Cameraria ohridella). Biol. Control 2018, 121, 88–98. [Google Scholar] [CrossRef]
- Lopez, D.C.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Samal, I.; Bhoi, T.K.; Majhi, P.K.; Murmu, S.; Pradhan, A.K.; Kumar, D.; Saini, V.; Paschapur, A.U.; Raj, M.N.; Ankur Manik, S. Combatting insects mediated biotic stress through plant associated endophytic entomopathogenic fungi in horticultural crops. Front. Plant Sci. 2023, 13, 1098673. [Google Scholar] [CrossRef] [PubMed]
- Murindangabo, Y.T.; Kopecký, M.; Perná, K.; Konvalina, P.; Bohatá, A.; Kavková, M.; Nguyen, T.G. Relevance of entomopathogenic fungi in soil-plant systems. Plant Soil 2024, 495, 287–310. [Google Scholar] [CrossRef]
- Al-Ani, L.K.T.; Aguilar-Marcelino, L.; Fiorotti, J.; Sharma, V.; Sarker, M.S.; Furtado, E.L.; Wijayawardene, N.N.; Herrera-Estrella, A. Biological Control Agents and Their Importance for the Plant Health; Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–36. [Google Scholar]
- Zhang, X.; Wu, S.; Reitz, S.R.; Gao, Y. Simultaneous application of entomopathogenic Beauveria bassiana granules and predatory mites Stratiolaelaps scimitus for control of western flower thrips, Frankliniella occidentalis. J. Pest Sci. 2021, 94, 119–127. [Google Scholar] [CrossRef]
- Hernández-Valencia, V.; Santillán-Galicia, M.T.; Guzmán-Franco, A.W.; Rodríguez-Leyva, E.; Santillán-Ortega, C. Combined application of entomopathogenic fungi and predatory mites for biological control of Tetranychus urticae on chrysanthemum. Pest Manag. Sci. 2024, 80, 4199–4206. [Google Scholar] [CrossRef] [PubMed]
- Ajvad, F.T.; Madadi, H.; Michaud, J.; Zafari, D.; Khanjani, M. Combined applications of an entomopathogenic fungus and a predatory mite to control fungus gnats (Diptera: Sciaridae) in mushroom production. Biol. Control 2020, 141, 104101. [Google Scholar]
- Zhu, H.; Fu, J.; Wang, H.; Bidochka, M.J.; Duan, M.; Xu, W.; Sui, L.; Ren, B.; Li, Q.; Zhang, Z. Fitness consequences of oviposition choice by an herbivorous insect on a host plant colonized by an endophytic entomopathogenic fungus. J. Pest Sci. 2023, 96, 745–758. [Google Scholar] [CrossRef]
- Yu, X.; Polz, M.F.; Alm, E.J. Interactions in self-assembled microbial communities saturate with diversity. ISME J. 2019, 13, 1602–1617. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.W.; Raza, A.B.M.; Arshad, M.; Ullah, M.I.; Majeed, M.Z.; Aqueel, M.A. Plant defense to herbivore: Role of leaf epicuticular wax composition of citrus cultivars in citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) larval density. Int. J. Pest Manag. 2024, 70, 1331–1337. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Keyhani, N.O.; Deng, J.; Zhao, X.; Huang, S.; Luo, Z.; Jin, K.; Zhang, Y.; Rappleye, C.A. Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system. PLoS Pathog. 2023, 19, e1011578. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-Y.; Gao, Y.-L.; Xu, X.-N.; Goettel, M.S.; Lei, Z.-R. Compatibility of Beauveria bassiana with Neoseiulus barkeri for control of Frankliniella occidentalis. J. Integr. Agric. 2015, 14, 98–105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gu, L.; Liu, C.; Yang, G.; Yang, X.; Huang, K.; Chen, Q. Effects of Isaria cateniannulata and Beauveria bassiana on Buckwheat Growth and Associated Insect Pest. Biomolecules 2025, 15, 1039. https://doi.org/10.3390/biom15071039
Zhang X, Gu L, Liu C, Yang G, Yang X, Huang K, Chen Q. Effects of Isaria cateniannulata and Beauveria bassiana on Buckwheat Growth and Associated Insect Pest. Biomolecules. 2025; 15(7):1039. https://doi.org/10.3390/biom15071039
Chicago/Turabian StyleZhang, Xiaona, Lingdi Gu, Can Liu, Guimin Yang, Xue Yang, Kaifeng Huang, and Qingfu Chen. 2025. "Effects of Isaria cateniannulata and Beauveria bassiana on Buckwheat Growth and Associated Insect Pest" Biomolecules 15, no. 7: 1039. https://doi.org/10.3390/biom15071039
APA StyleZhang, X., Gu, L., Liu, C., Yang, G., Yang, X., Huang, K., & Chen, Q. (2025). Effects of Isaria cateniannulata and Beauveria bassiana on Buckwheat Growth and Associated Insect Pest. Biomolecules, 15(7), 1039. https://doi.org/10.3390/biom15071039