Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Antibiotic Profiling of Bacterial Isolates
2.2. Determination of Biofilm Forming by MRSA Isolates
2.2.1. Congo Red Agar (CRA)
2.2.2. Microtiter Plate Assay (MPA)
2.2.3. Detection Genes (icaA and icaD) Coded in Biofilm Formation
2.3. Biosynthesis of Silver Nanoparticles
2.4. Characterization of Biosynthesized Ag-NPs
2.5. Anti-Staphylococcal Activity of Biosynthesized Ag-NPs
2.6. Evaluation of MICs of Oxacillin and Ag-NPs
2.7. Antibiofilm Activity of Ag-NPs
2.8. Expression of Genes (icaA and icaD) Coded in Biofilm Formation Before and After Treatment with Ag-NPs
2.9. Assessment of Ag-NPs Combinations with Oxacillin Using Checkerboard Technique
2.10. Time-Kill Assay
2.11. In Vitro Cytotoxicity of Ag-NPs Against Normal and Cancer Cells
2.12. Statistical Analysis
3. Results and Discussion
3.1. Isolation, Identification, and Antibiotic Susceptibility of MRSA Isolates
3.2. Extracellular Biofabrication and Characterization of Biosynthesized Ag-NPs
3.3. Antibacterial Activity of Ag-NPs
3.4. Biofilm Formation by MRSA
3.5. Checkerboard Assay
3.6. Time-Kill Assay
3.7. In Vitro Cytotoxicity of Biosynthesized Ag-NPs and Their Combination Against Normal and Cancer Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Kwiecinski, J.M.; Horswill, A.R. Staphylococcus aureus bloodstream infections: Pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 2020, 53, 51–60. [Google Scholar] [CrossRef]
- Asgeirsson, H.; Thalme, A.; Weiland, O. Staphylococcus aureus bacteraemia and endocarditis—Epidemiology and outcome: A review. Infect. Dis. 2018, 50, 175–192. [Google Scholar] [CrossRef]
- Balasubramanian, D.; Harper, L.; Shopsin, B.; Torres, V.J. Staphylococcus aureus pathogenesis in diverse host environments. Pathog. Dis. 2017, 75, ftx005. [Google Scholar] [CrossRef]
- Kaushik, A.; Kest, H.; Sood, M.; Steussy, B.W.; Thieman, C.; Gupta, S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024, 13, 76. [Google Scholar] [CrossRef]
- El-Sherbiny, G.M.; Alluqmani, A.J.; Elsehemy, I.A.; Kalaba, M.H. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci. Rep. 2024, 14, 30485. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kalaba, M.H.; El-Sherbiny, G.M.; Darwesh, O.M.; Moghannem, S.A. A statistical approach to enhance the productivity of Streptomyces baarensis MH-133 for bioactive compounds. Synth. Syst. Biotechnol. 2024, 9, 196–208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Sherbiny, G.M.; Kalaba, M.H.; Foda, A.M.; ME, S.; Youssef, A.S.E.; AElsehemy, I.; Farghal, E.E.; El-Fakharany, E.M. Nanoemulsion of cinnamon oil to combat colistin-resistant Klebsiella pneumoniae and cancer cells. Microb. Pathog. 2024, 192, 106705. [Google Scholar] [CrossRef] [PubMed]
- Kalaba, M.H.; El-Sherbiny, G.M.; Ewais, E.A.; Darwesh, O.M.; Moghannem, S.A. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Streptomyces baarnensis and its active metabolite (Ka): A promising combination against multidrug-resistant ESKAPE pathogens and cytotoxicity. BMC Microbiol. 2024, 24, 254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Sherebiny, G.M.; Ali, A.R.; Ali, D.M.; Ahamed, S.; El-Hawary, A.S.; Askar, A.A. Bioengineering of Zinc Oxide nanoparticles as therapeutics for Immunomodulatory and Antimicrobial activities. Egypt J. Chem. 2022, 65, 1473–1486. [Google Scholar] [CrossRef]
- El-Sherbiny, G.M.; Kalaba, M.H.; Sharaf, M.H.; Moghannem, S.A.; Radwan, A.A.; Askar, A.A.; Ismail, M.K.A.; El-Hawary, A.S.; Abushiba, M.A. Biogenic synthesis of CuO-NPs as nanotherapeutics approaches to overcome multidrug-resistant Staphylococcus aureus (MDRSA). Artif. Cells Nanomed. Biotechnol. 2022, 50, 260–274. [Google Scholar] [CrossRef]
- Abdel-Fatah, S.S.; El-Sherbiny, G.M.; khalaf, M. Boosting the Anticancer activity of aspergillus flavus endophyte of Jojoba Taxol via conjugation with gold nanoparticles mediated by γ-Irradiation. Appl. Biochem. Biotechnol. 2022, 194, 3558–3581. [Google Scholar] [CrossRef]
- El-Sherbiny, G.M.; Lila, M.K.; Shetaia, Y.M.; Elswify, M.M.; Mohamed, S.S. Antimicrobial activity of biosynthesised silver nanoparticles against multidrug-resistant microbes isolated from cancer patients with bacteraemia and candidaemia. Indian J. Med. Microbiol. 2020, 38, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, N.H.; EL-Sherbiny, G.M.; Hammad, A.A. Gamma-ray and sunlight-induced synthesis of silver nanoparticles using bacterial cellulose and cell-free filtrate produced by Komagataeibacter rhaeticus N1 MW322708 strain. Cellulose 2022, 29, 1791–1805. [Google Scholar] [CrossRef]
- Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed. Biotechnol. 2018, 46, 861–871. [Google Scholar] [CrossRef]
- Abushiba, M.A.; El-Sherbiny, G.M.; Moghannem, S.A.; Kalaba, M.H.; El- Shatoury, E.H.; Saeed, A.M. Enhancement of Antibiotics activity by microbially synthesized silver nanoparticles. Afr. J. Biol. Sci. 2019, 15, 137–153. [Google Scholar]
- Swidan, N.S.; Hashem, Y.A.; Elkhatib, W.F. Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens. Sci. Rep. 2022, 12, 3869. [Google Scholar] [CrossRef] [PubMed]
- Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. [Google Scholar] [CrossRef]
- Moulavi, P.; Noorbazargan, H.; Dolatabadi, A.; Foroohimanjili, F.; Tavakoli, Z.; Mirzazadeh, S.; Hashemi, M.; Ashrafi, F. Antibiofilm effect of green engineered silver nanoparticles fabricated from Artemisia scoporia extract on the expression of icaA and icaR genes against multidrug-resistant Staphylococcus aureus. J. Basic Microbiol. 2019, 59, 701–712. [Google Scholar] [CrossRef]
- Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE. 2019, 14, e0224904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cotter, J.J.; O’gara, J.P.; Mack, D.; Casey, E. Oxygen-mediated regulation of biofilm development is controlled by the alternative sigma factor σβ in Staphylococcus epidermidis. Appl. Environ. Microbiol. 2009, 75, 261–264. [Google Scholar] [CrossRef]
- Foda, A.M.; Kalaba, M.H.; El-Sherbiny, G.M.; Saad, A.M.; El-Fakharany, E.M. Antibacterial activity of essential oils for combating colistin-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2022, 20, 1351–1364. [Google Scholar] [CrossRef]
- Kaiser, T.D.; Pereira, E.M.; Dos Santos, K.R.; Maciel, E.L.; Schuenck, R.P.; Nunes, A.P. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn. Microbiol. Infect. Dis. 2013, 75, 235–239. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, G.M. Isolation, purification and characterization of an actinomycete isolate having the ability to produce an antimicrobial metabolite. Egypt. J. Microbiol. 2006, 41, 35–47. [Google Scholar]
- Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Lett. Appl. Microbiol. 2009, 48, 173–179. [Google Scholar] [CrossRef]
- Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. [Google Scholar] [CrossRef]
- Merdash, A.G.; El-Sherbiny, G.M.; El-Gendy, A.O.; Azmy, A.F.; El-Kabbany, H.M.; Ahmad, M.S. Antibiotic-resistant Escherichia coli Undergoes a Change in mcr-1 and qnr-S Expression after being Exposed to Gamma Irradiation. J Pure Appl. Microbiol. 2023, 17, 2620–2629. [Google Scholar] [CrossRef]
- Sopirala, M.M.; Mangino, J.E.; Gebreyes, W.A.; Biller, B.; Bannerman, T.; Balada-Lasat, J.M.; Pancholi, P. Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4678–4683. [Google Scholar] [CrossRef] [PubMed]
- Isaei, E.; Mansouri, S.; Mohammadi, F.; Taheritarigh, S.; Mohammadi, Z. Novel combinations of synthesized ZnO NPs and cefazidime: Evaluation of their activity against standards and new clinically isolated Pseudomonas aeruginosa. Avicenna J. Med. Biotechnol. 2016, 8, 169. [Google Scholar]
- Joung, D.K.; Sung-Hoon Choi, S.H.; Kang, O.H.; Kim, S.B.; Mun, S.H.; Seo, Y.S.; Kang, D.H.; Gong, R.; Shin, D.W.; Kim, Y.C.; et al. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 2015, 12, 663–667. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards; Barry, A. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; National Committee for Clinical Laboratory Standards: Wayne, MI, USA, 1999. [Google Scholar]
- Konaté, K.; Hilou, A.; Mavoungou, J.F.; Lepengué, A.N.; Souza, A.; Barro, N.; Datté, J.Y.; M’batchi, B.; Nacoulma, O.G. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against cotrimoxazole-resistant bacteria strains. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 5. [Google Scholar] [CrossRef]
- Lorian, V. Antibiotics in Laboratory Medicine; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- El-Sherbiny, G.M.; Farghal, E.E.; Lila, M.K.; Shetaia, Y.M.; Mohamed, S.S.; Elswify, M.M.F. Antibiotic susceptibility and virulence factors of bacterial species among cancer patients. Biotechnol. Notes 2024, 5, 27–32. [Google Scholar] [CrossRef]
- Maddiboyina, B.; Roy, H.; Ramaiah, M. Methicillin-resistant Staphylococcus aureus: Novel treatment approach breakthroughs. Bull. Natl. Res. Cent. 2023, 47, 95. [Google Scholar] [CrossRef]
- Phanjom, P.; Ahmed, G. Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanosci. Nanotechnol. 2015, 5, 14–21. [Google Scholar]
- Makabenta, J.M.V.; Nabawy, A.; Li, C.H. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36. [Google Scholar] [CrossRef]
- Dayma, P.; Choudhary, N.; Ali, D.; Alarifi, S.; Dudhagara, P.; Luhana, K.; Yadav, V.K.; Patel, A.; Patel, R. Exploring the Potential of Halotolerant Actinomycetes from Rann of Kutch, India: A Study on the Synthesis, Characterization, and Biomedical Applications of Silver Nanoparticles. Pharmaceuticals 2024, 17, 743. [Google Scholar] [CrossRef]
- Elumalai, L.; Anbazhagan, G.K.; Palaniyandi, S. Biosynthesis of actinobacterial mediated silver nanoparticle (AgNPs): Therapeutic potential and in-silico docking analysis on targeted virulence receptor. J. Sol-Gel Sci. Technol. 2024, 111, 293–308. [Google Scholar] [CrossRef]
- Nejad, M.S.; Tarighi, S.; Taheri, P. Extracellular Biosynthesis Silver Nanoparticles Using Streptomyces spp. and Evaluating Its Effects Against Important Tomato Pathogens and Cancer Cells. BioNanoScience 2024, 14, 4845–4863. [Google Scholar] [CrossRef]
- Baygar, T.; Ugur, A. Biosynthesis of Silver Nanoparticles by Streptomyces Griseorubens Isolated from Soil and Their Antioxidant Activity. IET Nanobiotechnol. 2017, 11, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Vijayabharathi, R.; Sathya, A.; Gopalakrishnan, S. Extracellular Biosynthesis of Silver Nanoparticles Using Streptomyces Griseoplanus SAI-25 and Its Antifungal Activity against Macrophomina Phaseolina, the Charcoal Rot Pathogen of Sorghum. Biocatal. Agric. Biotechnol. 2018, 14, 166–171. [Google Scholar] [CrossRef]
- Anasane, N.; Golińska, P.; Wypij, M.; Rathod, D.; Dahm, H.; Rai, M. Acidophilic Actinobacteria Synthesised Silver Nanoparticles Showed Remarkable Activity against Fungi-causing Superficial Mycoses in Humans. Mycoses 2016, 59, 157–166. [Google Scholar] [CrossRef]
- Potara, M.; Bawaskar, M.; Simon, T.; Gaikwad, S.; Licarete, E.; Ingle, A.; Banciu, M.; Vulpoi, A.; Astilean, S.; Rai, M. Biosynthesized Silver Nanoparticles Performing as Biogenic SERS-Nanotags for Investigation of C26 Colon Carcinoma Cells. Colloids Surf. B Biointerfaces 2015, 133, 296–303. [Google Scholar] [CrossRef]
- Sivasankar, P.; Seedevi, P.; Poongodi, S.; Sivakumar, M.; Murugan, T.; Sivakumar, L.; Sivakumar, K.; Balasubramanian, T. Characterization, Antimicrobial and Antioxidant Property of Exopolysaccharide Mediated Silver Nanoparticles Synthesized by Streptomyces Violaceus MM72. Carbohydr. Polym. 2018, 181, 752–759. [Google Scholar] [CrossRef]
- Składanowski, M.; Wypij, M.; Laskowski, D.; Golińska, P.; Dahm, H.; Rai, M. Silver and Gold Nanoparticles Synthesized from Streptomyces sp. Isolated from Acid Forest Soil with Special Reference to Its Antibacterial Activity against Pathogens. J. Clust. Sci. 2017, 28, 59–79. [Google Scholar] [CrossRef]
- Nayaka, S.; Chakraborty, B.; Bhat, M.P.; Nagaraja, S.K.; Airodagi, D.; Swamy, P.S.; Rudrappa, M.; Hiremath, H.; Basavarajappa, D.S.; Kanakannanavar, B. Biosynthesis, Characterization, and in Vitro Assessment on Cytotoxicity of Actinomycete-Synthesized Silver Nanoparticles on Allium Cepa Root Tip Cells. Beni Suef Univ. J. Basic. Appl. Sci. 2020, 9, 51. [Google Scholar] [CrossRef]
- Abd-Elhady, H.M.; Ashor, M.A.; Hazem, A.; Saleh, F.M.; Selim, S.; El Nahhas, N.; Abdel-Hafez, S.H.; Sayed, S.; Hassan, E.A. Biosynthesis and Characterization of Extracellular Silver Nanoparticles from Streptomyces Aizuneusis: Antimicrobial, Anti Larval, and Anticancer Activities. Molecules 2021, 27, 212. [Google Scholar] [CrossRef]
- Marathe, K.; Naik, J.; Maheshwari, V. Biogenic Synthesis of Silver Nanoparticles Using Streptomyces Spp. and Their Antifungal Activity Against Fusarium Verticillioides. J. Clust. Sci. 2021, 32, 1299–1309. [Google Scholar] [CrossRef]
- Urnukhsaikhan, E.; Bold, B.E.; Gunbileg, A.; Sukhbaatar, N.; Mishig-Ochir, T. Antibacterial Activity and Characteristics of Silver Nanoparticles Biosynthesized from Carduus Crispus. Sci. Rep. 2021, 11, 21047. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Shivani, K.; Padhy, A.A.; Kumari, V.; Mishra, P. Principles, Methods, and Applications of Protein Folding Inside Cells. In Protein Folding Dynamics and Stability; Springer: Berlin/Heidelberg, Germany, 2023; pp. 251–284. [Google Scholar]
- Li, H.; You, Q.; Feng, X.; Zheng, C.; Zeng, X.; Xu, H. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions. J. Drug Deliv. Sci. Technol. 2023, 80, 104165. [Google Scholar] [CrossRef]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef]
- Al-Wrafy, F.A.; Al-Gheethi, A.A.; Ponnusamy, S.K.; Noman, E.A.; Fattah, S.A. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. Chemosphere 2022, 288, 132603. [Google Scholar] [CrossRef]
- Abdel-Fatah, S.S.; Mohammad, N.H.; Elshimy, R. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb. Cell Fact. 2024, 23, 240. [Google Scholar] [CrossRef]
- Jiao, Y.; Tay, F.R.; Niu, L.N. Advancing antimicrobial strategies for managing oral biofilm infections. Int. J. Oral. Sci. 2019, 11, 28. [Google Scholar] [CrossRef]
- Omar, A.; El-Banna, T.E.; Sonbol, F.I. Potential anti-virulence and antibiofilm activities of sub-MIC of oxacillin against MDR S. aureus isolates: An in-vitro and in-vivo study. BMC Microbiol 2024, 24, 295. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6, 4. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comp. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef]
- Robino, L.; Scavone, P. Nanotechnology in biofilm prevention. Future Microbiol. 2020, 15, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Alajmi, M.F.; Khan, M.A.; Pervez, S.A.; Ahmed, F.; Amir, S.; Husain, F.M.; Khan, M.S.; Shaik, G.M.; Hassan, I.; et al. Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits antimetastasis and anti-biofilm potentials. Front. Microbial. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- LewisOscar, F.; MubarakAli, D.; Nithya, C.; Priyanka, R.; Gopinath, V.; Alharbi, N.S.; Thajuddin, N. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015, 31, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Rajivgandhi, G.N.; Ramachandran, G.; Maruthupandy, M.; Manoharan, N.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Almanaa, T.N.; Li, W.J. Antioxidant, antibacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124830. [Google Scholar] [CrossRef]
- Giri, A.K.; Jena, B.; Biswal, B. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci. Rep 2022, 12, 8383. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Ruan, L.; Chin, S.F.; Wickramasinghe, N.; Liu, H.; Ravikumar, V.; Ren, J.; Duan, H.; Yang, L.; et al. Block copolymer nanoparticles remove biofilms of drug-resistant Gram-positive bacteria by nanoscale bacterial debridement. Nano Lett. 2018, 18, 4180–4187. [Google Scholar] [CrossRef]
- Ahire, J.J.; Hattingh, M.; Neveling, D.P.; Dicks, L.M.T. Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS ONE 2016, 11, e0152755. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Xu, X. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 2021, 12, 3331. [Google Scholar] [CrossRef]
- Aabed, K.; Mohammed, A.E. Synergistic and Antagonistic Effects of Biogenic Silver Nanoparticles in Combination with Antibiotics Against Some Pathogenic Microbes. Front. Bioeng. Biotechnol. 2021, 9, 652362. [Google Scholar] [CrossRef]
- Abo-Shama, U.H.; El-Gendy, H.; Mousa, W.S.; Hamouda, R.A.; Yousuf, W.E.; Hetta, H.F.; Abdeen, E.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist. 2020, 13, 351–362. [Google Scholar] [CrossRef]
- Bera, S.; Mondal, D. Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 271–302. [Google Scholar]
- Wang, Y.; Ding, X.; Chen, Y.; Guo, M.; Zhang, Y.; Guo, X.; Gu, H. Antibiotic-loaded, silver coreembedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 2016, 101, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 2012, 78, 2768–2774. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Cho, Y.I.; Kim, K.H.; Cho, E.S. Proteomic analysis to elucidate the antibacterial action of silver ions against bovine mastitis pathogens. Biol. Trace Elem. Res. 2016, 171, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Rowan, R.; McCann, M.; Kavanagh, K. Exposure of Staphylococcus aureus to silver(I) induces a short-term protective response. BioMetals 2012, 25, 611–616. [Google Scholar] [CrossRef]
- Wang RWang, R.; Lai, T.P.; Gao, P.; Zhang, H.; Ho, P.L.; Woo, P.C.Y.; Ma, G.; Kao, R.Y.T.; Li, H.; Sun, H. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat. Commun. 2018, 9, 439. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Wang, R.; Wang, H.; Wong, Y.T.; Wang, M.; Hao, Q.; Yan, A.; Richard Yi-Tsun Kao, R.Y.K.; Ho, P.L.; et al. Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin. Nat. Commun. 2020, 11, 5263. [Google Scholar] [CrossRef]
- Chahardoli, A.; Karimi, N.; Fattahi, A. Biosynthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Nigella arvensis seed extract. Iran. J. Pharm. Res. IJPR 2017, 16, 1167. [Google Scholar]
- Liu, X.; Shan, K.; Shao, X.; Shi, X.; He, Y.; Liu, Z.; Jacob, J.A.; Deng, L. Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous HeLa cell line. Int. J. Nanomed. 2021, 16, 753–761. [Google Scholar] [CrossRef]
- Lima, R.; Feitosa, L.; Ballottin, D.; Marcato, P.D.; Tasic, L.; Durán, N. Cytotoxicity and genotoxicity of biogenic silver nanoparticles. J. Phys. Conf. Ser. 2013, 429, 012020. [Google Scholar] [CrossRef]
- Arshad, F.; Naikoo, G.A.; Hassan, I.U.; Chava, S.R.; El-Tanani, M.; Aljabali, A.A.; Tambuwala, M.M. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Appl Biochem Biotechnol. 2024, 196, 3636–3669. [Google Scholar] [CrossRef]
Results | Biofilm Class |
---|---|
Strong biofilm | OD > 4 × ODc |
Medium biofilm | 2 × ODc < OD ≤ 4 × ODc |
Poor biofilm | ODc < OD ≤ 2 × ODc |
Negative biofilm | OD ≤ ODc |
Target Gene | Primers | Melting Temperature—Tm (°C) | Product Size (bp) | Ref. |
---|---|---|---|---|
icaA | F 5′ TCTCTTGCAGGAGCAATCAA 3′ R 5′ TCAGGCACTAACATCCAGCA 3′ | 55.5 | 188 | [27] |
icaD | F 5′ ATGGTCAAGCCCAGACAGAG 3 ′ R 5′ CGTGTTTTCAACATTTAATGCAA3′ | 55.5 | 198 | [27] |
Isolate Code | Name of Bacteria | Confidence Level | % Probability |
---|---|---|---|
AS-1 | Staphylococcus aureus | Excellent | 98% |
AS-2 | Staphylococcus aureus | Excellent | 98% |
AS-3 | Staphylococcus aureus | Excellent | 98% |
AS-4 | Staphylococcus aureus | Excellent | 98% |
AS-5 | Staphylococcus aureus | Excellent | 96% |
AS-6 | Staphylococcus aureus | Excellent | 96% |
AS-7 | Staphylococcus aureus | Excellent | 98% |
Antibiotics | AS-1 | AS-2 | AS-3 | AS-4 | AS-5 | AS-6 | AS-7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | Profile | MIC | Profile | MIC | Profile | MIC | Profile | MIC | Profile | MIC | Profile | MIC | Profile | |
Methicillin | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R |
Amoxicillin | ≥32 | R | ≥16 | R | ≥32 | R | ≥32 | R | ≥32 | R | ≥32 | R | ≥32 | R |
Oxacillin | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R |
Nalidixic acid | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R |
Ciprofloxacin | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R | ≥64 | R |
Rifampin | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R |
Amikacin | ≤16 | S | ≤16 | S | ≤16 | S | ≤16 | S | ≤16 | S | ≤16 | S | ≤16 | S |
Nitrofurantoin | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R | ≥16 | R |
Clindamycin | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R |
Erythromycin | >8 | R | >8 | R | >8 | R | >8 | R | >8 | R | >8 | R | >8 | R |
Tetracycline | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R |
Chloramphenicol | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R |
Fusidic acid | ≥8 | R | ≥8 | R | ≥8 | R | ≥8 | R | ≥8 | R | ≥ 8 | R | ≥8 | R |
Imipenem | ≤4 | S | ≤4 | S | ≤4 | S | ≤4 | S | ≤4 | S | ≤ 4 | S | ≤4 | S |
Ceftaroline | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R | >4 | R |
Vancomycin | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S | ≤0.5 | S |
Amoxicillin/clavulanic | ≥8/4 | R | ≥8/4 | R | ≥8/4 | R | ≥8/4 | R | ≥8/4 | R | ≥8/4 | R | ≥8/4 | R |
Antimicrobial Agent | Mean of Inhibition Zone Diameter mm (Mean ± SD) | ||
---|---|---|---|
Bacterial Strains | Ag-NPs | Oxacillin | |
SA-1 | 22 ± 1.21 | 0 | |
SA-2 | 12 ± 2.10 | 0 | |
SA-3 | 20 ± 1.13 | 0 | |
SA-4 | 22 ± 2.15 | 0 | |
SA-5 | 22 ± 2.18 | 0 | |
SA-6 | 22 ± 1.10 | 0 | |
SA-7 | 23 ± 1.45 | 0 | |
S. aureus ATCC 29523 | 24 ± 2.10 | 21 ± 2.13 |
Antimicrobial Agent | MICs µg/mL | ||
---|---|---|---|
Bacterial Strains | Ag-NPs | Oxacillin | |
SA-1 | 12 | 16 | |
SA-2 | 15 | 16 | |
SA-3 | 15 | 32 | |
SA-4 | 15 | 32 | |
SA-5 | 15 | 32 | |
SA-6 | 12 | 16 | |
SA-7 | 12 | 16 | |
S. aureus ATCC 29523 | 12 | 0.5 |
Isolated Bacteria | Biofilm Formation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before Treatment with Ag-NPs | After Treatment with Ag-NPs | |||||||||
CRA Test | MPA TEST | Biofilm Class | Biofilm Genes | MDR | CRA Test | MPA OD | MDR | |||
ODC | OD | icaA | icaD | |||||||
SA-1 | + | 0.007 | 0.234 | Strong | + | + | + | - | 0.010 | - |
SA-2 | + | 0.008 | 0.046 | moderate | + | + | + | − | 0.000 | − |
SA-3 | + | 0.007 | 0.039 | moderate | + | + | + | − | 0.000 | − |
SA-4 | + | 0.008 | 0.207 | Strong | + | + | + | − | 0.010 | − |
SA-5 | + | 0.008 | 0.011 | Poor | + | − | + | − | 0.000 | − |
SA-6 | + | 0.009 | 0.385 | Strong | + | + | + | − | 0.011 | − |
SA-7 | + | 0.010 | 0.236 | Strong | + | + | + | − | 0.012 | − |
No. | MIC Oxacillin + MIC Ag-NPs | Oxacillin + Ag-NPs (µg/mL) | FIC Oxacillin + FIC Ag-NPs | FICi | Interpretation |
---|---|---|---|---|---|
1 | MIC + MIC | 15 + 32 | 1 + 1 | 2 | indifferent |
2 | MIC + 1/2MIC | 15 + 16 | 1 + 0.5 | 1.5 | indifferent |
3 | MIC + 1/4MIC | 15 + 8 | 1 + 0.25 | 1.25 | indifferent |
4 | MIC + 1/8MIC | 15 + 4 | 1 + 0.125 | 1.125 | indifferent |
5 | MIC + 1/16MIC | 15 + 2 | 1 + 0.062 | 1.062 | indifferent |
6 | MIC + 1/32MIC | 15 + 1 | 1 + 0.031 | 1.031 | indifferent |
7 | MIC + 1/64MIC | 15 + 0. 5 | 1 + 0.015 | 1.015 | indifferent |
8 | MIC + 1/128MIC | 15 + 0.25 | 1 + 0.007 | 1.007 | indifferent |
9 | 1/2MIC + MIC | 7.5 + 32 | 0.5 + 1 | 1.5 | indifferent |
10 | 1/2MIC + 1/2MIC | 7.5 + 16 | 0.5 + 0.5 | 1 | additive |
11 | 1/2MIC + 1/4MIC | 7.5 + 8 | 0.5 + 0.25 | 0.75 | additive |
12 | 1/2MIC + 1/8MIC | 7.5 + 4 | 0.5 + 0.125 | 0.625 | additive |
13 | 1/2MIC + 1/16MIC | 7.5 + 2 | 0.5 + 0.062 | 0.562 | additive |
14 | 1/2MIC + 1/32MIC | 7.5 + 1 | 0.5 + 0.031 | 0.531 | additive |
15 | 1/2MIC + 1/64MIC | 7.5 + 0. 5 | 0.5 + 0.015 | 0.515 | additive |
16 | 1/2MIC + 1/128MIC | 7.5 + 0.25 | 0.5 + 0.007 | 0.507 | additive |
17 | 1/4MIC + MIC | 3.75 + 32 | 0.25 + 1 | 1.25 | indifferent |
18 | 1/4MIC + 1/2MIC | 3.75 + 16 | 0.25 + 0.5 | 0.75 | additive |
19 | 1/4MIC + 1/4MIC | 3.75 + 8 | 0.25 + 0.25 | 0.5 | synergy |
20 | 1/4MIC + 1/8MIC | 3.75 + 4 | 0.25 + 0.125 | 0.375 | synergy |
21 | 1/8MIC + MIC | 1.87 +32 | 0.125 + 1 | 1.125 | indifferent |
22 | 1/8MIC + 1/2MIC | 1.87 + 16 | 0.125 + 0.5 | 0.625 | additive |
23 | 1/8MIC + 1/4MIC | 1.87 + 4 | 0.125 + 0.25 | 0.375 | synergy |
24 | 1/16MIC + MIC | 0.93 + 32 | 0.062 + 1 | 1.062 | indifferent |
25 | 1/16MIC + 1/2MIC | 0.93 + 16 | 0.062 + 0.5 | 0.562 | additive |
26 | 1/32MIC + MIC | 0.46 + 32 | 0.031 + 1 | 1.031 | indifferent |
27 | 1/64MIC + MIC | 0.23 + 32 | 0.015 + 1 | 1.015 | indifferent |
28 | 1/128MIC + MIC | 0.11 + 32 | 0.007 + 1 | 1.007 | indifferent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fareid, M.A.; El-Sherbiny, G.M.; Askar, A.A.; Abdelaziz, A.M.; Hegazy, A.M.; Ab Aziz, R.; Hamada, F.A. Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination. Biomolecules 2025, 15, 266. https://doi.org/10.3390/biom15020266
Fareid MA, El-Sherbiny GM, Askar AA, Abdelaziz AM, Hegazy AM, Ab Aziz R, Hamada FA. Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination. Biomolecules. 2025; 15(2):266. https://doi.org/10.3390/biom15020266
Chicago/Turabian StyleFareid, Mohamed A., Gamal M. El-Sherbiny, Ahmed A. Askar, Amer M. Abdelaziz, Asmaa M. Hegazy, Rosilah Ab Aziz, and Fatma A. Hamada. 2025. "Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination" Biomolecules 15, no. 2: 266. https://doi.org/10.3390/biom15020266
APA StyleFareid, M. A., El-Sherbiny, G. M., Askar, A. A., Abdelaziz, A. M., Hegazy, A. M., Ab Aziz, R., & Hamada, F. A. (2025). Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination. Biomolecules, 15(2), 266. https://doi.org/10.3390/biom15020266