Development of an Optimized Two-Step Solid-Phase Extraction Method for Urinary Nucleic Acid Adductomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Mouse and Human Urine Sample Collection
2.3. Extraction of Urinary DNA and RNA Adducts by SPE
2.4. Time of Flight and Orbitrap Methods for the Analysis of Urinary DNA and RNA Adducts
2.5. Two-Step SPE Validation and Identification of Endogenous Adducts
2.6. Application of Two-Step SPE to the Characterization of Urinary Adductome
3. Results
3.1. Extraction of Urinary DNA and RNA Adducts by SPE
3.2. Assay Validation and Identification of Endogenous Adducts
3.3. Characterization of Urinary Adductome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
8-oxo-dG | 8-oxo-7,8-dihydro-2′-deoxyguanosine |
dNTPs | 2′-deoxynucleotide triphosphate |
NER | Nucleotide excision repair |
BER | Base excision repair |
MTH1 | Mutant homolog 1 |
nB | Nucleobase |
2′-dN | 2′-deoxyribonucleoside |
YTHDF | YT521-B homology domain-containing protein family |
rN! | Ribonucleoside |
nBs | Nucleobases |
HPLC | High-pressure liquid chromatography |
MS/MS | Tandem mass spectrometry |
HPLC-MS | Liquid chromatography coupled with mass spectrometry |
SPE | Solid-phase extraction |
QTOF | Quadrupole Time-of-Flight |
HRMS | High-resolution mass spectrometry |
References
- Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; Dehghan, A.; Mudway, I.; Dagnino, S. What is new in the exposome? Environ. Int. 2020, 143, 105887. [Google Scholar] [CrossRef] [PubMed]
- Siroux, V.; Agier, L.; Slama, R. The exposome concept: A challenge and a potential driver for environmental health research. Eur. Respir. Rev. 2016, 25, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Balbo, S.; Turesky, R.J.; Villalta, P.W. DNA Adductomics. Chem. Res. Toxicol. 2014, 27, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.S.; Hu, C.-W.; Chang, Y.-J.; Chao, M.-R. Urinary DNA adductomics—A novel approach for exposomics. Environ. Int. 2018, 121, 1033–1038. [Google Scholar] [CrossRef]
- Jorvekar, S.B.; Chouhan, S.; Narkhede, G.; Rai, A.; Das, A.; Kakati, K.; Das, K.; Sarma, A.; Borkar, R.M. Investigating the discriminatory potential of urinary DNA adductomics in smokeless tobacco-treated rats and head-neck cancer patients. Microchem. J. 2024, 201, 110708. [Google Scholar] [CrossRef]
- Cheng, G.; Guo, J.; Wang, R.; Yuan, J.-M.; Balbo, S.; Hecht, S.S. Quantitation by Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry of Multiple DNA Adducts Related to Cigarette Smoking in Oral Cells in the Shanghai Cohort Study. Chem. Res. Toxicol. 2023, 36, 305–312. [Google Scholar] [CrossRef]
- Jun, Y.W.; Kant, M.; Coskun, E.; Kato, T.A.; Jaruga, P.; Palafox, E.; Dizdaroglu, M.; Kool, E.T. Possible Genetic Risks from Heat-Damaged DNA in Food. ACS Cent. Sci. 2023, 9, 1170–1179. [Google Scholar] [CrossRef]
- Bendaly, J.; Zhao, S.; Neale, J.R.; Metry, K.J.; Doll, M.A.; States, J.C.; Pierce, W.M.; Hein, D.W. MeIQx-induced DNA adduct formation and mutagenesis in DNA repair deficient CHO cells expressing human CYP1A1 and rapid or slow acetylator NAT2. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1503–1509. [Google Scholar] [CrossRef]
- Li, Y. DNA Adducts in Cancer Chemotherapy. J. Med. Chem. 2024, 67, 5113–5143. [Google Scholar] [CrossRef]
- Evans, M.D.; Mistry, V.; Singh, R.; Gackowski, D.; Różalski, R.; Siomek-Gorecka, A.; Phillips, D.H.; Zuo, J.; Mullenders, L.; Pines, A.; et al. Nucleotide excision repair of oxidised genomic DNA is not a source of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Free Radic. Biol. Med. 2016, 99, 385–391. [Google Scholar] [CrossRef]
- Rozalski, R.; Siomek, A.; Gackowski, D.; Foksinski, M.; Gran, C.; Klungland, A.; Olinski, R. Substantial decrease of urinary 8-oxo-7,8-dihydroguanine, a product of the base excision repair pathway, in DNA glycosylase defective mice. Int. J. Biochem. Cell Biol. 2005, 37, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.J.; Parsons, J.L. Base Excision Repair, a Pathway Regulated by Posttranslational Modifications. Mol. Cell. Biol. 2016, 36, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.B.; Klungland, A.; Rognes, T.; Leiros, I. DNA repair in mammalian cells: Base excision repair: The long and short of it. Cell. Mol. Life Sci. CMLS 2009, 66, 981–993. [Google Scholar] [CrossRef]
- Ding, Y.; Gui, X.; Chu, X.; Sun, Y.; Zhang, S.; Tong, H.; Ju, W.; Li, Y.; Sun, Z.; Xu, M.; et al. MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nat. Commun. 2023, 14, 4829. [Google Scholar] [CrossRef]
- Takeshita, T.; Kanaly, R.A. In vitro DNA/RNA Adductomics to Confirm DNA Damage Caused by Benzo[a]pyrene in the Hep G2 Cell Line. Front. Chem. 2019, 7, 491. [Google Scholar] [CrossRef]
- Yan, L.L.; Zaher, H.S. How do cells cope with RNA damage and its consequences? J. Biol. Chem. 2019, 294, 15158–15171. [Google Scholar] [CrossRef]
- Shi, R.; Ying, S.; Li, Y.; Zhu, L.; Wang, X.; Jin, H. Linking the YTH domain to cancer: The importance of YTH family proteins in epigenetics. Cell Death Dis. 2021, 12, 346. [Google Scholar] [CrossRef]
- Nandakumar, J.; Schwer, B.; Schaffrath, R.; Shuman, S. RNA repair: An antidote to cytotoxic eukaryal RNA damage. Mol. Cell 2008, 31, 278–286. [Google Scholar] [CrossRef]
- Balbo, S.; Hecht, S.S.; Upadhyaya, P.; Villalta, P.W. Application of a High-Resolution Mass-Spectrometry-Based DNA Adductomics Approach for Identification of DNA Adducts in Complex Mixtures. Anal. Chem. 2014, 86, 1744–1752. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Cooke, M.S.; Chen, Y.-R.; Yang, S.-F.; Li, P.-S.; Hu, C.-W.; Chao, M.-R. Is high resolution a strict requirement for mass spectrometry-based cellular DNA adductomics? Chemosphere 2021, 274, 129991. [Google Scholar] [CrossRef]
- Nunes, J.; Charneira, C.; Morello, J.; Rodrigues, J.; Pereira, S.A.; Antunes, A.M.M. Mass Spectrometry-Based Methodologies for Targeted and Untargeted Identification of Protein Covalent Adducts (Adductomics): Current Status and Challenges. High-Throughput 2019, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Admin How Important Is the Matrix Effect in Analyzing Bioprocess Samples? Available online: https://bataviabiosciences.com/matrix-effect/ (accessed on 29 November 2023).
- Sun, Y.; Xie, L.; Feng, F.; Han, Q.; Wei, L.; Tang, Z.; Kang, X. Simultaneous analysis of two urinary biomarkers of oxidative damage to DNA and RNA based on packed-fiber solid phase extraction coupled with high-performance liquid chromatography. J. Chromatogr. B 2020, 1159, 122358. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Zhao, G.; Liu, J.; Jia, L.; Xie, F.; Zhang, S.; Liu, H.; Liu, M. Simultaneous quantification of three alkylated-purine adducts in human urine using sulfonic acid poly(glycidyl methacrylate-divinylbenzene)-based microspheres as sorbent combined with LC-MS/MS. J. Chromatogr. B 2018, 1081–1082, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-W.; Chang, Y.-J.; Chang, W.-H.; Cooke, M.S.; Chen, Y.-R.; Chao, M.-R. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. Environ. Sci. Technol. 2024, 58, 75–89. [Google Scholar] [CrossRef]
- Graille, M.; Wild, P.; Sauvain, J.-J.; Hemmendinger, M.; Guseva Canu, I.; Hopf, N.B. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3743. [Google Scholar] [CrossRef]
- Shih, Y.-M.; Cooke, M.S.; Pan, C.-H.; Chao, M.-R.; Hu, C.-W. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biol. 2019, 20, 556–565. [Google Scholar] [CrossRef]
- Hemeryck, L.Y.; Moore, S.A.; Vanhaecke, L. Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect. Anal. Chem. 2016, 88, 7436–7446. [Google Scholar] [CrossRef]
- AAT Bioquest. How Does pH Affect DNA Stability? Available online: https://www.aatbio.com/resources/faq-frequently-asked-questions/How-does-pH-affect-DNA-stability (accessed on 3 January 2024).
- Williams, M.L.; Olomukoro, A.A.; Emmons, R.V.; Godage, N.H.; Gionfriddo, E. Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. J. Sep. Sci. 2023, 46, 2300571. [Google Scholar] [CrossRef]
- Möller, C.; Virzi, J.; Chang, Y.-J.; Keidel, A.; Chao, M.-R.; Hu, C.-W.; Cooke, M.S. DNA Modifications: Biomarkers for the Exposome? Environ. Toxicol. Pharmacol. 2024, 108, 104449. [Google Scholar] [CrossRef]
- Shih, B.B.; Farrar, M.D.; Vail, A.; Allan, D.; Chao, M.-R.; Hu, C.-W.; Jones, G.D.D.; Cooke, M.S.; Rhodes, L.E. Influence of skin melanisation and ultraviolet radiation on biomarkers of systemic oxidative stress. Free Radic. Biol. Med. 2020, 160, 40–46. [Google Scholar] [CrossRef]
Standard | RT (min) | m/z [M + H]+ | Abbreviation | Supplier |
---|---|---|---|---|
5-carboxycytosine | 2.11 | 156.0411 | 5-caCyt | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
Isoguanine | 5.07 | 152.0565 | Iso Gua | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
5-Methylcytosine | 5.86 | 126.0661 | 5-Me Cyt | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
2′-deoxyuridine | 5.93 | 251.0626 | dU | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
Guanine | 6.26 | 152.0559 | Gua | ACROS Organics (Waltham, MA, USA) |
2′-deoxycytidine | 7.80 | 228.0974 | dC | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
Cytosine | 7.81 | 112.0503 | Cyt | Thermo Scientific (Waltham, MA, USA) |
Thymine | 9.03 | 127.0502 | Thy | ACROS Organics (Waltham, MA, USA) |
Adenine | 10.77 | 136.0618 | Ade | ACROS Organics (Waltham, MA, USA) |
3-methyl-adenine | 11.85 | 149.0453 | 3-Me-Ade | ACROS Organics (Waltham, MA, USA) |
7-methylguanine | 11.90 | 166.0726 | 7-Me Gua | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
5-ethyl-2′-deoxyuridine | 12.13 | 275.0623 | 5-Et-dU | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
2′-deoxyguanosine | 13.55 | 268.104 | dG | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
6-Methylaminopurine | 16.97 | 150.0772 | 6-DMAP | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
Adenosine | 17.76 | 268.104 | Ado | ACROS Organics (Waltham, MA, USA) |
Guanosine | 18.20 | 284.0997 | Guo | ACROS ORGANICS (Waltham, MA, USA) |
8-oxo-7,8-dihydro-2′-deoxyguanosine | 18.20 | 284.0997 | 8-oxodG | SIGMA (Darmstadt, Germany) |
2′-deoxyadenosine | 18.88 | 252.1088 | dA | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
2-O-ethylthymidine | 25.06 | 271.1282 | 2O-Et T | Chem Cruz (Huissen, The Netherlands) |
N-Benzyl-2′-deoxycytidine | 40.69 | 332.2415 | N-Benzyl-dC | Toronto Research Chemicals (North York, Toronto, ON, Canada) |
Name | Abbreviation | m/z [M + H]+ | Supplier |
---|---|---|---|
[13C, 15N2]-8-Oxo-7,8-dihydro-2′-deoxyguanosine | [13C, 15N2]-8-Oxo-dG | 287.22 | Toronto Research Chemicals |
[D3]-5-Methyl-2′-deoxy Cytidine | [D3]-5-Me-dC | 245.26 | Toronto Research Chemicals |
[13C, 15N2]-5-Methyl Cytosine | [13C, 15N2]-5-Me-Cyt | 129.09 | Toronto Research Chemicals |
[D3]3-Methyl Adenine | [D3]-3-Me–Ade | 153.17 | Toronto Research Chemicals |
[D5]-5-Ethyl-2′-deoxyuridine | [D5]-5-Et-dU | 258.29 | Toronto Research Chemicals |
[D6]-2′-deoxy-N-ethylguanosine | [D6]-N-Et-dG | 302.33 | Toronto Research Chemicals |
[D3]-2′-Deoxy-N-methyladenosine | [D3]-N-Me-dA | 269.29 | Toronto Research Chemicals |
[D3]-6O-Methyl-2′-deoxyguanosine | [D3]-O6-Me-dG | 285.13 | Toronto Research Chemicals |
[D3]-6O-Methyl-guanine | [D3]-O6-Me-Gua | 169.08 | Toronto Research Chemicals |
(A) Modified 2′-dN | -rN | [1]–[4⋃7⋃8⋃46⋃47⋃48⋃49] |
Tag | Feature parameter (m/z) | Feature description |
1 | 116.047344 | NL of dR |
4 | 232.094688 | NL of 2 dR |
7 | 248.089602 | NL of dR + R |
8 | 262.105252 | NL of dR + MeR |
46 | 237.067095 | NL of Cys + dR |
47 | 262.152872 | NL of Lys + dR |
48 | 271.116821 | NL of His + dR |
49 | 320.137222 | NL of Trp + dR |
(B) Modified rN | -R | [2]–[5⋃7⋃9⋃50⋃51⋃52⋃53] |
-MeR | [3]–[6⋃8⋃9⋃54⋃55⋃56⋃57] | |
2 | 132.042258 | NL of R |
3 | 146.057908 | NL of MeR |
5 | 264.084516 | NL of 2R |
6 | 292.115816 | NL of 2 MeR |
7 | 248.089602 | NL of dR + R |
8 | 262.105252 | NL of dR + MeR |
9 | 278.100166 | NL of R + MeR |
50 | 253.062009 | NL of Cys + R |
51 | 278.147786 | NL of Lys + R |
52 | 287.111735 | NL of His + R |
53 | 336.132136 | NL of Trp + R |
54 | 267.077659 | NL of Cys + MeR |
55 | 292.163436 | NL of Lys + MeR |
56 | 301.127385 | NL of His + MeR |
57 | 350.147786 | NL of Trp + MeR |
(C) Modified nBs | Gua | [78⋃79⋃80]–[115⋃116]b |
[22]–[27⋃28⋃29⋃30⋃37]c | ||
Ade | [81⋃82⋃83]–[115⋃116]b | |
[23]–[28⋃31⋃32⋃33⋃38]c | ||
Cyt | [84⋃85⋃86]−[115⋃116]b | |
[24]–[29⋃32⋃34⋃35⋃39]c | ||
Thy | [87⋃88⋃89]–[115⋃116]b | |
[25]–[30⋃33⋃35⋃36⋃40]c | ||
Ura | [90⋃91⋃92]–[115⋃116]b | |
[26]–[37⋃38⋃39⋃40⋃41]c | ||
22 | 151.04941 | NL of Gua |
23 | 135.054495 | NL of Ade |
24 | 111.043262 | NL of Cyt |
25 | 126.042928 | NL of Thy |
26 | 112.027277 | NL of Ura |
27 | 302.09882 | NL of 2 Gua |
28 | 286.103905 | NL of Gua + Ade |
29 | 262.092672 | NL of Gua + Cyt |
30 | 277.092338 | NL of Gua + Thy |
31 | 270.10899 | NL of 2 Ade |
32 | 246.097757 | NL of Ade + Cyt |
33 | 261.097423 | NL of Ade + Thy |
34 | 222.086524 | NL of 2 Cyt |
35 | 237.08619 | NL of Cyt + Thy |
36 | 252.085856 | NL of 2 Thy |
37 | 263.076687 | NL of Ura + Gua |
38 | 247.081772 | NL of Ura + Ade |
39 | 223.070539 | NL of Ura + Cyt |
40 | 238.070205 | NL of Ura + Thy |
41 | 224.054555 | NL of 2 Ura |
78 | 151.049409 | PI m/z of [Gua]+• |
79 | 152.056686 | PI m/z of [Gua + H]+ |
80 | 135.030137 | PI m/z of [Gua + H − NH3]+ |
81 | 135.054495 | PI m/z of [Ade]+• |
82 | 136.061771 | PI m/z of [Ade + H]+ |
83 | 119.035222 | PI m/z of [Ade + H − NH3]+ |
84 | 111.043261 | PI m/z of [Cyt]+• |
85 | 112.050538 | PI m/z of [Cyt + H]+ |
86 | 95.023989 | PI m/z of [Cyt + H − NH3]+ |
87 | 126.042927 | PI m/z of [Thy]+• |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keidel, A.; Virzi, J.; Deloso, L.; Möller, C.; Chaput, D.; Evans-Nguyen, T.; Chang, Y.-J.; Chao, M.-R.; Hu, C.-W.; Cooke, M.S. Development of an Optimized Two-Step Solid-Phase Extraction Method for Urinary Nucleic Acid Adductomics. Biomolecules 2025, 15, 594. https://doi.org/10.3390/biom15040594
Keidel A, Virzi J, Deloso L, Möller C, Chaput D, Evans-Nguyen T, Chang Y-J, Chao M-R, Hu C-W, Cooke MS. Development of an Optimized Two-Step Solid-Phase Extraction Method for Urinary Nucleic Acid Adductomics. Biomolecules. 2025; 15(4):594. https://doi.org/10.3390/biom15040594
Chicago/Turabian StyleKeidel, Alexandra, Jazmine Virzi, Laura Deloso, Carolina Möller, Dale Chaput, Theresa Evans-Nguyen, Yuan-Jhe Chang, Mu-Rong Chao, Chiung-Wen Hu, and Marcus S. Cooke. 2025. "Development of an Optimized Two-Step Solid-Phase Extraction Method for Urinary Nucleic Acid Adductomics" Biomolecules 15, no. 4: 594. https://doi.org/10.3390/biom15040594
APA StyleKeidel, A., Virzi, J., Deloso, L., Möller, C., Chaput, D., Evans-Nguyen, T., Chang, Y.-J., Chao, M.-R., Hu, C.-W., & Cooke, M. S. (2025). Development of an Optimized Two-Step Solid-Phase Extraction Method for Urinary Nucleic Acid Adductomics. Biomolecules, 15(4), 594. https://doi.org/10.3390/biom15040594