Effects of HDL Structure and Function in Peripheral Artery Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Examination
2.3. NMR Lipoprotein Subfractions Analysis
2.4. The Measurement of Levels of Oxidized HDL Using an Oxidized HDL ELISA Kit
2.5. DNA Isolation and Genotyping
2.6. Statistical Analysis
3. Results
3.1. Baseline Data of PAD Population
3.2. Association of Rutherford Classification with HDL Subfractions, ApoA1, and Ox-HDL
3.3. Correlation Between ApoA1, HDL Subfractions, and Ox-HDL
3.4. Study of Association of Candidate SNPs with Levels of HDL Subfraction, ApoA1, and Ox-HDL in PAD Population
3.5. Stepwise Linear Regression Analysis for Ox-HDL, ApoA1, and HDL Subfractions
3.6. Confirmation of Association of Levels of HDL Subfractions and Ox-HDL with Causal SNPs from Other Population Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HDL | High-density lipoprotein |
HDL-P | High-density lipoprotein particle |
HDL-C | High density lipoprotein cholesterol |
L-HDL-P | Large high-density lipoprotein particle |
M-HDL-P | Medium high-density lipoprotein particle |
S-HDL-P | Small high-density lipoprotein particle |
Ox-HDL | Oxidized high-density lipoprotein |
GWAS | Genome-wide association studies |
SNP | Single nucleotide polymorphism |
PAD | Peripheral artery disease |
CVD | Cardiovascular disease |
RCT | Reverse cholesterol transport |
LDL-C | Low-density lipoprotein cholesterol |
NMR | Nuclear magnetic resonance |
CHD | Coronary heart disease |
NO | Nitric oxide |
MPO | Myeloperoxidase |
T2D | Type 2 diabetes |
EVI | Endovascular intervention |
CLI | Critical limb ischemia |
PBMCs | Peripheral blood mononuclear cells |
RBC | Red blood cell |
BMI | Body mass index |
TG | Triglycerides |
ROS | Reactive oxygen species |
CML | Carboxymethyl lysine |
SYT | Synaptotagmin |
ApoA1 | Apolipoprotein A1 |
References
- Fowkes, F.G.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H.; et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 69, 3S–125S.e140. [Google Scholar] [CrossRef]
- Criqui, M.H.; Langer, R.D.; Fronek, A.; Feigelson, H.S.; Klauber, M.R.; McCann, T.J.; Browner, D. Mortality over a period of 10 years in patients with peripheral arterial disease. N. Engl. J. Med. 1992, 326, 381–386. [Google Scholar] [CrossRef]
- Zannis, V.I.; Fotakis, P.; Koukos, G.; Kardassis, D.; Ehnholm, C.; Jauhiainen, M.; Chroni, A. HDL biogenesis, remodeling, and catabolism. Handb. Exp. Pharmacol. 2015, 224, 53–111. [Google Scholar] [CrossRef]
- Palmer, T.M.; Lawlor, D.A.; Harbord, R.M.; Sheehan, N.A.; Tobias, J.H.; Timpson, N.J.; Davey Smith, G.; Sterne, J.A. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 2012, 21, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Holm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Pandey, A.; Negi, H.; Shafiq, N.; Reddy, S.; Kaur, H.; Chadha, N.; Malhotra, S. Effect of HDL-raising drugs on cardiovascular outcomes: A systematic review and meta-regression. PLoS ONE 2014, 9, e94585. [Google Scholar] [CrossRef] [PubMed]
- Kajani, S.; Curley, S.; McGillicuddy, F.C. Unravelling HDL-Looking beyond the Cholesterol Surface to the Quality Within. Int. J. Mol. Sci. 2018, 19, 1971. [Google Scholar] [CrossRef]
- Annema, W.; von Eckardstein, A. Dysfunctional high-density lipoproteins in coronary heart disease: Implications for diagnostics and therapy. Transl. Res. 2016, 173, 30–57. [Google Scholar] [CrossRef]
- Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle subclasses and molecular components. Handb. Exp. Pharmacol. 2015, 224, 3–51. [Google Scholar] [CrossRef]
- Jomard, A.; Osto, E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front. Cardiovasc. Med. 2020, 7, 39. [Google Scholar] [CrossRef]
- Parish, S.; Offer, A.; Clarke, R.; Hopewell, J.C.; Hill, M.R.; Otvos, J.D.; Armitage, J.; Collins, R.; Heart Protection Study Collaborative, G. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation 2012, 125, 2469–2478. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Glynn, R.J.; Ridker, P.M. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation 2013, 128, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Otvos, J.D.; Rosenson, R.S.; Pradhan, A.; Buring, J.E.; Ridker, P.M. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 2010, 59, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Cardner, M.; Yalcinkaya, M.; Goetze, S.; Luca, E.; Balaz, M.; Hunjadi, M.; Hartung, J.; Shemet, A.; Krankel, N.; Radosavljevic, S.; et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 2020, 5, e131491. [Google Scholar] [CrossRef]
- Besler, C.; Heinrich, K.; Rohrer, L.; Doerries, C.; Riwanto, M.; Shih, D.M.; Chroni, A.; Yonekawa, K.; Stein, S.; Schaefer, N.; et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Investig. 2011, 121, 2693–2708. [Google Scholar] [CrossRef]
- Riwanto, M.; Rohrer, L.; von Eckardstein, A.; Landmesser, U. Dysfunctional HDL: From structure-function-relationships to biomarkers. Handb. Exp. Pharmacol. 2015, 224, 337–366. [Google Scholar] [CrossRef]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef]
- Kullo, I.J.; Leeper, N.J. The genetic basis of peripheral arterial disease: Current knowledge, challenges, and future directions. Circ. Res. 2015, 116, 1551–1560. [Google Scholar] [CrossRef]
- van Zuydam, N.R.; Stiby, A.; Abdalla, M.; Austin, E.; Dahlstrom, E.H.; McLachlan, S.; Vlachopoulou, E.; Ahlqvist, E.; Di Liao, C.; Sandholm, N.; et al. Genome-Wide Association Study of Peripheral Artery Disease. Circ. Genom. Precis. Med. 2021, 14, e002862. [Google Scholar] [CrossRef]
- Matsukura, M.; Ozaki, K.; Takahashi, A.; Onouchi, Y.; Morizono, T.; Komai, H.; Shigematsu, H.; Kudo, T.; Inoue, Y.; Kimura, H.; et al. Genome-Wide Association Study of Peripheral Arterial Disease in a Japanese Population. PLoS ONE 2015, 10, e0139262. [Google Scholar] [CrossRef]
- Levin, M.G.; Zuber, V.; Walker, V.M.; Klarin, D.; Lynch, J.; Malik, R.; Aday, A.W.; Bottolo, L.; Pradhan, A.D.; Dichgans, M.; et al. Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease. Circulation 2021, 144, 353–364. [Google Scholar] [CrossRef]
- Klarin, D.; Tsao, P.S.; Damrauer, S.M. Genetic Determinants of Peripheral Artery Disease. Circ. Res. 2021, 128, 1805–1817. [Google Scholar] [CrossRef]
- Teng, M.S.; Hsu, L.A.; Wu, S.; Chou, H.H.; Chang, C.J.; Sun, Y.Z.; Juan, S.H.; Ko, Y.L. Mediation analysis reveals a sex-dependent association between ABO gene variants and TG/HDL-C ratio that is suppressed by sE-selectin level. Atherosclerosis 2013, 228, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hsu, L.A.; Cheng, S.T.; Teng, M.S.; Yeh, C.H.; Sun, Y.C.; Huang, H.L.; Ko, Y.L. Circulating YKL-40 level, but not CHI3L1 gene variants, is associated with atherosclerosis-related quantitative traits and the risk of peripheral artery disease. Int. J. Mol. Sci. 2014, 15, 22421–22437. [Google Scholar] [CrossRef] [PubMed]
- Soininen, P.; Kangas, A.J.; Wurtz, P.; Suna, T.; Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, P.; Kangas, A.J.; Soininen, P.; Lawlor, D.A.; Davey Smith, G.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am. J. Epidemiol. 2017, 186, 1084–1096. [Google Scholar] [CrossRef]
- Hsu, L.A.; Ko, Y.L.; Hsu, K.H.; Ko, Y.H.; Lee, Y.S. Genetic variations in the cholesteryl ester transfer protein gene and high density lipoprotein cholesterol levels in Taiwanese Chinese. Hum. Genet. 2002, 110, 57–63. [Google Scholar] [CrossRef]
- Itabe, H.; Sawada, N.; Makiyama, T.; Obama, T. Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein. Biomedicines 2021, 9, 655. [Google Scholar] [CrossRef]
- Miki, T.; Miyoshi, T.; Kotani, K.; Kohno, K.; Asonuma, H.; Sakuragi, S.; Koyama, Y.; Nakamura, K.; Ito, H. Decrease in oxidized high-density lipoprotein is associated with slowed progression of coronary artery calcification: Subanalysis of a prospective multicenter study. Atherosclerosis 2019, 283, 1–6. [Google Scholar] [CrossRef]
- Janac, J.M.; Zeljkovic, A.; Jelic-Ivanovic, Z.D.; Dimitrijevic-Sreckovic, V.S.; Vekic, J.; Miljkovic, M.M.; Stefanovic, A.; Kotur-Stevuljevic, J.M.; Ivanisevic, J.M.; Spasojevic-Kalimanovska, V.V. Increased Oxidized High-Density Lipoprotein/High-Density Lipoprotein-Cholesterol Ratio as a Potential Indicator of Disturbed Metabolic Health in Overweight and Obese Individuals. Lab. Med. 2020, 51, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Sumida, M.; Ohama, T.; Katayama, Y.; Saga, A.; Inui, H.; Kanno, K.; Masuda, D.; Koseki, M.; Nishida, M.; et al. Development and Clinical Application of an Enzyme-Linked Immunosorbent Assay for Oxidized High-Density Lipoprotein. J. Atheroscler. Thromb. 2021, 28, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Ueda, M.; Kojima, S.; Mashiba, S.; Michihata, T.; Takahashi, K.; Shishido, K.; Akizawa, T. Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis 2012, 220, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Sokooti, S.; Flores-Guerrero, J.L.; Kieneker, L.M.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. HDL Particle Subspecies and Their Association with Incident Type 2 Diabetes: The PREVEND Study. J. Clin. Endocrinol. Metab. 2021, 106, 1761–1772. [Google Scholar] [CrossRef]
- Tabara, Y.; Arai, H.; Hirao, Y.; Takahashi, Y.; Setoh, K.; Kawaguchi, T.; Kosugi, S.; Ito, Y.; Nakayama, T.; Matsuda, F.; et al. Different inverse association of large high-density lipoprotein subclasses with exacerbation of insulin resistance and incidence of type 2 diabetes: The Nagahama study. Diabetes Res. Clin. Pract. 2017, 127, 123–131. [Google Scholar] [CrossRef]
- Hwang, Y.C.; Hayashi, T.; Fujimoto, W.Y.; Kahn, S.E.; Leonetti, D.L.; McNeely, M.J.; Boyko, E.J. Differential Association Between HDL Subclasses and the Development of Type 2 Diabetes in a Prospective Study of Japanese Americans. Diabetes Care 2015, 38, 2100–2105. [Google Scholar] [CrossRef]
- Drew, B.G.; Rye, K.A.; Duffy, S.J.; Barter, P.; Kingwell, B.A. The emerging role of HDL in glucose metabolism. Nat. Rev. Endocrinol. 2012, 8, 237–245. [Google Scholar] [CrossRef]
- Camont, L.; Lhomme, M.; Rached, F.; Le Goff, W.; Negre-Salvayre, A.; Salvayre, R.; Calzada, C.; Lagarde, M.; Chapman, M.J.; Kontush, A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: Relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2715–2723. [Google Scholar] [CrossRef]
- Zhu, X.; Parks, J.S. New roles of HDL in inflammation and hematopoiesis. Annu. Rev. Nutr. 2012, 32, 161–182. [Google Scholar] [CrossRef]
- Shalaurova, I.; Connelly, M.A.; Garvey, W.T.; Otvos, J.D. Lipoprotein insulin resistance index: A lipoprotein particle-derived measure of insulin resistance. Metab. Syndr. Relat. Disord. 2014, 12, 422–429. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Connelly, M.A.; Shalaurova, I.; Gruppen, E.G.; Kieneker, L.M.; Dullaart, R.P.F.; Bakker, S.J.L. Lipoprotein insulin resistance index, a high-throughput measure of insulin resistance, is associated with incident type II diabetes mellitus in the Prevention of Renal and Vascular End-Stage Disease study. J. Clin. Lipidol. 2019, 13, 129–137.e121. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Kwon, S.; Zheng, D.; Shaughnessy, S.; Wallace, P.; Hutto, A.; Pugh, K.; Jenkins, A.J.; Klein, R.L.; Liao, Y. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003, 52, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Festa, A.; Williams, K.; Hanley, A.J.; Otvos, J.D.; Goff, D.C.; Wagenknecht, L.E.; Haffner, S.M. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation 2005, 111, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Mackey, R.H.; Mora, S.; Bertoni, A.G.; Wassel, C.L.; Carnethon, M.R.; Sibley, C.T.; Goff, D.C., Jr. Lipoprotein particles and incident type 2 diabetes in the multi-ethnic study of atherosclerosis. Diabetes Care 2015, 38, 628–636. [Google Scholar] [CrossRef]
- Hodge, A.M.; Jenkins, A.J.; English, D.R.; O’Dea, K.; Giles, G.G. NMR-determined lipoprotein subclass profile predicts type 2 diabetes. Diabetes Res. Clin. Pract. 2009, 83, 132–139. [Google Scholar] [CrossRef]
- Zierfuss, B.; Hobaus, C.; Herz, C.T.; Koppensteiner, R.; Stangl, H.; Schernthaner, G.H. High-Density Lipoprotein Particle Subclasses in Statin-Treated Patients with Peripheral Artery Disease Predict Long-Term Survival. Thromb. Haemost. 2022, 122, 1804–1813. [Google Scholar] [CrossRef]
- Otvos, J.D.; Collins, D.; Freedman, D.S.; Shalaurova, I.; Schaefer, E.J.; McNamara, J.R.; Bloomfield, H.E.; Robins, S.J. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006, 113, 1556–1563. [Google Scholar] [CrossRef]
- Kontush, A.; Chantepie, S.; Chapman, M.J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1881–1888. [Google Scholar] [CrossRef]
- Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases-1, -2 and -3: What are their functions? Chem. Biol. Interact. 2016, 259, 51–62. [Google Scholar] [CrossRef]
- Gonzalez, F.E.M.; Ponce-RuIz, N.; Rojas-GarcIa, A.E.; Bernal-Hernandez, Y.Y.; Mackness, M.; Ponce-Gallegos, J.; Cardoso-Saldana, G.; Jorge-Galarza, E.; Torres-Tamayo, M.; Medina-Diaz, I.M. PON1 concentration and high-density lipoprotein characteristics as cardiovascular biomarkers. Arch. Med. Sci. Atheroscler. Dis. 2019, 4, e47–e54. [Google Scholar] [CrossRef]
- Valencia, C.S.; Isaza, M.C.; Henao, B.J.; Beltran, A.L.; Loango, N.; Landazuri, P. Arylesterase activity of paraoxonase 1 (PON1) on HDL(3) and HDL(2): Relationship with Q192R, C-108T, and L55M polymorphisms. Biochem. Biophys. Rep. 2021, 26, 100971. [Google Scholar] [CrossRef]
- Berrougui, H.; Loued, S.; Khalil, A. Purified human paraoxonase-1 interacts with plasma membrane lipid rafts and mediates cholesterol efflux from macrophages. Free Radic. Biol. Med. 2012, 52, 1372–1381. [Google Scholar] [CrossRef]
- Mutharasan, R.K.; Thaxton, C.S.; Berry, J.; Daviglus, M.L.; Yuan, C.; Sun, J.; Ayers, C.; Lloyd-Jones, D.M.; Wilkins, J.T. HDL efflux capacity, HDL particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: The Chicago Healthy Aging Study. J. Lipid Res. 2017, 58, 600–606. [Google Scholar] [CrossRef]
- Du, X.M.; Kim, M.J.; Hou, L.; Le Goff, W.; Chapman, M.J.; Van Eck, M.; Curtiss, L.K.; Burnett, J.R.; Cartland, S.P.; Quinn, C.M.; et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res. 2015, 116, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Nazir, S.; Jankowski, V.; Bender, G.; Zewinger, S.; Rye, K.A.; van der Vorst, E.P.C. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv. Drug Deliv. Rev. 2020, 159, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Zamanian-Daryoush, M.; Lindner, D.; Tallant, T.C.; Wang, Z.; Buffa, J.; Klipfell, E.; Parker, Y.; Hatala, D.; Parsons-Wingerter, P.; Rayman, P.; et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J. Biol. Chem. 2013, 288, 21237–21252. [Google Scholar] [CrossRef]
- Zhao, G.J.; Yin, K.; Fu, Y.C.; Tang, C.K. The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Mol. Med. 2012, 18, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Melchior, J.T.; Street, S.E.; Vaisar, T.; Hart, R.; Jerome, J.; Kuklenyik, Z.; Clouet-Foraison, N.; Thornock, C.; Bedi, S.; Shah, A.S.; et al. Apolipoprotein A-I modulates HDL particle size in the absence of apolipoprotein A-II. J. Lipid Res. 2021, 62, 100099. [Google Scholar] [CrossRef]
- Sultan, S.; Ahmed, F.; Bajouh, O.; Schulten, H.J.; Bagatian, N.; Al-Dayini, R.; Subhi, O.; Karim, S.; Almalki, S. Alterations of transcriptome expression, cell cycle, and mitochondrial superoxide reveal foetal endothelial dysfunction in Saudi women with gestational diabetes mellitus. Endocr. J. 2021, 68, 1067–1079. [Google Scholar] [CrossRef]
- Se-Eun, L.; Hyungwoo, K.; Chang-Hyun, K.; Chiyeon, L.; Suin, C. Effect of methanol extract of Schisandrae Fructus on high fat diet induced hyperlipidemic mice. J. Tradit. Chin. Med. 2019, 39, 818–825. [Google Scholar]
- Wolfes, A.C.; Dean, C. The diversity of synaptotagmin isoforms. Curr. Opin. Neurobiol. 2020, 63, 198–209. [Google Scholar] [CrossRef]
- Sancho-Knapik, S.; Pastor, O.; Barranquero, C.; Herrera Marcos, L.V.; Guillen, N.; Arnal, C.; Gascon, S.; Navarro, M.A.; Rodriguez-Yoldi, M.J.; Busto, R.; et al. Hepatic Synaptotagmin 1 is involved in the remodelling of liver plasma- membrane lipid composition and gene expression in male Apoe-deficient mice consuming a Western diet. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158790. [Google Scholar] [CrossRef]
Total | Group I | Group II | p | |
---|---|---|---|---|
Number | 80 | 19 | 61 | |
Sex % (male/female) | 57.5/42.5 | 73.7/26.3 | 52.5/47.5 | 0.084 |
Age (years) | 71.52 ± 10.78 | 69.79 ± 11.06 | 72.06 ± 10.73 | 0.426 |
BMI (kg/m2) | 24.08 ± 3.74 | 23.89 ± 3.97 | 24.14 ± 3. 70 | 0.804 |
Current smokers (%) | 33.8 | 63.2 | 24.6 | 0.003 |
Diabetes mellitus (%) | 75.0 | 78.9 | 73.8 | 0.451 |
Hypertension (%) | 85.0 | 89.5 | 83.6 | 0.417 |
HDL-C (mg/dL) | 40.23 ± 14.40 | 46.72 ± 13.57 | 38.21 ± 12.80 | 0.018 |
ApoA1 (g/L) | 1.1 ± 0.26 | 1.23 ± 0.18 | 1.06 ± 0.27 | 0.036 |
LDL-C (mg/dL) | 94.19 ± 30.57 | 101.39 ± 28.63 | 91.96 ± 31.05 | 0.256 |
TG (mg/dL) cholesterol (mg/dL) | 138.84 ± 96.44 158.96 ± 37.44 | 115.83 ± 73.45 169.22 ± 32.70 | 145.98 ± 102.03 155.78 ± 38.49 | 0.249 0.185 |
CRP level (mg/L) | 2.65 ± 5.17 | 0.62 ± 0.51 | 3.26 ± 5.76 | 0.058 |
Rutherford classification | ||||
3 (N = 19) | 23.8% | |||
4 (N = 21) | 26.3% | |||
5 (N = 30) | 37.5% | |||
6 (N = 10) | 12.5% |
Rutherford Classification | Group I | Group II | ||||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | p | Rutherford Grade 3 | Rutherford Grade ≥ 4 | p | |
N = 19 | N = 21 | N = 30 | N = 10 | N = 19 | N = 61 | |||
Ox-HDL (µg/L) | 553.01 ± 138.5 | 679.81 ± 172.15 | 823.05 ± 275.11 | 992.4 ± 288.72 | 0.001 | 553.01 ± 138.5 | 895.11 ± 182.23 | 0.001 |
HDL-C (mg/dL) | 46.72 ± 13.57 | 38.43 ± 10.14 | 38.99 ± 15.51 | 35.60 ± 9.50 | 0.109 | 46.72 ± 13.57 | 38.21 ± 12.80 | 0.018 |
ApoA1 (g/L) | 1.23 ± 0.18 | 1.1 ± 0.25 | 1.03 ± 0.3 | 1.05 ± 0.25 | 0.089 | 1.23 ± 0.18 | 1.06 ± 0.27 | 0.036 |
Cholesterol (mg/dL) | 169.22 ± 32.70 | 153.05 ± 38.31 | 153.07 ± 38.99 | 168.80 ± 38.71 | 0.362 | 169.22 ± 32.70 | 155.78 ± 38.49 | 0.185 |
TG (mg/dL) | 115.83 ± 73.45 | 159.1 ± 151.61 | 131.39 ± 65.04 | 160.60 ± 58.54 | 0.468 | 115.83 ± 73.45 | 145.98 ± 102.03 | 0.249 |
LDL-C (mg/dL) | 101.39 ± 28.63 | 86.50 ± 32.37 | 91.42 ± 29.49 | 104.40 ± 32.31 | 0.311 | 101.39 ± 28.63 | 91.96 ± 31.05 | 0.256 |
HDL-P (mg/dL) | 13.2 ± 1.5 | 10.5 ± 1.6 | 10.8 ± 2.3 | 9.8 ± 5.3 | 0.055 | 13.2 ± 1.5 | 10.1 ± 2.5 | 0.012 |
L-HDL-P (mg/dL) | 1.2 ± 0.81 | 0.77 ± 0.58 | 0.85 ± 0.12 | 0.86 ± 0.17 | 0.328 | 1.2 ± 0.81 | 0.83 ± 0.11 | 0.32 |
M-HDL-P (mg/dL) | 3.1 ± 0.25 | 2.2 ± 1.3 | 2.1 ± 1.5 | 2.2 ± 1.8 | 0.205 | 3.1 ± 0.25 | 2.2 ± 1.5 | 0.187 |
S-HDL-P (mg/dL) | 8.9 ± 2.1 | 7.5 ± 1.5 | 7.1 ± 1.2 | 7.0 ± 1.2 | 0.052 | 8.9 ± 2.1 | 7.1 ± 1.3 | 0.01 |
R | p | |
---|---|---|
HDL-C (mg/dL) | −0.465 | 0.001 |
ApoA1 (g/L) | −0.451 | 0.005 |
HDL-P (mg/dL) | −0.483 | 0.002 |
L-HDL-P (mg/dL) | −0.378 | 0.105 |
M-HDL-P (mg/dL) | −0.382 | 0.107 |
S-HDL-P (mg/dL) | −0.402 | 0.012 |
MM (%) | Mm (%) | Mm (%) | p | MM (%) | Mm + mm (%) | p | |
---|---|---|---|---|---|---|---|
rs117685211 | GG (87.5%) | GT (10%) | TT (2.5%) | GG (87.5%) | GT + TT (12.5%) | ||
Ox-HDL (µg/L) | 621.33 ± 207.02 | 1103.02 ± 158.22 | 1117.02 ± 132.05 | 0.012 | 621.33 ± 207.02 | 1109.21 ± 117.33 | 0.002 |
ApoA1 (g/L) | 1.16 ± 0.2 | 0.72 ± 0.19 | 0.41 ± 0.12 | 1.22 × 10−8 | 1.16 ± 0.2 | 0.65 ± 0.22 | 9.23 × 10−7 |
HDL-P (mg/dL) | 13.2 ± 2.1 | 7.1 ± 2.3 | 4.1 ± 1.1 | 1.23 × 10−8 | 13.2 ± 2.1 | 6.2 ± 1.2 | 1.01 × 10−6 |
L-HDL-P (mg/dL) | 1.3 ± 0.52 | 0.52 ± 0.27 | 0.12 ± 0.11 | 2.1 × 10−4 | 1.3 ± 0.52 | 0.42 ± 0.13 | 0.001 |
M-HDL-P (mg/dL) | 2.9 ± 0.17 | 0.93 ± 0.81 | 0.51 ± 0.25 | 4.52 × 10−8 | 2.9 ± 0.17 | 0.82 ± 0.21 | 0.001 |
S-HDL-P (mg/dL) | 8.5 ± 2.2 | 5.5 ± 1.2 | 4.1 ± 1.5 | 3.82 × 10−6 | 8.5 ± 2.2 | 4.9 ± 1.27 | 2.5 × 10−5 |
rs7934858 | TT (60%) | TC (37.5%) | CC (2.5%) | TT (60%) | TC + CC (40%) | ||
Ox-HDL (µg/L) | 791.01 ± 233.12 | 583.27 ± 209.32 | 1127.5 ± 211.56 | 0.001 | 791.01 ± 233.12 | 604.21 ± 276.3 | 0.002 |
ApoA1 (g/L) | 1.11 ± 0.21 | 1.14 ± 0.33 | 0.68 ± 0.22 | 0.196 | 1.11 ± 0.21 | 1.11 ± 0.33 | 0.196 |
HDL-P (mg/dL) | 13.5 ± 1.3 | 12.3 ± 2.5 | 6.2 ± 1.1 | 0.284 | 13.5 ± 1.3 | 12.5 ± 2.1 | 0.423 |
L-HDL-P (mg/dL) | 1.22 ± 1.55 | 1.2 ± 0.27 | 11 ± 0.88 | 0.55 | 1.22 ± 1.55 | 1.4 ± 0.72 | 0.455 |
M-HDL-P (mg/dL) | 2.4 ± 1.22 | 2.2 ± 0.7 | 0.91 ± 0.83 | 0.624 | 2.4 ± 1.22 | 2.3 ± 1.2 | 0.832 |
S-HDL-P (mg/dL) | 7.7 ± 0.5 | 7.6 ± 1.8 | 6.2 ± 1.1 | 0.872 | 7.7 ± 0.5 | 7.8 ± 3.5 | 0.851 |
rs148877054 | GG (93.5%) | GT (4%) | TT (2.5%) | GG (93.5%) | GT + TT (6.5%) | ||
Ox-HDL (µg/L) | 854.14 ± 211.32 | 901.22 ± 137.25 | 1023.12 ± 127.34 | 0.133 | 854.14 ± 211.32 | 977.37 ± 275.22 | 0.131 |
ApoA1 (g/L) | 1.12 ± 0.24 | 1.2 ± 0.23 | 0.41 ± 0.11 | 4.3 × 10−4 | 1.12 ± 0.24 | 0.7 ± 0.42 | 0.005 |
HDL-P (mg/dL) | 12.1 ± 2.5 | 7.3 ± 1.2 | 3.9 ± 1.2 | 1.5 × 10−4 | 12.1 ± 2.5 | 6.5 ± 1.3 | 0.001 |
L-HDL-P (mg/dL) | 1.2 ± 0.23 | 1.2 ± 0.33 | 1.1 ± 0.72 | 0.077 | 1.2 ± 0.23 | 1.1 ± 0.21 | 0.328 |
M-HDL-P (mg/dL) | 2.5 ± 1.3 | 2.2 ± 0.8 | 0.82 ± 0.13 | 1.37 × 10−11 | 2.5 ± 1.3 | 1.3 ± 1.2 | 1.01 × 10−5 |
S-HDL-P (mg/dL) | 7.4 ± 1.2 | 5.8 ± 1.5 | 4.3 ± 1.7 | 1.1 × 10−4 | 7.4 ± 1.2 | 4.5 ± 1.5 | 1.1 × 10−4 |
Ox-HDL | ApoA1 | HDL-P | L-HDL-P | M-HDL-P | S-HDL-P | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | r2 | p | β | r2 | p | β | r2 | p | β | r2 | p | β | r2 | p | β | r2 | p | |
rs117685211 | 0.157 | 0.156 | 0.009 | −0.225 | 0.626 | 4.5 × 10−10 | −0.222 | 0.492 | 1.61 × 10−7 | −1.003 | 0.645 | 0.001 | −0.726 | 0.38 | 0.01 | −1.31 | 0.311 | 2.0 × 10−4 |
rs7934858 | −0.113 | 0.117 | 0.023 | 0.075 | - | 0.446 | −0.151 | - | 0.179 | −0.022 | - | 0.817 | −0.91 | - | 0.243 | −0.18 | - | 0.169 |
rs148877054 | −0.187 | - | 0.514 | 0.225 | - | 0.149 | 0.182 | - | 0.313 | −1.065 | 0.067 | 0.004 | −1.779 | 0.757 | 2.84 × 10−6 | 0.044 | - | 0.835 |
Gene SNP | Genotypes (%) | Ox-HDL (µg/L) | p | S-HDL-P (mg/dL) | p | HDL-P (mg/dL) | p |
---|---|---|---|---|---|---|---|
rs9584669 * | AA (81.2) | 245.12 ± 281.43 | 0.243 | 7.5 ± 3.1 | 0.917 | 11.1 ± 1.8 | 0.873 |
AG (18.8) | 628.12 ± 147.22 | 7.8 ± 2.3 | 11.9 ± 1.5 | ||||
rs6842241 * | AA (55) | 655.13 ± 234.27 | 0.137 | 7.7 ± 3.2 | 0.256 | 11.3 ± 1.8 | 0.184 |
AG (40) | 811.32 ± 245.12 | 7.1 ± 1.5 | 11.3 ± 2.5 | ||||
GG (5) | 587.55 ± 232.18 | 8.4 ± 0.23 | 11.5 ± 0.08 | ||||
AA (55) | 655.13 ± 234.27 | 0.22 | 7.7 ± 3.2 | 0.343 | 11.3 ± 1.8 | 0.238 | |
AG + GG (45) | 781.24 ± 252.17 | 7.7 ± 1.8 | 10.8 ± 3.1 | ||||
rs2074633 * | AA (28.7) | 807.25 ± 287.18 | 0.123 | 7.1 ± 1.4 | 0.723 | 11.4 ± 2.8 | 0.903 |
AG (57.5) | 644.23 ± 217.19 | 8.1 ± 1.3 | 11.1 ± 2.5 | ||||
GG (13.8) | 778.22 ± 260.25 | 6.9 ± 2.5 | 9.8 ± 3.5 | ||||
AA (28.7) | 807.25 ± 287.18 | 0.216 | 7.1 ± 1.4 | 0.314 | 11.4 ± 2.8 | 0.599 | |
AG + GG (7.13) | 688.34 ± 247.12 | 7.5 ± 1.5 | 11.4 ± 2.2 | ||||
rs12910984 # | AA (28.7) | 652.81 ± 241.34 | 0.324 | 7.9 ± 1.7 | 0.903 | 11.8 ± 2.1 | 0.602 |
AG (56.3) | 742.32 ± 260.32 | 7.8 ± 1.3 | 10.5 ± 3.8 | ||||
GG (15) | 755.18 ± 314.25 | 8.1 ± 0.6 | 12.5 ± 1.7 | ||||
AA (28.7) | 652.81 ± 241.34 | 0.237 | 7.9 ± 1.7 | 0.526 | 11.8 ± 2.1 | 0.578 | |
AG + GG (71.3) | 762.54 ± 238.24 | 7.7 ± 1.2 | 10.8 ± 2.6 | ||||
rs1317286 # | AA (81.2) | 741.34 ± 251.14 | 0.521 | 7.5 ± 1.2 | 0.812 | 11.8 ± 2.5 | 0.586 |
AG (16.3) | 708.17 ± 232.43 | 7.7 ± 1.5 | 11.5 ± 2.8 | ||||
GG (2.5) | 434.18 ± 258.17 | 6.9 ± 1.2 | 9.1 ± 1.2 | ||||
AA (81.2) | 741.34 ± 251.14 | 0.413 | 7.5 ± 1.7 | 0.938 | 11.8 ± 2.5 | 0.604 | |
AG + GG (18.8) | 687.15 ± 265.38 | 7.5 ± 2.5 | 11.1 ± 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.-H.; Wu, S.; Ko, Y.-L.; Teng, M.-S. Effects of HDL Structure and Function in Peripheral Artery Disease. Biomolecules 2025, 15, 1419. https://doi.org/10.3390/biom15101419
Liao Y-H, Wu S, Ko Y-L, Teng M-S. Effects of HDL Structure and Function in Peripheral Artery Disease. Biomolecules. 2025; 15(10):1419. https://doi.org/10.3390/biom15101419
Chicago/Turabian StyleLiao, Yu-Huang, Semon Wu, Yu-Lin Ko, and Ming-Sheng Teng. 2025. "Effects of HDL Structure and Function in Peripheral Artery Disease" Biomolecules 15, no. 10: 1419. https://doi.org/10.3390/biom15101419
APA StyleLiao, Y.-H., Wu, S., Ko, Y.-L., & Teng, M.-S. (2025). Effects of HDL Structure and Function in Peripheral Artery Disease. Biomolecules, 15(10), 1419. https://doi.org/10.3390/biom15101419