Bispecific Antibody and Antibody-Drug Conjugate as Novel Candidates for Treating Pancreatic Ductal Adenocarcinoma
Abstract
1. Introduction
2. BsAbs and Their Therapeutic Potential in PDAC
2.1. Classification of BsAbs
2.1.1. IgG-like BsAbs
2.1.2. Non-IgG-like BsAbs
2.2. Functions of BsAbs
2.2.1. T-Cell Engagement
2.2.2. Dual Immune Checkpoint Inhibition
2.2.3. Dual Tumor Antigen Targeting
2.2.4. Receptor Clustering
2.2.5. Cytokine or Cofactor Mimicking
2.3. Examples of BsAbs in PDAC Treatments
| Types | Names | Targets | Disease | Company | Development Stage | NCT. | Ref. |
|---|---|---|---|---|---|---|---|
| Abs | HuMab-5B1 (MVT-5873) | CA19-9 | Pancreatic ductal adenocarcinoma, biliary cancers | Sorrento/MabVax Therapeutics | Phase 1 | NCT02672917 | [58,59] |
| ensituximab (NPC-1C/NEO-102) | MUC5AC-related tumor antigen | Refractory colorectal and pancreatic cancer | Precision Biologics/Neogenix | Phase 1/2 | NCT01834235 | [60,60] | |
| ADCs | IBI343 | CLDN18.2 | Pancreatic ductal adenocarcinoma (PDAC), biliary tract cancer (BTC) | Innovent Biologics | Phase 1 | NCT05458219 | [61,62] |
| EBC-129 | CEACAM5/CEACAM6 | Pancreatic ductal adenocarcinoma (PDAC) | Experimental Drug Development Centre | Phase 1 | NCT05701527 | [63,64] | |
| OMTX705 | FAP | Advanced pancreatic adenocarcinoma | Phase 1b | NCT05547321 | [65,66] | ||
| uPAR-ADC | uPAR | Pancreatic ductal adenocarcinoma (PDAC) | Oncomatryx/TFS HealthScience | Preclinical | no NCT | [67] | |
| GPC-1 ADC | GPC-1 | GPC1-positive pancreatic cancer | University of Copenhagen/Genmab | Preclinical | no NCT | [68] | |
| TR1801-ADC | c-MET | KRAS-mutated PDAC/resistant tumors | Kyowa Kirin/Osaka University | Preclinical | no NCT | [69] |
3. Bispecific ADCs and Their Therapeutic Potential in PDAC
3.1. Definition of BsADCs
3.1.1. Linkers of BsADCs
3.1.2. Payload of BsADCs
3.2. Rationales of BsADCs in PDAC Treatments
3.3. Recent Progress of BsADCs in Anticancer Therapies
| Development Stage | BsADCs (Targets) | Payload | Disease | Company | NCT. | Ref. |
|---|---|---|---|---|---|---|
| Preclinical stage | BVX001 (CD7×CD33) | Monomethyl auristatin F (MMAF) | Acute Myeloid Leukemia (CD7+/CD33+) | BiVictriX Therapeutics | × | [113,114] |
| VBC103 (Trop2×Nectin4) | Topoisomerase I inhibitor | Urothelial Carcinoma (metastatic), Triple-Negative Breast Cancer (+ Othesrs) | VelaVigo, Avenzo Therapeutics | × | [115] | |
| Phase1 | AZD9592 (EGFR×c-MET) | Topoisomerase I inhibitor (“samrotocan”) | Advanced solid tumors (EGFR×c-MET co-expressing; NSCLC focus) | AstraZeneca | NCT05647122 | [103,116] |
| ZW-49 (HER2 (ECD2×ECD4)) | Auristatin (microtubule inhibitor) | HER2-expressing solid tumors (breast, gastric, etc.) | Zymeworks | NCT03821233 | [117,118] | |
| JSKN0016 (HER3×TROP2) | Topoisomerase I inhibitor | Advanced solid tumors (basket, incl. lung, breast) | Alphamab Oncology | NCT06868732 | [119,120] | |
| M1231 (MUC1×EGFR) | SC209 (microtubule disruptor) | Advanced solid tumors (dose escalation); NSCLC & ESCC (expansion cohorts) | EMD Serono, Sutro Biopharma | NCT04695847 | [104,110] | |
| DM001 (EGFR×TROP2) | Monomethyl auristatin E (MMAE) | Advanced solid tumors (breast, EGFR-mut/wt NSCLC, gastric, esophageal, colorectal) | XADCera | NCT06475937 | [121,122] | |
| DM005 (EGFR×c-MET) | Topoisomerase I inhibitor | Advanced solid tumors (NSCLC, H&N, GI, etc.) | Doma Biopharm | NCT06515990 | [123,124,125] | |
| BL-B01D1 (EGFR×HER3) | Ed-04 (topoisomerase I inhibitor) | Multiple solid tumors (NSCLC, breast, etc.) | Sichuan Baili, SystImmune | NCT05983432 | [9,105,126] | |
| BL-B01D1 (EGFR×HER3) | Ed-04 (topoisomerase I inhibitor) | Advanced solid tumors (Phase 1a dose escalation); Expansion in ESCC and other GI cancers | Sichuan Baili, SystImmune | NCT05262491 | [9,105,127] | |
| BL-B16D1 (EGFR×HER3) | Monomethyl auristatin E (MMAE) | Advanced solid tumors (all-comers) | Sichuan Baili, SystImmune | NCT06475131 | [128] | |
| BL-B16D1 (EGFR×HER3) | Monomethyl auristatin E (MMAE) | Head & Neck Squamous Cell Carcinoma (+ others) | Sichuan Baili, SystImmune | NCT06469008 | [129] | |
| BL-B16D1 (EGFR×HER3) | Monomethyl auristatin E (MMAE) | HER2-negative Breast Cancer (+ others) | Sichuan Baili, SystImmune | NCT06493864 | [130] | |
| IBI-3001 (B7-H3×EGFR) | Undisclosed | Advanced solid tumors (B7-H3 & EGFR co-expressing) | Innovent Biologics | NCT06349408 | [131,132,133] | |
| Phase1/2 | REGN5093-M114 (MET biparatopic) | Maytansine derivative (M24) | Non-Small-cell Lung Cancer (NSCLC; MET-overexpressing; advanced) | Regeneron Pharmaceuticals | NCT04982224 | [134,135] |
| MEDI4276 (HER2 (ECD2×ECD4) | AZ13599185 (microtubule inhibitor) | Breast & Gastric Cancer (HER2-overexpressing; advanced) | MedImmune, AstraZeneca | NCT02576548 | [136,137] | |
| GEN1286 (EGFR×c-MET) | Topoisomerase I inhibitor | Advanced solid tumors (ovarian, NSCLC, gastric, etc.) | Genmab | NCT06685068 | [138,139] | |
| VBC101- (EGFR×c-Met) | Monomethyl auristatin E (MMAE) | Solid tumors co-expressing EGFR & MET | VelaVigo Bio | NCT07136779 | [140,141,142] | |
| Phase2 | BL-B01D1 (EGFR×HER3) | Ed-04 (topoisomerase I inhibitor) | Renal Cell Carcinoma (locally advanced or metastatic) | Sichuan Baili, Bristol Myers Squib | NCT06962787 | [9,105,143] |
| Phase3 | TQB2102 (HER2 (ECD2×ECD4)) | Topoisomerase I inhibitor | Breast Cancer (HER2+, early stage, neoadjuvant) | Chia Tai Tianqing | NCT07043725 | [144,145] |
| JSKN003 (HER2 biparatopic) | Topoisomerase I inhibitor | Ovarian Cancer (HER2-expressing, platinum-resistant) | lphamab Oncology | NCT06751485 | [146] | |
| JSKN003 (HER2 biparatopic) | Topoisomerase I inhibitor | HER2-positive Breast Cancer (advanced, post-T-DM1) | lphamab Oncology | NCT06846437 | [147,148] | |
| BL-B01D1 (EGFR×HER3) | Ed-04 (topoisomerase I inhibitor) | Triple-Negative Breast Cancer (metastatic) | Sichuan Baili, Bristol Myers Squib | NCT06382142 | [9,105,149] | |
| BL-B01D1 (EGFR×HER3) | Ed-04 (topoisomerase I inhibitor) | HR+/HER2– Metastatic Breast Cancer | Sichuan Baili, Bristol Myers Squib | NCT06343948 | [9,105,150] | |
| BL-B01D1 (EGFR×HER3) | Ed-04 (topoisomerase I inhibitor) | Esophageal squamous cell carcinoma (2L, post-IO) | Sichuan Baili, Bristol Myers Squib | NCT06304974 | [9,105,151] |
3.4. Recent Progress of BsADCs for PDAC Treatments
4. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, W.J.; Jaffee, E.M.; Zheng, L. The tumour microenvironment in pancreatic cancer—Clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 2020, 17, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y. The desmoplastic stroma of pancreatic cancer: Multilayered levels of heterogeneity, clinical significance, and therapeutic opportunities. Cancers 2022, 14, 3293. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Xu, D.; Liao, M.M.; Sun, Y.; Bao, W.d.; Yao, F.; Ma, L. Barriers and opportunities in pancreatic cancer immunotherapy. npj Precis. Oncol. 2024, 8, 199. [Google Scholar] [CrossRef]
- Hosein, A.N.; Dougan, S.K.; Aguirre, A.J.; Maitra, A. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat. Cancer 2022, 3, 272–286. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]
- Arias-Pinilla, G.A.; Modjtahedi, H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers 2021, 13, 1781. [Google Scholar] [CrossRef]
- Kontermann, R.E.; Brinkmann, U. Bispecific antibodies. Drug Discov. Today 2015, 20, 838–847. [Google Scholar] [CrossRef]
- Luo, M.; Wang, X.; Yu, G.; Ji, J.; Li, L.; Song, F. Development of a bispecific antibody–drug conjugate targeting EpCAM and CLDN3 for the treatment of multiple solid tumors. Exp. Hematol. Oncol. 2025, 14, 33. [Google Scholar] [CrossRef]
- Liu, C.; Liu, D.; Ji, Y.; Sun, M.; Gao, S.; Ma, X.; Zhong, D.; Zhu, J.; Cao, Y.; Qi, C.; et al. A bispecific antibody–drug conjugate targeting EGFR and HER3 in metastatic esophageal squamous cell carcinoma: A phase 1b trial. Nat. Med. 2025. In press. [Google Scholar] [CrossRef]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, Z.; Wang, Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm. Sin. B 2024, 14, 1965–1986. [Google Scholar] [CrossRef]
- Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs 2017, 9, 182–212. [Google Scholar] [CrossRef]
- Cho, B.C.; Simi, A.; Sabari, J.; Vijayaraghavan, S.; Moores, S.; Spira, A. Amivantamab, an Epidermal Growth Factor Receptor (EGFR) and Mesenchymal-epithelial Transition Factor (MET) Bispecific Antibody, Designed to Enable Multiple Mechanisms of Action and Broad Clinical Applications. Clin. Lung Cancer 2023, 24, 89–97. [Google Scholar] [CrossRef]
- Rivera-Soto, R.; Henley, B.; Pulgar, M.A.; Lehman, S.L.; Gupta, H.; Perez-Vale, K.Z.; Weindorfer, M.; Vijayaraghavan, S.; Yao, T.W.S.; Laquerre, S.; et al. Amivantamab efficacy in wild-type EGFR NSCLC tumors correlates with levels of ligand expression. npj Precis. Oncol. 2024, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Agostini, H.; Abreu, F.; Baumal, C.R.; Chang, D.S.; Csaky, K.G.; Demetriades, A.M.; Kodjikian, L.; Lim, J.I.; Margaron, P.; Monés, J.M.; et al. Faricimab for neovascular age-related macular degeneration and diabetic macular edema: From preclinical studies to phase 3 outcomes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 3437–3451. [Google Scholar] [CrossRef]
- Khanani, A.M.; Patel, S.S.; Ferrone, P.J.; Osborne, A.; Sahni, J.; Grzeschik, S.; Basu, K.; Ehrlich, J.S.; Haskova, Z.; Dugel, P.U. Efficacy of Every Four Monthly and Quarterly Dosing of Faricimab vs Ranibizumab in Neovascular Age-Related Macular Degeneration: The STAIRWAY Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ying, H.; Grinnell, C.; Bryant, S.; Miller, R.; Clabbers, A.; Bose, S.; McCarthy, D.; Zhu, R.R.; Santora, L. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol. 2007, 25, 1290–1297. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, M.; Zhang, Y.; Wang, X. Bispecific T cell engagers: An emerging therapy for management of hematologic malignancies. J. Hematol. Oncol. 2021, 14, 75. [Google Scholar] [CrossRef]
- Han, L.; Wang, K.; Jiang, Z.; Guo, X.; Yu, J. Recent development in bispecific antibody immunotherapy for hematological malignancies. Crit. Rev. Oncol./Hematol. 2025, 212, 104752. [Google Scholar] [CrossRef]
- Mocquot, P.; Mossazadeh, Y.; Lapierre, L.; Pineau, F.; Despas, F. The pharmacology of blinatumomab: State of the art on pharmacodynamics, pharmacokinetics, adverse drug reactions and evaluation in clinical trials. J. Clin. Pharm. Ther. 2022, 47, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Duell, J.; Lammers, P.E.; Djuretic, I.; Chunyk, A.G.; Alekar, S.; Jacobs, I.; Gill, S. Bispecific Antibodies in the Treatment of Hematologic Malignancies. Clin. Pharmacol. Ther. 2019, 106, 781–791. [Google Scholar] [CrossRef]
- Reusch, U.; Burkhardt, C.; Fucek, I.; Le Gall, F.; Le Gall, M.; Hoffmann, K.; Knackmuss, S.H.; Kiprijanov, S.; Little, M.; Zhukovsky, E.A. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs 2014, 6, 728–739. [Google Scholar] [CrossRef]
- Shastri, T.; Trabolsi, A.; Arumov, A.; Schatz, J.H. Bispecific Antibodies in Hematologic Malignancies: Attacking the Frontline. BioDrugs 2025, 39, 793–814. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Q.; Cao, N.; Hu, C.; Wang, J.; He, Y.; Jiang, S.; Li, Q.; Chen, M.; Gong, L.; et al. Nanobodies and their derivatives: Pioneering the future of cancer immunotherapy. Cell Commun. Signal. 2025, 23, 271. [Google Scholar] [CrossRef]
- Köhnke, T.; Krupka, C.; Tischer, J.; Knösel, T.; Subklewe, M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J. Hematol. Oncol. 2015, 8, 111. [Google Scholar] [CrossRef]
- Pang, X.; Huang, Z.; Zhong, T.; Zhang, P.; Wang, Z.M.; Xia, M.; Li, B. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. MAbs 2023, 15, 2180794. [Google Scholar] [CrossRef]
- Bielski, P.; Barczyński, J.; Mikitiuk, M.; Myrcha, M.; Rykała, K.; Boon, L.; Gąsior, W.; Hec-Gałązka, A.; Holak, T.A.; Sitar, T. The bispecific antibody targeting VISTA and PD-L1 shows enhanced tumor inhibitory activity in pancreatic, endometrial and breast cancers compared to mono- and combination immune checkpoint blockade. Front. Immunol. 2025, 16, 1486799. [Google Scholar] [CrossRef]
- Oslund, R.C.; Holland, P.M.; Lesley, S.A.; Fadeyi, O.O. Therapeutic potential of cis-targeting bispecific antibodies. Cell Chem. Biol. 2024, 31, 1473–1489. [Google Scholar] [CrossRef]
- Huang, S.; Van Duijnhoven, S.M.J.; Sijts, A.J.A.M.; Van Elsas, A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J. Cancer Res. Clin. Oncol. 2020, 146, 3111–3122. [Google Scholar] [CrossRef]
- Kontermann, R. Dual targeting strategies with bispecific antibodies. MAbs 2012, 4, 182–197. [Google Scholar] [CrossRef]
- Fan, G.; Wang, Z.; Hao, M.; Li, J. Bispecific antibodies and their applications. J. Hematol. Oncol. 2015, 8, 130. [Google Scholar] [CrossRef]
- Luo, J. Amivantamab in EGFR Exon 20 Insertion Mutated NSCLC Progression on Platinum Chemotherapy: Initial Results from the CHRYSALIS Phase 1 Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar]
- Khanani, A.M.; Kotecha, A.; Chang, A.; Chen, S.J.; Chen, Y.; Guymer, R.; Heier, J.S.; Holz, F.G.; Iida, T.; Ives, J.A. TENAYA and LUCERNE: Two-year results from the phase 3 neovascular age-related macular degeneration trials of faricimab with treat-and-extend dosing in year 2. Ophthalmology 2024, 131, 914–926. [Google Scholar] [CrossRef]
- Muik, A.; Garralda, E.; Altintas, I.; Gieseke, F.; Geva, R.; Ben-Ami, E.; Maurice-Dror, C.; Calvo, E.; LoRusso, P.M.; Alonso, G.; et al. Preclinical characterization and phase I trial results of a bispecific antibody targeting PD-L1 and 4-1BB (GEN1046) in patients with advanced refractory solid tumors. Cancer Discov. 2022, 12, 1248–1265. [Google Scholar] [CrossRef]
- Cheng, L.S.; Zhu, M.; Gao, Y.; Liu, W.T.; Yin, W.; Zhou, P.; Zhu, Z.; Niu, L.; Zeng, X.; Zhang, D.; et al. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell. Mol. Biol. Lett. 2023, 28, 47. [Google Scholar] [CrossRef]
- Li, T.; Niu, M.; Zhou, J.; Wu, K.; Yi, M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun. Signal. 2024, 22, 179. [Google Scholar] [CrossRef]
- Warwas, K.M.; Meyer, M.; Gonçalves, M.; Moldenhauer, G.; Bulbuc, N.; Knabe, S.; Luckner-Minden, C.; Ziegelmeier, C.; Heussel, C.P.; Zörnig, I.; et al. Co-Stimulatory Bispecific Antibodies Induce Enhanced T Cell Activation and Tumor Cell Killing in Breast Cancer Models. Front. Immunol. 2021, 12, 719116. [Google Scholar] [CrossRef]
- Kitazawa, T.; Shima, M. Emicizumab, a humanized bispecific antibody to coagulation factors IXa and X with a factor VIIIa-cofactor activity. Int. J. Hematol. 2020, 111, 20–30. [Google Scholar] [CrossRef]
- Oldenburg, J.; Mahlangu, J.N.; Kim, B.; Schmitt, C.; Callaghan, M.U.; Young, G.; Santagostino, E.; Kruse-Jarres, R.; Negrier, C.; Kessler, C. Emicizumab prophylaxis in hemophilia A with inhibitors. N. Engl. J. Med. 2017, 377, 809–818. [Google Scholar] [CrossRef]
- Sindaco, P.; Pandey, H.; Isabelle, C.; Chakravarti, N.; Brammer, J.E.; Porcu, P.; Mishra, A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front. Immunol. 2023, 14, 1141208. [Google Scholar] [CrossRef]
- Blair, H.A. Zenocutuzumab: First Approval. Drugs 2025, 85, 591–597. [Google Scholar] [CrossRef]
- Mbbs, S.R.; Mbbs, U.F.; Waheed, A.; Mbbs, M.K.B.; Md, A.B.; Mbbs, H.N.; Gul, M.H.; Mbbs, A.A.; Mbbs, Z.I.; Wardak, A.B. Unveiling the Potential of Zenocutuzumab: A Breakthrough in NSCLC and Pancreatic Adenocarcinoma Treatment. Oncology 2025, 7, 298–300. [Google Scholar]
- Schram, A.M.; Goto, K.; Kim, D.W.; Macarulla, T.; Hollebecque, A.; O’Reilly, E.M.; Ou, S.H.I.; Rodon, J.; Rha, S.Y.; Nishino, K.; et al. Efficacy of zenocutuzumab in NRG1 fusion–positive cancer. N. Engl. J. Med. 2025, 392, 566–576. [Google Scholar] [CrossRef]
- Long, A.W.; Xu, H.; Santich, B.H.; Guo, H.; Hoseini, S.S.; de Stanchina, E.; Cheung, N.K.V. Heterodimerization of T cell engaging bispecific antibodies to enhance specificity against pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2024, 17, 20. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Cao, M.; Peng, W.; Huang, H.; Yang, Y.; Liang, J.; Chen, W.; Bai, S.; Zhou, Q. Anti-CTGF/PD-1 bispecific antibody Y126S restrains desmoplastic and immunosuppressive microenvironment in pancreatic cancer. J. Immunother. Cancer 2025, 13, e012144. [Google Scholar] [CrossRef]
- Lum, L.G.; Thakur, A.; Choi, M.; Deol, A.; Kondadasula, V.; Schalk, D.; Fields, K.; Dufrense, M.; Philip, P.; Dyson, G. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Oncoimmunology 2020, 9, 1773201. [Google Scholar] [CrossRef] [PubMed]
- Phase Ib/II Treatment of Advanced Pancreatic Cancer with Anti-CD3 x Anti-EGFR-Bispecific Antibody Armed Activated T-Cells (BATs). 2017. Available online: https://clinicaltrials.gov/study/NCT03269526 (accessed on 30 September 2025).
- Suurs, F.V.; Lorenczewski, G.; Bailis, J.M.; Stienen, S.; Friedrich, M.; Lee, F.; van der Vegt, B.; de Vries, E.G.E.; de Groot, D.J.A.; Lub-de Hooge, M.N. Mesothelin/CD3 Half-Life–Extended Bispecific T-Cell Engager Molecule Shows Specific Tumor Uptake and Distributes to Mesothelin and CD3-Expressing Tissues. J. Nucl. Med. 2021, 62, 1797–1804. [Google Scholar] [CrossRef]
- Phase 1a/1b Study of CT-95 in Advanced Cancers Associated with Mesothelin Expression. 2024. Available online: https://clinicaltrials.gov/study/NCT06756035 (accessed on 14 October 2025).
- United States Food and Drug Administration. FDA Grants Accelerated Approval to Zenocutuzumab-Zbco for Non-Small Cell Lung Cancer and Pancreatic Adenocarcinoma Harboring NRG1 Gene Fusions. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-zenocutuzumab-zbco-non-small-cell-lung-cancer-and-pancreatic (accessed on 4 December 2024).
- Shen, L.; Schaefer, A.; Huckaby, J.; Wolf, W.; Lai, S.K. Bispecific Siglec-15/T cell antibody (STAB) activates T cells and suppresses pancreatic ductal adenocarcinoma and non-small cell lung tumors in vivo. Theranostics 2025, 15, 5529–5542. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, X.; Niu, M.; Wang, M.; Zhou, J.; Wu, K.; Yi, M. Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. Front. Immunol. 2023, 14, 1196970. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, N.L.; Brown, M.P.; Liapis, V.; Staudacher, A.H. Antibody drug conjugates: Hitting the mark in pancreatic cancer? J. Exp. Clin. Cancer Res. 2023, 42, 280. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Liu, J.; Yang, J.; Yue, J.; Sun, Y.; Pan, Y.; Sun, M.; Qin, Y.; Shen, L. 132MO Anti-claudin18. 2 (CLDN18. 2) antibody-drug conjugate (ADC) IBI343 in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC): Updated results from a phase I study. Ann. Oncol. 2024, 35, S1456. [Google Scholar] [CrossRef]
- Farhangnia, P.; Khorramdelazad, H.; Nickho, H.; Delbandi, A.A. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J. Hematol. Oncol. 2024, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Han, Y.; Fang, Y.; Ma, P.; Zhou, J.; Jiang, Y.; Xing, S.; Tang, Q.; Hou, Y.; Wang, S.; et al. Antibody-drug conjugates: Current challenges and innovative solutions for precision cancer therapy. Med 2025, 6, 100849. [Google Scholar] [CrossRef]
- Phase 1 Safety and Tolerability Study of Human Monoclonal Antibody 5B1 (MVT-5873) with Expansion in Subjects with Pancreatic Cancer or Other CA19-9 Positive Malignancies. 2016. Available online: https://clinicaltrials.gov/study/NCT02672917 (accessed on 14 October 2025).
- O’Reilly, E.M.; Wang, J.S.Z.; Yu, K.H.; Lowery, M.A.; Varghese, A.M.; Bendell, J.C.; Borazanci, E.H.; Estrella, H.; Fowler, K.; Hoskins, M. Abstract LB-B25: Preliminary phase I data comparing HuMab-5B1 (MVT-5873), a monoclonal antibody targeting sLea, as a single agent and in combination with first line nab-paclitaxel and gemcitabine in patients with CA19-9 positive pancreatic cancer. Mol. Cancer Ther. 2018, 17, LB-B25. [Google Scholar] [CrossRef]
- Huffman, B.M.; Mallick, A.B.; Horick, N.K.; Wang-Gillam, A.; Hosein, P.J.; Morse, M.; Beg, M.S.; Murphy, J.E.; Schlechter, B.L.; Sanoff, H.; et al. Abstract A019: A multicenter randomized phase II study of gemcitabine and nab-paclitaxel versus gemcitabine and nab-paclitaxel with a MUC5AC antibody (NPC-1C) in advanced pancreatic cancer previously treated with FOLFIRINOX (NCT01834235). Cancer Res. 2022, 82, A019. [Google Scholar] [CrossRef]
- A First-in-human Study of IBI343 in Subjects with Locally Advanced Unresectable or Metastatic Solid Tumors. 2025. Available online: https://clinicaltrials.gov/study/NCT05458219 (accessed on 27 April 2025).
- Yu, X.; Ying, J.; Enxiao, L.; Zhou, A.; Sun, Y.; Yue, J.; Ruan, J.; Zhang, J.; Shen, L.; Du, J.; et al. Claudin18.2 (CLDN18.2) expression and efficacy in pancreatic ductal adenocarcinoma (PDAC): Results from a phase I dose expansion cohort evaluating IBI343. J. Clin. Oncol. 2025, 43, 4017. [Google Scholar] [CrossRef]
- A Phase 1A/B Study to Evaluate the Safety and Tolerability of EBC-129 as a Single Agent and in Combination with Pembrolizumab in Advanced Solid Tumours. 2023. Available online: https://clinicaltrials.gov/study/NCT05701527 (accessed on 4 September 2025).
- Lentz, R.W.; Ng, M.C.H.; Yong, W.-P.; Meric-Bernstam, F.; Singh, I.; Srirangam, V.; Cometa, J.; Blanchard, S.; Nellore, R.; Shah, K.J.; et al. Clinical activity of EBC-129, a first-in class, anti N256-glycosylated CEACAM5 and CEACAM6 antibody-drug conjugate (ADC), in patients with pancreatic ductal adenocarcinoma (PDAC) in a phase 1 study. J. Clin. Oncol. 2025, 43, 4018. [Google Scholar] [CrossRef]
- Phase 1 Dose-Escalation Trial of OMTX705, an Anti-Fibroblast Activation Protein Antibody-Drug Conjugate, as Single Agent and in Combination with Pembrolizumab in Patients with Advanced Solid Tumors. 2022. Available online: https://clinicaltrials.gov/study/NCT05547321 (accessed on 27 April 2025).
- Torres-Jiménez, J.; Paisan, A.; Ponz-Sarvise, M.; Bockorny, B.; Gil-Martin, M.; Cubedo, R.; Paz-Ares, L.G.; Landa-Magdalena, A.; Wulf, G.M.; Sàbat, P.; et al. First-in-human phase 1 dose escalation trial of OMTX705, a novel anti-fibroblast activation protein (FAP) antibody drug conjugate (ADC), in monotherapy and in combination with pembrolizumab in patients with solid tumors. J. Clin. Oncol. 2025, 43, 3028. [Google Scholar] [CrossRef]
- Metrangolo, V.; Blomquist, M.H.; Dutta, A.; Gårdsvoll, H.; Krigslund, O.; Nørregaard, K.S.; Jürgensen, H.J.; Ploug, M.; Flick, M.J.; Behrendt, N. Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models. Sci. Adv. 2025, 11, eadq0513. [Google Scholar] [CrossRef]
- Ghosh, S.; Huda, P.; Fletcher, N.; Campbell, D.; Thurecht, K.J.; Walsh, B. Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opin. Biol. Ther. 2022, 22, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Gymnopoulos, M.; Betancourt, O.; Blot, V.; Fujita, R.; Galvan, D.; Lieuw, V.; Nguyen, S.; Snedden, J.; Stewart, C.; Villicana, J. TR1801-ADC: A highly potent cMet antibody–drug conjugate with high activity in patient-derived xenograft models of solid tumors. Mol. Oncol. 2020, 14, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, X.; Wang, X.; Yuan, K.; Wang, G.; Hu, L.; Zhang, G.; Pei, W.; Wang, L.; Sun, C. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm. Sin. B 2023, 13, 3583–3597. [Google Scholar] [CrossRef]
- Wang, R.; Hu, B.; Pan, Z.; Mo, C.; Zhao, X.; Liu, G.; Hou, P.; Cui, Q.; Xu, Z.; Wang, W.; et al. Antibody–Drug Conjugates (ADCs): Current and future biopharmaceuticals. J. Hematol. Oncol. 2025, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Nam, S.M.; Moon, A. Antibody-drug conjugates and bispecific antibodies targeting cancers: Applications of click chemistry. Arch. Pharm. Res. 2023, 46, 131–148. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Riccardi, F.; Dal Bo, M.; Macor, P.; Toffoli, G. A comprehensive overview on antibody-drug conjugates: From the conceptualization to cancer therapy. Front. Pharmacol. 2023, 14, 1274088. [Google Scholar] [CrossRef]
- Li, F.; Emmerton, K.K.; Jonas, M.; Zhang, X.; Miyamoto, J.B.; Setter, J.R.; Nicholas, N.D.; Okeley, N.M.; Lyon, R.P.; Benjamin, D.R.; et al. Intracellular Released Payload Influences Potency and Bystander-Killing Effects of Antibody-Drug Conjugates in Preclinical Models. Cancer Res. 2016, 76, 2710–2719. [Google Scholar] [CrossRef]
- Study of XB002 in Subjects with Solid Tumors (JEWEL-101). 2023. Available online: https://clinicaltrials.gov/study/NCT04925284 (accessed on 4 April 2025).
- de Vries, E.G.E.; Rüschoff, J.; Lolkema, M.; Tabernero, J.; Gianni, L.; Voest, E.; de Groot, D.J.A.; Castellano, D.; Erb, G.; Naab, J.; et al. Phase II study (KAMELEON) of single-agent T-DM1 in patients with HER2-positive advanced urothelial bladder cancer or pancreatic cancer/cholangiocarcinoma. Cancer Med. 2023, 12, 12071–12083. [Google Scholar] [CrossRef]
- Qian, Y.; Gong, Y.; Fan, Z.; Luo, G.; Huang, Q.; Deng, S.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2020, 13, 130. [Google Scholar] [CrossRef]
- Spiliopoulou, P.; Kasi, A.; Abushahin, L.; Cardin, D.; Lenz, H.-J.; Dayyani, F.; Messersmith, W.; Ezenwajiaku, N.; Oberstein, P.; Paluri, R.; et al. Phase Ib study of anetumab ravtansive in combination with immunotherapy or immunotherapy plus chemotherapy in mesothelin-enriched advanced pancreatic adenocarcinoma: NCI10208. J. Clin. Oncol. 2022, 40, 4136. [Google Scholar] [CrossRef]
- Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; et al. Anetumab Ravtansine: A Novel Mesothelin-Targeting Antibody–Drug Conjugate Cures Tumors with Heterogeneous Target Expression Favored by Bystander Effect. Mol. Cancer Ther. 2014, 13, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Leal, A.D.; Parikh, A.; Ryan, D.P.; Wang, S.; Bahamon, B.; Gupta, N.; Moss, A.; Pye, J.; Miao, H.; et al. A phase I, first-in-human study of TAK-164, an antibody-drug conjugate, in patients with advanced gastrointestinal cancers expressing guanylyl cyclase C. Cancer Chemother. Pharmacol. 2023, 91, 291–300. [Google Scholar] [CrossRef]
- Yao, H.-P.; Zhao, H.; Hudson, R.; Tong, X.M.; Wang, M.H. Duocarmycin-based antibody–drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov. Today 2021, 26, 1857–1874. [Google Scholar] [CrossRef]
- MGC018 with or Without MGA012 in Advanced Solid Tumors. 2023. Available online: https://clinicaltrials.gov/study/NCT03729596 (accessed on 31 July 2025).
- Zammarchi, F.; Havenith, K.; Chivers, S.; Hogg, P.; Bertelli, F.; Tyrer, P.; Janghra, N.; Reinert, H.; Hartley, J.; Berkel, P. Preclinical Development of ADCT-601, a Novel Pyrrolobenzodiazepine Dimer-based Antibody–drug Conjugate Targeting AXL-expressing Cancers. Mol. Cancer Ther. 2022, 21, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Zammarchi, F.; Havenith, K.; Chivers, S.; Hogg, P.W.; Britten, C.; Dissanayake, S.; Tyrer, P.; Bertelli, F.; Hutchinson, I.; Masterson, L.; et al. Abstract 2792A: Preclinical activity of ADCT-601, a novel pyrrolobenzodiazepine (PBD) dimer-based antibody-drug conjugate (ADC) targeting AXL-expressing tumors. Cancer Res. 2018, 78, 2792A. [Google Scholar] [CrossRef]
- Valsasina, B.; Orsini, P.; Terenghi, C.; Ocana, A. Present Scenario and Future Landscape of Payloads for ADCs: Focus on DNA-Interacting Agents. Pharmaceuticals 2024, 17, 1338. [Google Scholar] [CrossRef]
- Dotan, E.; Cohen, S.; Starodub, A.; Lieu, C.; Messersmith, W.; Simpson, P.; Guarino, M.; Marshall, J.; Goldberg, R.; Hecht, J.; et al. Phase I/II Trial of Labetuzumab Govitecan (Anti-CEACAM5/SN-38 Antibody-Drug Conjugate) in Patients with Refractory or Relapsing Metastatic Colorectal Cancer. J. Clin. Oncol. 2017, 35, 3338–3346. [Google Scholar] [CrossRef]
- Sharkey, R.; Govindan, S.; Cardillo, T.; Donnell, J.; Xia, J.; Rossi, E.; Chang, C.H.; Goldenberg, D. Selective and Concentrated Accretion of SN-38 with a CEACAM5-Targeting Antibody–Drug Conjugate (ADC), Labetuzumab Govitecan (IMMU-130). Mol. Cancer Ther. 2018, 17, 196–203. [Google Scholar] [CrossRef]
- Ocean, A.J.; Starodub, A.N.; Bardia, A.; Vahdat, L.T.; Isakoff, S.J.; Guarino, M.; Messersmith, W.A.; Picozzi, V.J.; Mayer, I.A.; Wegener, W.A.; et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer 2017, 123, 3843–3854. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results from the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Okajima, D.; Yasuda, S.; Maejima, T.; Karibe, T.; Sakurai, K.; Aida, T.; Toki, T.; Yamaguchi, J.; Kitamura, M.; Kamei, R.; et al. Datopotamab Deruxtecan, a Novel TROP2-directed Antibody-drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Mol. Cancer Ther. 2021, 20, 2329–2340. [Google Scholar] [CrossRef] [PubMed]
- Conilh, L.; Sadilkova, L.; Viricel, W.; Dumontet, C. Payload diversification: A key step in the development of antibody–drug conjugates. J. Hematol. Oncol. 2023, 16, 3. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef]
- Herrera, M.; Pretelli, G.; Desai, J.; Garralda, E.; Siu, L.L.; Steiner, T.M.; Au, L. Bispecific antibodies: Advancing precision oncology. Trends Cancer 2024, 10, 893–919. [Google Scholar] [CrossRef]
- Oostindie, S.C.; Rinaldi, D.A.; Zom, G.G.; Wester, M.J.; Paulet, D.; Al-Tamimi, K.; van der Meijden, E.; Scheick, J.R.; Wilpshaar, T.; de Jong, B.; et al. Logic-gated antibody pairs that selectively act on cells co-expressing two antigens. Nat. Biotechnol. 2022, 40, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuting, L.; Tang, S.C.; To, K.F.; Li, B.; Chan, S.; Wong, C.H. The molecular mechanism underlying KRAS regulation on STK31 expression in Pancreatic ductal adenocarcinoma. Cancer Sci. 2023, 115, 3288–3304. [Google Scholar] [CrossRef]
- Balamkundu, S.; Liu, C.-F. Lysosomal-cleavable peptide linkers in antibody–drug conjugates. Biomedicines 2023, 11, 3080. [Google Scholar] [CrossRef]
- Staudacher, A.H.; Brown, M.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br. J. Cancer 2017, 117, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- de Goeij, B.E.; Vink, T.; Ten Napel, H.; Breij, E.C.; Satijn, D.; Wubbolts, R.; Miao, D.; Parren, P.W. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol. Cancer Ther. 2016, 15, 2688–2697. [Google Scholar] [CrossRef]
- Provenzano, P.P.; Cuevas, C.; Chang, A.E.; Goel, V.K.; Von Hoff, D.D.; Hingorani, S.R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21, 418–429. [Google Scholar] [CrossRef] [PubMed]
- First in Human Study of AZD9592 in Solid Tumors (EGRET). 2022. Available online: https://clinicaltrials.gov/study/NCT05647122 (accessed on 3 October 2025).
- A Phase I Open Label First in Human Dose Escalation and Expansion Study of the Bispecific Anti-Mucin 1—Epidermal Growth Factor Receptor Antibody Drug Conjugate M1231 as a Single Agent in Participants with Advanced Solid Tumors. 2021. Available online: https://clinicaltrials.gov/study/NCT04695847 (accessed on 7 July 2023).
- Ma, Y.; Huang, Y.; Zhao, Y.; Zhao, S.; Xue, J.; Yang, Y.; Fang, W.; Guo, Y.; Han, Y.; Yang, K.; et al. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: A first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol. 2024, 25, 901–911. [Google Scholar] [CrossRef]
- McGrath, L.; Zheng, Y.; Christ, S.; Sachs, C.C.; Khelifa, S.; Windmüller, C.; Sweet, S.; Kim, Y.J.; Sutton, D.; Sulikowski, M.; et al. Abstract 5737: Evaluation of the relationship between target expression and in vivo anti-tumor efficacy of AZD9592, an EGFR/c-MET targeted bispecific antibody drug conjugate. Cancer Res. 2023, 83, 5737. [Google Scholar] [CrossRef]
- Aggarwal, C.; Azzoli, C.G.; Spira, A.I.; Solomon, B.J.; Le, X.; Rolfo, C.; Planchard, D.; Felip, E.; Wu, Y.-L.; Ahn, M.-J.; et al. EGRET: A first-in-human study of the novel antibody-drug conjugate (ADC) AZD9592 as monotherapy or combined with other anticancer agents in patients (pts) with advanced solid tumors. J. Clin. Oncol. 2023, 41, TPS3156. [Google Scholar] [CrossRef]
- Hsu, R.; Benjamin, D.J. A narrative review of antibody-drug conjugates in EGFR-mutated non-small cell lung cancer. Front. Oncol. 2023, 13, 1252652. [Google Scholar] [CrossRef]
- Hana, C.; Thaw Dar, N.N.; Galo Venegas, M.; Vulfovich, M. Claudins in cancer: A current and future therapeutic target. Int. J. Mol. Sci. 2024, 25, 4634. [Google Scholar] [CrossRef]
- Knuehl, C.; Toleikis, L.; Dotterweich, J.; Ma, J.; Kumar, S.; Ross, E.; Wilm, C.; Schmitt, M.; Grote, H.J.; Amendt, C. Abstract 5284: M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res. 2022, 82, 5284. [Google Scholar] [CrossRef]
- Study of Izalontamab Brengitecan (BMS-986507) Versus Platinum-Pemetrexed for EGFR-mutated Non-small Cell Lung Cancer After Failure of EGFR TKI Therapy (IZABRIGHT-Lung01). 2025. Available online: https://clinicaltrials.gov/study/NCT07100080 (accessed on 16 October 2025).
- PH-139: A Phase I Safety and Pharmacokinetic Study of Gamitrinib Administered Intravenously to Patients with Advanced Cancer. 2021. Available online: https://clinicaltrials.gov/study/NCT04827810 (accessed on 29 June 2025).
- Vitale, M.; Griffiths, H.B.S.; Jones, N.; Mistry, M.; Sangster, J.; Patterson, C.; O’Halloran, S.E.; Blanco-Gomez, A.; Schon, O.; Thorn, T. BVX001, a Bispecific ADC Targeting CD7-Positive AML with Favorable Toxicity Profile, Exhibits Significant Efficacy in Primary Patient Samples and PDX-Models. Blood 2024, 144, 2773. [Google Scholar] [CrossRef]
- Wahner, A. FDA Grants Orphan Drug Designation to BVX001 in AML. Available online: https://www.onclive.com/view/fda-grants-orphan-drug-designation-to-bvx001-in-aml (accessed on 17 April 2024).
- Wang, W.; Li, J.; Guan, L.; Xu, M.; Yin, Q. VBC103. Available online: https://www.adcreview.com/drugmap/vbc103/ (accessed on 30 August 2025).
- AstraZeneca. WCLC Advance Ambition: AstraZeneca Medicine for More than Half of All Patients Treated for Lung Cancer by 2030. Available online: https://www.astrazeneca.com/media-centre/press-releases/2023/wclc-advance-ambition-astrazeneca-medicine-for-more-than-half-of-all-patients-treated-for-lung-cancer-2030.html (accessed on 30 August 2025).
- A Dose Finding Study of ZW49 in Patients with HER2-Positive Cancers. 2019. Available online: https://www.clinicaltrials.gov/study/NCT03821233 (accessed on 29 January 2025).
- Oh, D.Y.; Bedard, P.L.; Lee, K.W.; Han, H.S.; Kang, Y.K.; Miller, W.H.; Rha, S.Y.; Kim, J.H.; Dotan, E.; Liao, C.Y.; et al. Abstract B130: Phase 1 study of Zanidatamab Zovodotin (ZW49): Safety Profile and Recommended Dose (RD) in patients with Human Epidermal Growth Factor 2 (HER2)-positive solid cancers. Mol. Cancer Ther. 2023, 22, B130. [Google Scholar] [CrossRef]
- Evaluation of JSKN016 Combination Therapy in Subjects with Advanced Non-Small Cell Lung Cancer: A Phase Ib Study. 2025. Available online: https://clinicaltrials.gov/study/NCT06868732 (accessed on 11 March 2025).
- Alphamab Oncology. Pipeline Programs: JSKN016. Available online: https://www.alphamabonc.com/en/pipeline/jskn016.html (accessed on 30 August 2025).
- Li, Z.; Shang, C.; Guan, X.; An, G.; Guo, Y.; Zhang, E.; Lin, Q.; Yang, Y. Abstract LB215: A first-in-class anti-TROP2/EGFR bispecific antibody-drug conjugate, DM001, exhibits potent anti-tumor efficacy. Cancer Res. 2023, 83, LB215. [Google Scholar] [CrossRef]
- A Phase I, Multicenter, Open-label, First-in-Human, Dose Escalation and Expansion Study of DM001 in Patients with Advanced Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT06475937 (accessed on 17 April 2025).
- A Phase 1, Multicenter, Open-Label, First-in-Human, Dose Escalation and Expansion Study of DM005 in Patients with Advanced Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT06515990 (accessed on 15 January 2025).
- Wei, H.; Dai, W.; Yu, W.; Ma, S.; Zhu, L.; Cheng, X.; Chen, R.; Shen, Y. DM005: An anti-EGFR/c-MET bispecific antibody-drug conjugate for advanced solid tumors. J. Clin. Oncol. 2025, 43, e15010. [Google Scholar] [CrossRef]
- Han, Y.; Dai, W.; Shang, C.; Li, Z.; Han, Z.; Li, J.; Cui, Z.; An, G.; Hao, W.; Liu, Y.; et al. 1150 DM005, an EGFR × MET bispecific antibody-drug conjugate, showed robust anti-tumor activity in PDX models. J. Immunother. Cancer 2023, 11, A1–A1731. [Google Scholar] [CrossRef]
- Evaluate BL-B01D1 in Patients with Metastatic or Unresectable Non-Small Cell Lung Cancer (NSCLC) and Other Solid Tumors. 2023. Available online: https://clinicaltrials.gov/study/NCT05983432 (accessed on 6 August 2025).
- A Phase I Clinical Study to Evaluate the Safety, Tolerability, Pharmacokinetic Characteristics and Preliminary Efficacy of BL-B01D1 in Patients with Locally Advanced or Metastatic Gastrointestinal Tumor and Other Solid Tumor. 2022. Available online: https://clinicaltrials.gov/study/NCT05194982 (accessed on 26 September 2025).
- A Study of BL-B16D1 in Patients with Locally Advanced or Metastatic Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT06475131 (accessed on 18 September 2025).
- A Phase I Clinical Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Preliminary Efficacy of BL-B16D1 in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma and Other Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT06469008 (accessed on 14 October 2025).
- A Study of BL-B16D1 in Patients with Unresectable Locally Advanced or Metastatic Breast Cancer and Other Solid Tumors. 2025. Available online: https://clinicaltrials.gov/study/NCT06493864 (accessed on 18 September 2025).
- A Phase 1 Study of IBI3001 in Participants with Unresectable, Locally Advanced or Metastatic Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT06349408 (accessed on 27 January 2025).
- Guan, J.; Zhang, X.; Wu, W.; Cao, L.; Liao, Z.; Zhu, T.; Liu, C.; Zhou, S.; Lu, J.; Li, N.; et al. Abstract LB055: IBI3001: A potentially first-in-class site-specifically conjugated B7-H3/EGFR bispecific ADC for multiple solid tumors. Cancer Res. 2024, 84, LB055. [Google Scholar] [CrossRef]
- Institute, N.C. anti-B7-H3/anti-EGFR Bispecific Antibody-Drug Conjugate IBI3001. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/anti-b7-h3-anti-egfr-bispecific-antibody-drug-conjugate-ibi3001 (accessed on 30 August 2025).
- Drilon, A.E.; Awad, M.M.; Gadgeel, S.M.; Villaruz, L.C.; Sabari, J.K.; Perez, J.; Daly, C.; Patel, S.; Li, S.; Seebach, F.A.; et al. A phase 1/2 study of REGN5093-M114, a METxMET antibody-drug conjugate, in patients with mesenchymal epithelial transition factor (MET)-overexpressing NSCLC. J. Clin. Oncol. 2022, 40, TPS8593. [Google Scholar] [CrossRef]
- A Phase 1/2 Study of REGN5093-M114 (METxMET Antibody-Drug Conjugate) in Patients with MET Overexpressing Advanced Cancer. 2021. Available online: https://clinicaltrials.gov/study/NCT04982224 (accessed on 28 February 2025).
- A Phase 1/2 Study of MEDI4276 in Adults Subjects with Select HER2-expressing Advanced Solid Tumors (MEDI4276). 2018. Available online: https://clinicaltrials.gov/study/NCT02576548 (accessed on 18 July 2019).
- Pegram, M.D.; Hamilton, E.P.; Tan, A.R.; Storniolo, A.M.; Balic, K.; Rosenbaum, A.I.; Liang, M.; He, P.; Marshall, S.; Scheuber, A.; et al. First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody–Drug Conjugate MEDI4276 in Patients with HER2-positive Advanced Breast or Gastric Cancer. Mol. Cancer Ther. 2021, 20, 1442–1453. [Google Scholar] [CrossRef]
- A Phase 1/2 Study of GEN1286 in Patients with Advanced Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT06685068 (accessed on 8 October 2025).
- Xiao, Y.; Huang, H.; Yin, J.; Qiu, X.; Wang, L.; Liu, H.; Zhao, B.; Chen, Z. Abstract 6580: A Novel EGFR x cMET bispecific ADC PRO1286 demonstrated broad antitumor activity and promising tolerability in preclinical models. Cancer Res. 2024, 84, 6580. [Google Scholar] [CrossRef]
- Phase 1/2A Open-Label Clinical Trial Evaluating Vbc101, an Egfr and Cmet Targeted BI-Specific Antibody Drug Conjugate. 2025. Available online: https://clinicaltrials.gov/study/NCT07136779 (accessed on 22 August 2025).
- A Phase I, Multicentre, Open-Label, First-in-Human, Dose Escalation and Expansion Study of DM002 in Patients with Advanced Solid Tumors. 2024. Available online: https://adisinsight.springer.com/trials/700379138 (accessed on 22 April 2025).
- Wang, W.; Li, J.; Ma, L.; Xu, M.; Yin, Q. Abstract LB043: VBC101-F11: An innovative EGFR/cMet bispecific antibody drug conjugate (ADC) targeting key oncogenic drivers in solid tumors. Cancer Res. 2024, 84, LB043. [Google Scholar] [CrossRef]
- A Phase II Clinical Study to Evaluate the Efficacy and Safety of BL-B01D1+ Axitinib Without or with Pembrolizumab (BL-B01D1+ Axitinib ± Pembrolizumab) in Patients with Locally Advanced or Metastatic Renal Cancer. 2025. Available online: https://clinicaltrials.gov/study/NCT06962787 (accessed on 28 August 2025).
- A Randomized, Open-label, Multicenter, Parallel-controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of TQB2102 for Injection Versus TCbHP in Neoadjuvant Treatment of Breast Cancer with Positive HER2 Expression. 2025. Available online: https://clinicaltrials.gov/study/NCT07043725 (accessed on 23 September 2025).
- Li, J.; Zhang, Q.; Zeng, X.; Zhang, W.; Chen, L.; Wu, J.; Liu, G.; Wang, Z.; Hu, X.; Shao, Z. Efficacy and safety of neoadjuvant TQB2102 in women with locally advanced or early HER2-positive breast cancer: A randomized, open-label, multi-centre phase 2 trial. J. Clin. Oncol. 2025, 43, 591. [Google Scholar] [CrossRef]
- A Randomized, Open-Label, Parallel-Controlled, Multi-center Phase III Study of JSKN003 Versus Investigator-Choice Chemotherapy for Platinum-Resistant, Relapsed Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. 2024. Available online: https://www.clinicaltrials.gov/study/NCT06751485 (accessed on 31 December 2024).
- A Randomized, Controlled, Open-Label, Multicenter, Phase 3 Study to Compare the Efficacy and Safety of JSKN003 Versus Trastuzumab Emtansine (T-DM1) for HER2-Positive, Advanced Breast Cancer Subjects. 2025. Available online: https://clinicaltrials.gov/study/NCT06846437 (accessed on 24 March 2025).
- Oncology, A. Alphamab Oncology Presented Multiple Clinical Data of Anti-HER2 Biparatopic ADC JSKN003 at the 2025 ASCO Annual Meeting. Available online: https://www.prnewswire.com/apac/news-releases/alphamab-oncology-presented-multiple-clinical-data-of-anti-her2-biparatopic-adc-jskn003-at-the-2025-asco-annual-meeting-302471380.html (accessed on 30 August 2025).
- A Phase III Randomized Controlled Clinical Study Comparing BL-B01D1 with Chemotherapy of Physician’s Choice in Patients with Unresectable Locally Advanced or Metastatic Triple-Negative Breast Cancer After Taxane Failure. 2024. Available online: https://adisinsight.springer.com/trials/700373045 (accessed on 4 May 2025).
- A Phase III Randomized Controlled Clinical Study Comparing BL-B01D1 with Chemotherapy of Physician’s Choice in Patients with Unresectable Locally Advanced, Recurrent, or Metastatic HR+HER2- Breast Cancer. 2025. Available online: https://clinicaltrials.gov/study/NCT06343948 (accessed on 25 June 2025).
- A Study Comparing BL-B01D1 with Chemotherapy of Physician’s Choice in Patients with Recurrent or Metastatic Esophageal Squamous Cell Carcinoma. 2025. Available online: https://clinicaltrials.gov/study/NCT06304974 (accessed on 2 May 2025).
- Zhang, Y.; Shang, C.; Wang, N.; An, G.; Zhang, E.; Lin, Q.; Yang, Y. Abstract LB214: A first-in-class bispecific antibody-drug conjugate (DM002) targeting HER3 and the juxtamembrane domain of MUC1. Cancer Res. 2023, 83, LB214. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, C.; Wang, N.; An, G.; Guo, C.; An, W.F.; Yang, Y. Preclinical Efficacy of DM002, a bispecific HER3× MUC1 antibody-drug conjugate with a novel DNA topoisomerase I inhibitor, in solid tumor models. Cancer Res. 2024, 84, 2621. [Google Scholar] [CrossRef]
- Weekes, C.D.; Lamberts, L.E.; Borad, M.J.; Voortman, J.; McWilliams, R.R.; Diamond, J.R.; De Vries, E.G.; Verheul, H.M.; Lieu, C.H.; Kim, G.P. Phase I study of DMOT4039A, an antibody–drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol. Cancer Ther. 2016, 15, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009, 324, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhang, J.; Wang, Z.; Lan, H.; Hou, J.; Zhang, N.; Wang, X.; Lu, H. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2023, 1878, 188902. [Google Scholar] [CrossRef]
- Cazes, A.; Betancourt, O.; Esparza, E.; Mose, E.S.; Jaquish, D.; Wong, E.; Wascher, A.A.; Tiriac, H.; Gymnopoulos, M.; Lowy, A.M. A MET Targeting antibody–drug conjugate overcomes gemcitabine resistance in pancreatic cancer. Clin. Cancer Res. 2021, 27, 2100–2110. [Google Scholar] [CrossRef]
- Schmiechen, Z.C.; Stromnes, I.M. Mechanisms governing immunotherapy resistance in pancreatic ductal adenocarcinoma. Front. Immunol. 2021, 11, 613815. [Google Scholar] [CrossRef]
- Erkan, M.; Hausmann, S.; Michalski, C.W.; Fingerle, A.A.; Dobritz, M.; Kleeff, J.; Friess, H. The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 454–467. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Fu, K.; Zhu, S.; Pan, C.; Yang, C.; Wang, F.; To, K.K.W.; Fu, L. Resistance to antibody-drug conjugates: A review. Acta Pharm. Sin. B 2025, 15, 737–756. [Google Scholar] [CrossRef]
- He, J.; Zeng, X.; Wang, C.; Wang, E.; Li, Y. Antibody–drug conjugates in cancer therapy: Mechanisms and clinical studies. MedComm. 2024, 5, e671. [Google Scholar] [CrossRef]
- Kalim, M.; Chen, J.; Wang, S.; Lin, C.; Ullah, S.; Liang, K.; Ding, Q.; Chen, S.; Zhan, J. Intracellular trafficking of new anticancer therapeutics: Antibody–drug conjugates. Drug Des. Dev. Ther. 2017, 11, 2265–2276. [Google Scholar] [CrossRef]
- Ward, E.S.; Devanaboyina, S.C.; Ober, R.J. Targeting FcRn for the modulation of antibody dynamics. Mol. Immunol. 2015, 67, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Roopenian, D.C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7, 715–725. [Google Scholar] [CrossRef]
- Um, W.; Park, J.; Youn, A.; Cho, H.; Lim, S.; Lee, J.W.; Yoon, H.Y.; Lim, D.-K.; Park, J.H.; Kim, K. A Comparative Study on Albumin-Binding Molecules for Targeted Tumor Delivery through Covalent and Noncovalent Approach. Bioconjugate Chem. 2019, 30, 3107–3118. [Google Scholar] [CrossRef] [PubMed]
- Park, A.-R.; Jung, E.-Y.; Shin, H.H.; Park, J.-H.; Lim, S.I.; Lee, D.-H. Single-chain variable fragments targeting domain II of human serum albumin for enhanced circulatory half-life via albumin association. Int. J. Biol. Macromol. 2025, 322, 146933. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Deepagan, V.G.; Shin, S.; Ko, H.; Min, J.; Um, W.; Jeon, J.; Kwon, S.; Lee, E.S.; Suh, M. Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration. Acta Biomater. 2018, 79, 294–305. [Google Scholar] [CrossRef]



| BsAbs (Targets) | Strategy/Mechanism | Development Stage | Key Findings in PDAC | Ref. |
|---|---|---|---|---|
| zenocutuzumab (HER2×HER3) | Dual tumor receptor blockade (in NRG1 fusion-driven tumors) | Phase II–Approved (2024) | First FDA-approved BsAb for PDAC with NRG1 fusions; blocks HER2/HER3 signaling. In NRG1+ PDAC, achieved 40% ORR with durable responses up to 16.6 months. | [42,43,44] |
| VISTA×PD-L1 BsAb | Dual immune checkpoint inhibitor | Preclinical (in vitro) | Simultaneous VISTA and PD-L1 blockade. In PANC-1 cell assays, IgG-based BsAb induced higher tumor cell lysis and IFN-γ, TNFα, Granzyme B secretion than single-agent or combo therapy. | [28] |
| EGFR×HER2 T-BsAb | T-cell engaging bispecific (IgG-[L]-scFv format) targeting two tumor antigens | Preclinical (in vitro, xenograft) | Heterodimeric IgG-scFv linking anti-EGFR and anti-HER2 with anti-CD3 scFv to recruit T cells. Demonstrated picomolar-range cytotoxicity in vitro and potent T cell-mediated tumor regression in PDAC xenografts. Required co-expression of both targets for efficacy, suggesting improved tumor specificity. | [45] |
| Y126S (CTGF×PD-1 BsAb) | Stromal targeting + checkpoint blockade | Preclinical (mouse models) | IgG1/IgG2 hybrid BsAb targeting desmoplastic stroma (CTGF) and T cell checkpoint (PD-1). Remodels PDAC TME: suppresses cancer associated fibroblast activation, reduces collagen, downregulates PD-L1 on stroma, and boosts CD8+ T cell activity, leading to enhanced tumor suppression vs. monotherapies. | [46] |
| EGFR-BATs (CD3×EGFR bispecific-armed T cells) | Adoptive cell therapy with BsAb-armed T cells | Phase I completed; Phase Ib/II ongoing | Autologous T cells coated with anti-CD3×EGFR BsAb to redirect T cells to EGFR^+ tumor cells. Safe in Phase I (no DLTs); showed immune activation and clinical benefit (stable disease ≥6 months in some cases). Small study reported median OS 31 months in heavily pretreated PDAC, with occasional complete responses when combined with chemo. | [47,48] |
| CT-95 (Mesothelin×CD3 BsAb) | T-cell engaging bispecific (targets tumor antigen MSLN) | Phase I (2025, recruiting) | Fully human T-cell engager for mesothelin-expressing solid tumors (incl. PDAC). Aims to direct T cells to MSLN^+ cancer cells; first patient dosed in 2025. Initial trial results expected 2026; preclinical data suggest high avidity binding and tumor-specific T cell lysis. | [49,50] |
| Payload Class | Specific Payload | Mechanism | Example ADCs in PDAC | Preclinical or Clinical Findings | Ref. |
|---|---|---|---|---|---|
| Microtubule Inhibitors | MMAE (monomethyl auristatin E) | Tubulin polymerization inhibitor (M-phase arrest) | Anti-SLC44A4 (ASG-5ME), Anti-Tissue Factor ADCs, Anti-GPC1 ADCs | Potent tumor regressions in PDAC xenografts; MMAE enabled bystander effect (killed antigen-negative cells via diffusion). XB002 (TF-MMAE ADC) in early trials including PDAC. | [54,75,76] |
| DM1 (emtansine) | Microtubule destabilizer (non-cleavable linker, no bystander effect) | trastuzumab emtansine (T-DM1, HER2 ADC) | Tested in HER2 + PDAC: only 1/7 responses; limited efficacy (short PFS). | [54,77] | |
| DM4 (ravtansine) | Tubulin inhibitor (cleavable linker, allows for bystander effect) | anetumab ravtansine (anti-Mesothelin) | Stable disease in subset of PDAC patients; limited responses but synergy with checkpoint inhibitors + gemcitabine (100% disease control in one cohort). | [78,79,80] | |
| DNA-Damaging Agents | Duocarmycin analogs | DNA alkylation (minor groove binding) | TAK-164 (anti-GCC, duocarmycin) and MGC018 (anti-B7-H3, duocarmycin) | TAK-164 halted early despite rationale; MGC018 in Phase I (including PDAC). | [54,81,82,83] |
| PBD Dimers (tesirine, etc.) | DNA crosslinking (non-cell-cycle dependent, not effluxed) | TR1801-ADC (anti-MET, PBD), ADCT-601 (anti-AXL, PBD) | Strong tumor inhibition in PDAC xenografts, esp. combined with gemcitabine; effective even in resistant tumors. Narrow therapeutic index remains challenge. | [84,85] | |
| Anthracyclin analog (PNU-159682) | DNA intercalation + strand breaks (extremely potent) | SOT102 (anti-Claudin 18.2, PNU-159682) | Preclinical regressions in Claudin18.2 + tumors; Phase I/II trial ongoing (includes GI cancers like PDAC). | [86] | |
| Topoisomerase Inhibitors | SN-38(active metabolite of irinotecan) | Topoisomerase I inhibition → DNA strand breaks | labetuzumab govitecan (anti-CEA-SN-38), sacituzumab govitecan (anti-Trop-2-SN-38) | In PDAC xenografts: significantly better than irinotecan (prolonged survival, tumor regression). In clinical PDAC: modest benefit (stable disease in ~40%, median PFS ~2 mo). | [87,88,89] |
| DXd (exatecan derivative) | Topoisomerase I inhibitor (potent, bystander effect) | trastuzumab deruxtecan (HER2-DXd), datopotamab deruxtecan (Trop-2-DXd) | Ongoing PDAC trials; potent in other GI cancers, being tested for HER2/Trop-2 + PDAC. | [90,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, H.; Go, D.; Jung, S.Y.; Han, S.; Nguyen, V.Q.; Kwak, M.; Um, W. Bispecific Antibody and Antibody-Drug Conjugate as Novel Candidates for Treating Pancreatic Ductal Adenocarcinoma. Biomolecules 2025, 15, 1477. https://doi.org/10.3390/biom15101477
Seo H, Go D, Jung SY, Han S, Nguyen VQ, Kwak M, Um W. Bispecific Antibody and Antibody-Drug Conjugate as Novel Candidates for Treating Pancreatic Ductal Adenocarcinoma. Biomolecules. 2025; 15(10):1477. https://doi.org/10.3390/biom15101477
Chicago/Turabian StyleSeo, Hyeryeon, Dabin Go, Se Young Jung, Shinwoo Han, Van Quy Nguyen, Minseok Kwak, and Wooram Um. 2025. "Bispecific Antibody and Antibody-Drug Conjugate as Novel Candidates for Treating Pancreatic Ductal Adenocarcinoma" Biomolecules 15, no. 10: 1477. https://doi.org/10.3390/biom15101477
APA StyleSeo, H., Go, D., Jung, S. Y., Han, S., Nguyen, V. Q., Kwak, M., & Um, W. (2025). Bispecific Antibody and Antibody-Drug Conjugate as Novel Candidates for Treating Pancreatic Ductal Adenocarcinoma. Biomolecules, 15(10), 1477. https://doi.org/10.3390/biom15101477

