Nicotinamide Riboside Alleviates the Neurotoxic Injury of Dendritic Spine Plasticity Mediated by Hypoxic Microglial Activation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The Animal Model and Treatment
2.2.2. Cell Culture and Treatment
2.2.3. Morris Water Maze
2.2.4. Novel Object Recognition
2.2.5. Hematoxylin and Eosin Staining (HE)
2.2.6. Golgi Staining
2.2.7. Immunohistochemical Fluorescence Staining
2.2.8. Transmission Electron Microscope (TEM)
2.2.9. Real-Time Fluorescence Quantitative PCR (RT-PCR)
2.2.10. Western Blot
2.2.11. Determination of NMN Concentrations
2.2.12. Determination of NAD+ Concentrations
2.2.13. Measurement of Mitochondrial ATP Levels
2.2.14. Measurement of MitoSOX
2.2.15. Statistical Analysis
3. Results
3.1. Hypoxic Impairment of Learning and Memory Functions in Mice
3.2. Hypoxia Impairs Dendritic Spine Plasticity in Hippocampal CA1 Neurons and Activates Microglia in Mice
3.3. NR Treatment Preserves Learning and Memory Functions in Mice
3.4. NR Mitigates Hypoxia-Induced Dendritic Spine Plasticity Impairment
3.5. NR Attenuates Neurotoxic Damage Mediated by Inflammatory Factors Through Suppression of mtROS Production and Microglial Activation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Han, Y.; Jia, R.; Zhu, Q.; Wang, X.; Liu, M.; Zhang, W. Exploring the role of myeloperoxidase in the atherosclerotic process in hypoxic mice based on the MAPK signaling pathway. Biochem. Pharmacol. 2024, 225, 116275. [Google Scholar] [CrossRef]
- Richalet, J.P.; Hermand, E.; Lhuissier, F.J. Cardiovascular physiology and pathophysiology at high altitude. Nat. Rev. Cardiol. 2024, 21, 75–88. [Google Scholar] [CrossRef]
- Mallet, R.T.; Burtscher, J.; Richalet, J.P.; Millet, G.P.; Burtscher, M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc. Health Risk Manag. 2021, 17, 317–335. [Google Scholar] [CrossRef]
- Wang, X.; Cui, L.; Ji, X. Cognitive impairment caused by hypoxia: From clinical evidences to molecular mechanisms. Metab. Brain Dis. 2022, 37, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Yang, C.; Zhang, J.; Wang, J.; Chen, R.; Su, P. Dehydroepiandrosterone alleviates hypoxia-induced learning and memory dysfunction by maintaining synaptic homeostasis. Cns Neurosci. Ther. 2022, 28, 1339–1350. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, C.; Wu, H.; Ding, J.; Li, J.; Ding, J.; Gao, Y.; Wang, G.; Luo, Q. Decreased cold-inducible RNA-binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure. Cns Neurosci. Ther. 2024, 30, e70059. [Google Scholar] [CrossRef]
- Xue, L.L.; Wang, F.; Niu, R.Z.; Tan, Y.X.; Liu, J.; Jin, Y.; Ma, Z.; Zhang, Z.B.; Jiang, Y.; Chen, L.; et al. Offspring of rats with cerebral hypoxia-ischemia manifest cognitive dysfunction in learning and memory abilities. Neural Regen. Res. 2020, 15, 1662–1670. [Google Scholar] [CrossRef]
- Guan, R.; Zou, Y.; Wang, T.; Zhu, X.; Li, M.; Zhao, F.; Chen, J.; Aschner, M.; Zhang, J.; Luo, W. CIRBP regulates mitochondrial respiratory function and modulates neuronal developmental abnormalities induced by perinatal hypoxia. Free Radic. Biol. Med. 2025, 237, 21–36. [Google Scholar] [CrossRef]
- Connor, S.A.; Siddiqui, T.J. Synapse organizers as molecular codes for synaptic plasticity. Trends Neurosci. 2023, 46, 971–985. [Google Scholar] [CrossRef]
- Goto, A. Synaptic plasticity during systems memory consolidation. Neurosci. Res. 2022, 183, 1–6. [Google Scholar] [CrossRef]
- Mi, Y.; Qi, G.; Vitali, F.; Shang, Y.; Raikes, A.C.; Wang, T.; Jin, Y.; Brinton, R.D.; Gu, H.; Yin, F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab. 2023, 5, 445–465. [Google Scholar] [CrossRef]
- Bairamian, D.; Sha, S.; Rolhion, N.; Sokol, H.; Dorothée, G.; Lemere, C.A.; Krantic, S. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer’s disease. Mol. Neurodegener. 2022, 17, 19. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, Y.; Lautrup, S.; Yang, B.; Wang, Y.; Cordonnier, S.; Mattson, M.P.; Croteau, D.L.; Bohr, V.A. NAD (+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc. Natl. Acad. Sci. USA 2021, 118, e2011226118. [Google Scholar] [CrossRef] [PubMed]
- Mehl, L.C.; Manjally, A.V.; Bouadi, O.; Gibson, E.M.; Tay, T.L. Microglia in brain development and regeneration. Development 2022, 149, dev200425. [Google Scholar] [CrossRef]
- Makarava, N.; Safadi, T.; Bocharova, O.; Mychko, O.; Pandit, N.P.; Molesworth, K.; Baiardi, S.; Zhang, L.; Parchi, P.; Baskakov, I.V. Reactive microglia partially envelop viable neurons in prion diseases. J. Clin. Investig. 2024, 134, e181169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rong, P.; Zhang, L.; He, H.; Zhou, T.; Fan, Y.; Mo, L.; Zhao, Q.; Han, Y.; Li, S.; et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci. Adv. 2021, 7, eabb9888. [Google Scholar] [CrossRef] [PubMed]
- Wickel, J.; Chung, H.Y.; Ceanga, M.; von Stackelberg, N.; Hahn, N.; Candemir, Ö.; Baade-Büttner, C.; Mein, N.; Tomasini, P.; Woldeyesus, D.M.; et al. Repopulated microglia after pharmacological depletion decrease dendritic spine density in adult mouse brain. Glia 2024, 72, 1484–1500. [Google Scholar] [CrossRef]
- Nebeling, F.C.; Poll, S.; Justus, L.C.; Steffen, J.; Keppler, K.; Mittag, M.; Fuhrmann, M. Microglial motility is modulated by neuronal activity and correlates with dendritic spine plasticity in the hippocampus of awake mice. eLife 2023, 12, e83176. [Google Scholar] [CrossRef]
- Xie, Y.H.; Jiang, L.; Zhang, Y.; Deng, Y.H.; Yang, H.; He, Q.; Zhou, Y.N.; Zhou, C.N.; Luo, Y.M.; Liang, X.; et al. Antagonizing LINGO-1 reduces activated microglia and alleviates dendritic spine loss in the hippocampus of APP/PS1 transgenic mice. Neurosci. Lett. 2024, 820, 137612. [Google Scholar] [CrossRef]
- Cao, P.; Chen, C.; Liu, A.; Shan, Q.; Zhu, X.; Jia, C.; Peng, X.; Zhang, M.; Farzinpour, Z.; Zhou, W.; et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron 2021, 109, 2573–2589. [Google Scholar] [CrossRef]
- Scheiblich, H.; Eikens, F.; Wischhof, L.; Opitz, S.; Jüngling, K.; Cserép, C.; Schmidt, S.V.; Lambertz, J.; Bellande, T.; Pósfai, B.; et al. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024, 112, 3106–3125. [Google Scholar] [CrossRef] [PubMed]
- Peruzzotti-Jametti, L.; Willis, C.M.; Krzak, G.; Hamel, R.; Pirvan, L.; Ionescu, R.B.; Reisz, J.A.; Prag, H.A.; Garcia-Segura, M.E.; Wu, V.; et al. Mitochondrial complex I activity in microglia sustains neuroinflammation. Nature 2024, 628, 195–203. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Li, F.; Zheng, M.; Liu, Y.; Li, L.; Yang, H.; Zhang, S.; Wang, C.; Rong, H.; et al. Extracellular Mitochondria Activate Microglia and Contribute to Neuroinflammation in Traumatic Brain Injury. Neurotox. Res. 2022, 40, 2264–2277. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Z.; Huang, X.; Wei, T.; Liu, N.; Zou, L.; Niu, Y.; Hu, Y.; Fang, Q.; Wang, X.; et al. Adverse outcome pathway-based strategies to mitigate Ag2Se quantum dot-induced neurotoxicity. ACS Nano 2025, 19, 11029–11048. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, F.; Zhou, Q.; Xu, Y.; Li, Y.; Huang, D.; Chen, L.; Liu, A.; Zou, F.; Meng, X. NLRP3 activation in microglia contributes to learning and memory impairment induced by chronic lead exposure in mice. Toxicol. Sci. 2023, 191, 179–191. [Google Scholar] [CrossRef]
- Wang, W.; Chang, R.; Wang, Y.; Hou, L.; Wang, Q. Mitophagy-dependent mitochondrial ROS mediates 2,5-hexanedione-induced NLRP3 inflammasome activation in BV2 microglia. Neurotoxicology 2023, 99, 50–58. [Google Scholar] [CrossRef]
- Han, X.; Xu, T.; Fang, Q.; Zhang, H.; Yue, L.; Hu, G.; Sun, L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021, 44, 102010. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, X.; Xiang, C.; Ye, F. Pb induces the release of CXCL10 and CCL2 chemokines via mtROS/NF-κB activation in BV-2 cells. Toxicol. Lett. 2024, 391, 62–70. [Google Scholar] [CrossRef]
- Wei, F.L.; Wang, T.F.; Wang, C.L.; Zhang, Z.P.; Zhao, J.W.; Heng, W.; Tang, Z.; Du, M.R.; Yan, X.D.; Li, X.X.; et al. Cytoplasmic escape of mitochondrial DNA mediated by Mfn2 downregulation promotes microglial activation via cGas-Sting axis in spinal cord injury. Adv. Sci. 2024, 11, e2305442. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Xu, Y.; Liu, G.; Shao, Q.; Niu, X.; Tai, W.; Shen, T.; Fan, M.; Chen, M.; Lei, L.; et al. Narirutin activates TFEB (transcription factor EB) to protect against Acetaminophen-induced liver injury by targeting PPP3/calcineurin. Autophagy 2023, 19, 2240–2256. [Google Scholar] [CrossRef]
- Zhao, K.; Tang, J.; Xie, H.; Liu, L.; Qin, Q.; Sun, B.; Qin, Z.H.; Sheng, R.; Zhu, J. Nicotinamide riboside attenuates myocardial ischemia-reperfusion injury via regulating SIRT3/SOD2 signaling pathway. Biomed. Pharmacother. 2024, 175, 116689. [Google Scholar] [CrossRef]
- Fan, H.; Sun, M.; Zhu, J.H. S-nitrosoglutathione inhibits pyroptosis of kidney tubular epithelial cells in sepsis via the SIRT3/SOD2/mtROS signaling pathway. Ren. Fail. 2025, 47, 2472987. [Google Scholar] [CrossRef]
- Yang, Q.; Li, H.; Wang, H.; Chen, W.; Zeng, X.; Luo, X.; Xu, J.; Sun, Y. Deletion of enzymes for de novo NAD (+) biosynthesis accelerated ovarian aging. Aging Cell. 2023, 22, e13904. [Google Scholar] [CrossRef]
- Peng, K.; Yao, Y.X.; Lu, X.; Wang, W.J.; Zhang, Y.H.; Zhao, H.; Wang, H.; Xu, D.X.; Tan, Z.X. Mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury. J. Hazard. Mater. 2024, 476, 135103. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, C.; Lu, H.; Zhou, Y.; Guan, R.; Wang, J.; Zhang, Q.; Ke, T.; Aschner, M.; Zhang, W.; et al. Hypoxia causes mitochondrial dysfunction and brain memory disorder in a manner mediated by the reduction of Cirbp. Sci. Total Environ. 2022, 806, 151228. [Google Scholar] [CrossRef]
- Cantó, C.; Houtkooper, R.H.; Pirinen, E.; Youn, D.Y.; Oosterveer, M.H.; Cen, Y.; Fernandez-Marcos, P.J.; Yamamoto, H.; Andreux, P.A.; Cettour-Rose, P.; et al. The NAD (+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15, 838–847. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Z.; Sun, H.; Xu, L. Perillaldehyde ameliorates lipopolysaccharide-induced acute lung injury via suppressing the cGAS/STING signaling pathway. Int. Immunopharmacol. 2024, 130, 111641. [Google Scholar] [CrossRef]
- Wu, Y.T.; Xu, W.T.; Zheng, L.; Wang, S.; Wei, J.; Liu, M.Y.; Zhou, H.P.; Li, Q.F.; Shi, X.; Lv, X. 4-octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway. Int. Immunopharmacol. 2023, 118, 110104. [Google Scholar] [CrossRef] [PubMed]
- Pawlosky, R.; Demarest, T.G.; King, M.T.; Estrada, D.; Veech, R.L.; Bohr, V.A. Effect of dietary ketosis and nicotinamide riboside on hippocampal krebs cycle intermediates and mitochondrial energetics in a DNA repair-deficient 3xTg/POLβ (+/-) alzheimer disease mouse model. J. Neurochem. 2025, 169, e16295. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, C.; Zhou, H.; Tao, L.; Xu, E. Nicotinamide riboside-driven modulation of SIRT3/mtROS/JNK signaling pathways alleviates myocardial ischemia-reperfusion injury. Int. J. Med. Sci. 2024, 21, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
Forward Primer | Reverse Primer | |
---|---|---|
IL-1β | GCCCATCCTCTGTGACTCAT | AGGCCACAGGTATTTTGTCG |
TNF-α | CGTCAGCCGATTTGCTATCT | CGGACTCCGCAAAGTCTAAG |
IL-6 | CCTTGAGGTTAGTGAACGTCA | CGCTCTCGTTTTCCCCATAATC |
iNOS | ACCAAGTTCTCTTCGTTGAC | CTTCACAGAGAGGGTCACAG |
β-Actin | GCTCCTCCTGAGCGCAAGTA | GCAGCTCAGTAACAGTCCGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Zhang, H.; Huo, X.; Guan, R.; Wang, B.; Wang, Y.; Zhao, F.; Liu, X.; Hu, Y.; Zhuang, C.; et al. Nicotinamide Riboside Alleviates the Neurotoxic Injury of Dendritic Spine Plasticity Mediated by Hypoxic Microglial Activation. Biomolecules 2025, 15, 1391. https://doi.org/10.3390/biom15101391
Hou J, Zhang H, Huo X, Guan R, Wang B, Wang Y, Zhao F, Liu X, Hu Y, Zhuang C, et al. Nicotinamide Riboside Alleviates the Neurotoxic Injury of Dendritic Spine Plasticity Mediated by Hypoxic Microglial Activation. Biomolecules. 2025; 15(10):1391. https://doi.org/10.3390/biom15101391
Chicago/Turabian StyleHou, Jinchao, Haowei Zhang, Xiaodong Huo, Ruili Guan, Boxuan Wang, Yuchen Wang, Fang Zhao, Xinqin Liu, Yang Hu, Congcong Zhuang, and et al. 2025. "Nicotinamide Riboside Alleviates the Neurotoxic Injury of Dendritic Spine Plasticity Mediated by Hypoxic Microglial Activation" Biomolecules 15, no. 10: 1391. https://doi.org/10.3390/biom15101391
APA StyleHou, J., Zhang, H., Huo, X., Guan, R., Wang, B., Wang, Y., Zhao, F., Liu, X., Hu, Y., Zhuang, C., & Zou, Y. (2025). Nicotinamide Riboside Alleviates the Neurotoxic Injury of Dendritic Spine Plasticity Mediated by Hypoxic Microglial Activation. Biomolecules, 15(10), 1391. https://doi.org/10.3390/biom15101391