Evaluating the Influence of CHI3L1 and PI3 Methylation in Allergic and Nonallergic Asthma
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Isolation of Peripheral Blood Mononuclear Cells (PBMCs), RNA, and DNA Extraction
2.3. Gene Selection
2.4. Differential Gene Expression Analysis by RT-qPCR
2.5. Measurement of CHI3L1 and PI3 Protein Levels
2.6. Epigenetic Study by DNA Methylation Analysis
2.7. Statistical Analysis
3. Results
3.1. Subjects
3.2. CHI3L1 and PI3 Gene and Protein Expression, and DNA Methylation Analysis
3.2.1. Gene and Protein Expression of CHI3L1 and PI3
3.2.2. DNA Methylation Analysis of CHI3L1 and PI3
3.2.3. Correlation of CHI3L1 and PI3 Expression with DNA Methylation and Clinical Parameters
4. Discussion
4.1. CHI3L1: Expression, Protein Levels, and DNA Methylation
4.2. PI3: Expression, Protein Levels, and DNA Methylation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Allergic Asthmatic |
FEV1 | Forced expiratory volume in 1 s |
FVC | Forced vital capacity |
GEMA | Spanish Guidelines for the Management of Asthma |
GINA | Global Initiative for Asthma |
HC | Healthy control subject |
NA | Nonallergic Asthmatic |
PBMCs | Peripheral Blood Mononuclear Cells |
T2 | Type 2 |
References
- GINA. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2021. Available online: http://www.ginasthma.org/ (accessed on 20 April 2021).
- D’Amato, G.; Stanziola, A.; Sanduzzi, A.; Liccardi, G.; Salzillo, A.; Vitale, C.; Molino, A.; Vatrella, A.; D’Amato, M. Treating severe allergic asthma with anti-IgE monoclonal antibody (omalizumab): A review. Multidiscip. Respir. Med. 2014, 9, 23. [Google Scholar] [CrossRef]
- Holgate, S.T. Stratified approaches to the treatment of asthma. Br. J. Clin. Pharmacol. 2013, 76, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Crimi, C.; Vatrella, A.; Tinello, C.; Terracciano, R.; Pelaia, G. Molecular Targets for Biological Therapies of Severe Asthma. Front. Immunol. 2020, 11, 603312. [Google Scholar] [CrossRef] [PubMed]
- Vatrella, A.; Maglio, A.; Pelaia, C.; Ciampo, L.; Pelaia, G.; Vitale, C. Eosinophilic inflammation: An Appealing Target for Pharmacologic Treatments in Severe Asthma. Biomedicines 2022, 10, 2181. [Google Scholar] [CrossRef]
- Couillard, S.; Pavord, I.D.; Heaney, L.G.; Petousi, N.; Hinks, T.S.C. Sub-stratification of type-2 high airway disease for therapeutic decision-making: A ‘bomb’ (blood eosinophils) meets ‘magnet’ (FeNO) framework. Respirology 2022, 27, 573–577. [Google Scholar] [CrossRef]
- Berry, A.; Busse, W.W. Biomarkers in asthmatic patients: Has their time come to direct treatment? J. Allergy Clin. Immunol. 2016, 137, 1317–1324. [Google Scholar] [CrossRef]
- Parulekar, A.D.; Diamant, Z.; Hanania, N.A. Role of biologics targeting type 2 airway inflammation in asthma: What have we learned so far? Curr. Opin. Pulm. Med. 2017, 23, 3–11. [Google Scholar] [CrossRef]
- Chung, K.F. New treatments for severe treatment-resistant asthma: Targeting the right patient. Lancet Respir. Med. 2013, 1, 639–652. [Google Scholar] [CrossRef]
- Devries, A.; Vercelli, D. Epigenetics of human asthma and allergy: Promises to keep. Asian Pac. J. Allergy Immunol. 2013, 31, 183–189. [Google Scholar]
- Karmaus, W.; Ziyab, A.H.; Everson, T.; Holloway, J.W. Epigenetic mechanisms and models in the origins of asthma. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 63–69. [Google Scholar] [CrossRef]
- Blumenthal, M.N. Genetic, epigenetic, and environmental factors in asthma and allergy. Ann. Allergy Asthma Immunol. 2012, 108, 69–73. [Google Scholar] [CrossRef]
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev. 2009, 23, 781–783. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Harb, H.; Michel, S.; Alhamwe, B.A.; Renz, H.; Tost, J. Epigenetics and allergy: From basic mechanisms to clinical applications. Epigenomics 2017, 9, 539–571. [Google Scholar] [CrossRef]
- Ptashne, M. On the use of the word ‘epigenetic’. Curr. Biol. 2007, 17, R233–R236. [Google Scholar] [CrossRef] [PubMed]
- Legaki, E.; Arsenis, C.; Taka, S.; Papadopoulos, N.G. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin. Transl. Allergy 2022, 12, e12131. [Google Scholar] [CrossRef] [PubMed]
- Augustine, T.; Al-Aghbar, M.A.; Al-Kowari, M.; Espino-Guarch, M.; van Panhuys, N. Asthma and the Missing. Heritability Problem: Necessity for Multiomics Approaches in Determining Accurate Risk Profiles. Front. Immunol. 2022, 13, 822324. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Hudon Thibeault, A.A.; Laprise, C. Cell-Specific DNA Methylation Signatures in Asthma. Genes 2019, 10, 932. [Google Scholar] [CrossRef]
- Cárdaba, B. Aspectos Genéticos, Ambientales y Epigenéticos de las Enfermedades Alérgicas. In Tratado de Alergología; Dávila, I.J., Jauregui, I., Olaguibel, J.M., Zubeldía, J.M., Eds.; Ergon: Madrid, Spain, 2015; pp. 81–100. [Google Scholar]
- Long, A.; Bunning, B.; Sampath, V.; DeKruyff, R.H.; Nadeau, K.C. Epigenetics and the Environment in Airway Disease: Asthma and Allergic Rhinitis. Adv. Exp. Med. Biol. 2020, 1253, 153–181. [Google Scholar] [CrossRef]
- Baos, S.; Calzada, D.; Cremades-Jimeno, L.; Sastre, J.; Picado, C.; Quiralte, J.; Florido, F.; Lahoz, C.; Cárdaba, B. Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples. Front. Immunol. 2018, 9, 1416. [Google Scholar] [CrossRef]
- Baos, S.; Calzada, D.; Cremades, L.; Sastre, J.; Quiralte, J.; Florido, F.; Lahoz, C.; Cárdaba, B. Biomarkers associated with disease severity in allergic and nonallergic asthma. Mol. Immunol. 2017, 82, 34–45. [Google Scholar] [CrossRef]
- Baos, S.; Calzada, D.; Cremades, L.; Sastre, J.; Quiralte, J.; Florido, F.; Lahoz, C.; Cárdaba, B. Data set on a study of gene expression in peripheral samples to identify biomarkers of severity of allergic and nonallergic asthma. Data Brief 2016, 10, 505–510. [Google Scholar] [CrossRef]
- Baos, S.; Calzada, D.; Cremades-Jimeno, L.; de Pedro, M.; Sastre, J.; Picado, C.; Quiralte, J.; Florido, F.; Lahoz, C.; Cárdaba, B. Discriminatory Molecular Biomarkers of Allergic and Nonallergic Asthma and Its Severity. Front. Immunol. 2019, 10, 1051. [Google Scholar] [CrossRef]
- Choudhuri, S.; Sharma, C.; Banerjee, A.; Kumar, S.; Kumar, L.; Singh, N. A repertoire of biomarkers helps in detection and assessment of therapeutic response in epithelial ovarian cancer. Mol. Cell. Biochem. 2014, 386, 259–269. [Google Scholar] [PubMed]
- Zhao, T.; Su, Z.; Li, Y.; Zhang, X.; You, Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct. Target. Ther. 2020, 5, 201. [Google Scholar] [CrossRef] [PubMed]
- Bara, I.; Ozier, A.; Girodet, P.O.; Carvalho, G.; Cattiaux, J.; Begueret, H.; Thumerel, M.; Ousova, O.; Kolbeck, R.; Coyle, A.J.; et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am. J. Respir. Crit. Care Med. 2012, 185, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Berres, M.L.; Papen, S.; Pauels, K.; Schmitz, P.; Moreno Zaldivar, M.; Hellerbrand, C.; Mueller, T.; Berg, T.; Weiskirchen, R.; Trautwein, C.; et al. A functional variation in CHI3L1 is associated with severity of liver fibrosis and YKL-40 serum levels in chronic hepatitis C infection. J. Hepatol. 2009, 50, 370–376. [Google Scholar] [CrossRef]
- Gómez, J.L.; Crisafi, G.M.; Holm, C.T.; Meyers, D.A.; Hawkins, G.A.; Bleecker, E.R.; Jarjour, N.; Severe Asthma Research Program (SARP) Investigators; Cohn, L.; Chupp, G.L. Genetic variation in chitinase 3-like 1 (CHI3L1) contributes to asthma severity and airway expression of YKL-40. J. Allergy Clin. Immunol. 2015, 136, 51–58. [Google Scholar] [CrossRef]
- Furuhashi, K.; Suda, T.; Nakamura, Y.; Inui, N.; Hashimoto, D.; Miwa, S.; Hayakawa, H.; Kusagaya, H.; Nakano, Y.; Nakamura, H.; et al. Increased expression of YKL-40, a chitinase-like protein, in serum and lung of patients with idiopathic pulmonary fibrosis. Respir. Med. 2010, 104, 1204–1210. [Google Scholar] [CrossRef]
- Harvey, S.; Weisman, M.; O‘Dell, J.; Scott, T.; Krusemeier, M.; Visor, J.; Swindlehurst, C. Chondrex: New marker of joint disease. Clin. Chem. 1998, 44, 509–516. [Google Scholar] [CrossRef]
- Zheng, J.L.; Lu, L.; Hu, J.; Zhang, R.Y.; Zhang, Q.; Chen, Q.J.; Shen, W.F. Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis 2010, 210, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Hattori, N.; Oda, S.; Sadahiro, T.; Nakamura, M.; Abe, R.; Shinozaki, K.; Nomura, F.; Tomonaga, T.; Matsushita, K.; Kodera, Y.; et al. YKL-40 identified by proteomic analysis as a biomarker of sepsis. Shock 2009, 32, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Rathcke, C.N.; Vestergaard, H. YKL-40—An emerging biomarker in cardiovascular disease and diabetes. Cardiovasc. Diabetol. 2009, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Seol, H.J.; Lee, E.S.; Jung, S.E.; Jeong, N.H.; Lim, J.E.; Park, S.H.; Hong, S.C.; Oh, M.J.; Kim, H.J. Serum levels of YKL-40 and interleukin-18 and their relationship to disease severity in patients with preeclampsia. J. Reprod. Immunol. 2009, 79, 183–187. [Google Scholar] [CrossRef]
- Letuve, S.; Kozhich, A.; Arouche, N.; Grandsaigne, M.; Reed, J.; Dombret, M.C.; Kiener, P.A.; Aubier, M.; Coyle, A.J.; Pretolani, M. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J. Immunol. 2008, 181, 5167–5173. [Google Scholar] [CrossRef]
- Lai, T.; Wu, D.; Chen, M.; Cao, C.; Jing, Z.; Huang, L.; Lv, Y.; Zhao, X.; Lv, Q.; Wang, Y.; et al. YKL-40 expression in chronic obstructive pulmonary disease: Relation to acute exacerbations and airway remodeling. Respir. Res. 2016, 17, 31. [Google Scholar] [CrossRef]
- Lee, C.G.; Da Silva, C.A.; De la Cruz, C.S.; Ahangari, F.; Ma, B.; Kang, M.J.; He, C.; Takyar, S.; Elias, J.A. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu. Rev. Physiol. 2011, 73, 479–501. [Google Scholar] [CrossRef]
- Leonardi, S.; Parisi, G.F.; Capizzi, A.; Manti, S.; Cuppari, C.; Scuderi, M.G.; Rotolo, N.; Lanzafame, A.; Musumeci, M.; Salpietro, C. YKL-40 as marker of severe lung disease in cystic fibrosis patients. J. Cyst. Fibros. 2016, 15, 583–586. [Google Scholar] [CrossRef]
- Pan, R.; Li, Q.; Zhu, X.; Zhou, Y.; Ding, L.; Cui, Y. Diagnostic value of YKL-40 for patients with asthma: A meta-analysis. Allergy Asthma Proc. 2021, 42, e167–e173. [Google Scholar] [CrossRef]
- Sallenave, J.M.; Ryle, A.P. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor. Biol. Chem. Hoppe-Seyler 1991, 372, 13–21. [Google Scholar] [CrossRef]
- Shanahan, F.; Collins, S.M. Pharmabiotic manipulation of the microbiota in gastrointestinal disorders, from rationale to reality. Gastroenterol. Clin. N. Am. 2010, 39, 721–726. [Google Scholar] [CrossRef]
- Sallenave, J.M. Secretory leukocyte protease inhibitor and Elafin/ Trappin-2: Versatile mucosal antimicrobials and regulators of immunity. Am. J. Respir. Cell Mol. Biol. 2010, 42, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Verriera, T.; Solhonneb, B.; Sallenave, J.M.; Garcia-Verdugo, I. The WAP protein Trappin-2/Elafin: A handyman in the regulation of inflammatory and immune responses. Int. J. Biochem. Cell Biol. 2012, 44, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.S.; Tseng, Y.T.; Chen, P.S.; Lin, M.C.; Wu, C.C.; Huang, M.S.; Wang, C.C.; Chen, K.S.; Lin, Y.C.; Wang, T.N. Protective effects of elafin against adult asthma. Allergy Asthma Proc. 2016, 37, e15–e24. [Google Scholar] [CrossRef] [PubMed]
- Plaza Moral, V.; Comité Ejecutivo de GEMA. GEMA (4.0) Guidelines for asthma management. Arch. Bronconeumol. 2015, 51 (Suppl. S1), 2–54. [Google Scholar] [CrossRef]
- Junker, N.; Johansen, J.S.; Andersen, C.B.; Kristjansen, P.E. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer 2005, 48, 223–231. [Google Scholar] [CrossRef]
- Recklies, A.D.; White, C.; Ling, H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinae and protein kinase B-mediated signalling pathways. Biochem. J. 2002, 365, 119–126. [Google Scholar] [CrossRef]
- Junker, N.; Johansen, J.S.; Hansen, L.T.; Lund, E.L.; Kristjansen, P.E. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells. Cancer Sci. 2005, 96, 183–190. [Google Scholar] [CrossRef]
- Bonneh-Barkay, D.; Bissel, S.J.; Wang, G.; Fish, K.N.; Nicholl, G.C.B.; Darko, S.W.; Medina-Flores, R.; Murphey-Corb, M.; Rajakumar, P.A.; Nyaundi, J.; et al. YKL-40, a marker of simian immunodeficiency virus encephalitis, modulates the biological activity of basic fibroblast growth factor. Am. J. Pathol. 2008, 173, 130–143. [Google Scholar] [CrossRef]
- Renkema, G.H.; Boot, R.G.; Au, F.L.; Donker-Koopman, W.E.; Strijland, A.; Muijsers, A.O.; Hrebicek, M.; Aerts, J.M. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur. J. Biochem. 1998, 251, 504–509. [Google Scholar] [CrossRef]
- Gorgens, S.W.; Eckardt, K.; Elsen, M.; Tennagels, N.; Eckel, J. Chitinase-3-like protein 1 protects skeletal muscle from TNFalpha-induced inflammation and insulin resistance. Biochem. J. 2014, 459, 479–488. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.J.; Lim, S.; Koo, J.H.; Lee, H.G.; Choi, J.O.; Oh, J.H.; Ha, S.J.; Kang, M.J.; Lee, C.M.; et al. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat. Commun. 2018, 9, 503. [Google Scholar] [CrossRef]
- Lee, C.G.; Hartl, D.; Lee, G.R.; Koller, B.; Matsuura, H.; Da Silva, C.A.; Sohn, M.H.; Cohn, L.; Homer, R.J.; Kozhich, A.A.; et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med. 2009, 206, 1149–1166. [Google Scholar]
- Tang, H.; Sun, Y.; Shi, Z.; Huang, H.; Fang, Z.; Chen, J.; Xiu, Q.; Li, B. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-kappa B pathways, causing bronchial smooth muscle proliferation and migration. J. Immunol. 2013, 190, 438–446. [Google Scholar]
- Elias, J.A.; Homer, R.J.; Hamid, Q.; Lee, C.G. Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. J. Allergy Clin. Immunol. 2005, 116, 497–500. [Google Scholar] [CrossRef]
- Xu, Q.; Chai, S.J.; Qian, Y.Y.; Zhang, M.; Wang, K. Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma. Acta Pharmacol. Sin. 2012, 33, 1525–1532. [Google Scholar] [CrossRef]
- Gómez, J.L.; Yan, X.; Holm, C.T.; Grant, N.; Liu, Q.; Cohn, L.; Nezgovorova, V.; Meyers, D.A.; Bleecker, E.R.; Crisafi, G.M.; et al. Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur. Respir. J. 2017, 50, 1700800. [Google Scholar] [CrossRef] [PubMed]
- James, A.J.; Reinius, L.E.; Verhoek, M.; Gomes, A.; Kupczyk, M.; Hammar, U.; Ono, J.; Ohta, S.; Izuhara, K.; Bel, E.; et al. Increased YKL-40 and Chitotriosidase in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016, 193, 131–142. [Google Scholar] [CrossRef]
- Liu, L.; Xin Zhang, X.; Ying Liu, Y.; Zhang, L.; Zheng, J.; Wang, J.; Hansbro, P.M.; Wang, L.; Wang, G.; Hsu, A.C.Y. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir. Res. 2019, 20, 95. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Shimizu, K.; Tanabe, N.; Makita, H.; Taniguchi, N.; Kimura, H.; Suzuki, M.; Abe, Y.; Matsumoto-Sasaki, M.; Oguma, A.; et al. Further evidence for association of YKL-40 with severe asthma airway remodeling. Ann. Allergy Asthma Immunol. 2022, 128, 682–688.e5. [Google Scholar] [CrossRef] [PubMed]
- Ober, C.; Tan, Z.; Sun, Y.; Possick, J.D.; Pan, L.; Nicolae, R.; Radford, S.; Parry, R.R.; Heinzmann, A.; Deichmann, K.A.; et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N. Engl. J. Med. 2008, 358, 1682–1691. [Google Scholar] [CrossRef]
- Konradsen, J.R.; James, A.; Nordlund, B.; Reinius, L.E.; Söderhäll, C.; Melén, E.; Wheelock, Å.; Carlsen, K.C.L.; Lidegran, M.; Verhoek, M.; et al. The chitinase-like protein YKL-40: A possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J. Allergy Clin. Immunol. 2013, 132, 328–335. [Google Scholar] [CrossRef]
- Tsai, Y.; Ko, Y.; Huang, M.; Lin, M.; Wu, C.; Wang, C.; Chen, Y.; Li, J.; Tseng, Y.; Wang, T. CHI3L1 polymorphisms associate with asthma in a Taiwanese population. BMC Med. Genet. 2014, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.-P.; Xie, Z.F.; Huang, J. Assessment of the Association between Genetic Polymorphisms in the CHI3L1 Gene and Asthma Risk. Int. Arch. Allergy Immunol. 2022, 183, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Specjalski, K.; Jassem, E. YKL-40 protein is a marker of asthma. J. Asthma 2011, 48, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Sohn, M.H.; Lee, J.H.; Kim, K.W.; Kim, S.W.; Lee, S.H.; Kim, K.E.; Kim, K.H.; Lee, C.G.; Elias, J.A.; Lee, M.G. Genetic variation in the promoter region of chitinase 3-like 1 is associated with atopy. Am. J. Respir. Crit. Care Med. 2009, 179, 449–456. [Google Scholar] [CrossRef]
- Guerra, S.; Melén, E.; Sunyer, J.; Xu, C.-J.; Lavi, I.; Benet, M.; Bustamante, M.; Carsin, A.-E.; Dobaño, C.; Guxens, M.; et al. Genetic and epigenetic regulation of YKL-40 in childhood. J. Allergy Clin. Immunol. 2018, 141, 1105–1114. [Google Scholar] [CrossRef]
- Chupp, G.L.; Lee, C.G.; Jarjour, N.; Shim, Y.M.; Holm, C.T.; He, S.; Dziura, J.D.; Reed, J.; Coyle, A.J.; Kiener, P.; et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N. Engl. J. Med. 2007, 357, 2016–2027. [Google Scholar] [CrossRef]
- Lai, T.; Chen, M.; Deng, Z.; Yingying, L.; Wu, D.; Li, D.; Wu, B. YKL-40 is correlated with FEV1 and the asthma control test (ACT) in asthmatic patients: Influence of treatment. BMC Pulm. Med. 2015, 15, 1. [Google Scholar] [CrossRef]
- Agardh, E.; Lundstig, A.; Perfilyev, A.; Volkov, P.; Freiburghaus, T.; Lindholm, E.; Rönn, T.; Agardh, C.D.; Ling, C. Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med. 2015, 13, 182. [Google Scholar] [CrossRef]
- Tang, Y.; Qing, C.; Wang, J.; Zeng, Z. DNA Methylation-based Diagnostic and Prognostic Biomarkers for Glioblastoma. Cell Transplant. 2020, 29, 963689720933241. [Google Scholar] [CrossRef]
- Priya Nemani, S.S.; Vermeulen, C.J.; Pech, M.; Faiz, A.; Oliver, B.G.G.; van den Berge, M.; Burgess, J.K.; Kopp, M.V.; Weckmann, M. COL4A3 expression in asthmatic epithelium depends on intronic methylation and ZNF263 binding. ERJ Open Res. 2021, 7, 00802-2020. [Google Scholar] [CrossRef]
- Poachanukoon, O.; Roytrakul, S.; Koontongkaew, S. A shotgun proteomic approach reveals novel potential salivary protein biomarkers for asthma. J. Asthma 2022, 59, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Turan, N.; van der Veen, T.A.; Draijer, C.; Fattahi, F.; Ten Hacken, N.H.; Timens, W.; van Oosterhout, A.J.; van den Berge, M.; Melgert, B.N. Neutrophilic Asthma Is Associated With Smoking, High Numbers of IRF5+, and Low Numbers of IL10+ Macrophages. Front. Allergy 2021, 21, 676930. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.J.; Iwasaki, J.; McErlean, P.; Ogger, P.P.; Ghai, P.; Khoyratty, T.E.; Udalova, I.A.; Lloyd, C.M.; Byrne, A.J. IRF5 regulates airway macrophage metabolic responses. Clin. Exp. Immunol. 2021, 204, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Oriss, T.B.; Raundhal, M.; Morse, C.; Huff, R.E.; Das, S.; Hannum, R.; Gauthier, M.C.; Scholl, K.L.; Chakraborty, K.; Nouraie, S.M.; et al. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight 2017, 18, e91019. [Google Scholar] [CrossRef]
- Draijer, C.; Boorsma, C.E.; Robbe, P.; Timens, W.; Hylkema, M.N.; Ten Hacken, N.H.; van den Berge, M.; Postma, D.S.; Melgert, B.N. Human asthma is characterized by more IRF5+ M1 and CD206+ M2 macrophages and less IL-10+ M2-like macrophages around airways compared with healthy airways. J. Allergy Clin. Immunol. 2017, 140, 280–283.e3. [Google Scholar] [CrossRef]
- Ruiz García, S.; Deprez, M.; Lebrigand, K.; Cavard, A.; Paquet, A.; Arguel, M.J.; Magnone, V.; Truchi, M.; Caballero, I.; Leroy, S.; et al. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development. 2019, 146, dev177428. [Google Scholar] [CrossRef]
- Liang, Q.; Fu, J.; Wang, X.; Liu, L.; Xiao, W.; Gao, Y.; Yang, L.; Yu, H.; Xie, X.; Tu, Z.; et al. circS100A11 enhances M2a macrophage activation and lung inflammation in children with asthma. Allergy 2023, 78, 1459–1472. [Google Scholar] [CrossRef]
- Schlag, K.; Steinhilber, D.; Karas, M.; Sorg, B.L. Analysis of proximal ALOX5 promoter binding proteins by quantitative proteomics. FEBS J. 2020, 287, 4481–4499. [Google Scholar] [CrossRef]
- Steinke, J.W.; Barekzi, E.; Hagman, J.; Borish, L. Functional analysis of -571 IL-10 promoter polymorphism reveals a repressor element controlled by sp1. J. Immunol. 2004, 173, 3215–3222. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, J.; Ren, Z. SKP2-Promoted Ubiquitination of FOXO3 Promotes the Development of Asthma. J. Immunol. 2021, 206, 2366–2375. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, L.; Zhang, Z.; Tang, H. The emerging roles of SUMOylation in pulmonary diseases. Mol. Med. 2023, 29, 119. [Google Scholar] [CrossRef] [PubMed]
- Sasse, S.K.; Kadiyala, V.; Danhorn, T.; Panettieri, R.A., Jr.; Phang, T.L.; Gerber, A.N. Glucocorticoid Receptor ChIP-Seq Identifies PLCD1 as a KLF15 Target that Represses Airway Smooth Muscle Hypertrophy. Am. J. Respir. Cell. Mol. Biol. 2017, 57, 226–237. [Google Scholar] [CrossRef]
- Masuno, K.; Haldar, S.M.; Jeyaraj, D.; Mailloux, C.M.; Huang, X.; Panettieri, R.A., Jr.; Jain, M.K.; Gerber, A.N. Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness. Am. J. Respir. Cell. Mol. Biol. 2011, 45, 642–649. [Google Scholar] [CrossRef]
- Pinart, M.; Benet, M.; Annesi-Maesano, I.; von Berg, A.; Berdel, D.; Carlsen, K.C.; Carlsen, K.H.; Bindslev-Jensen, C.; Eller, E.; Fantini, M.P.; et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: A population-based cohort study. Lancet Respir. Med. 2014, 2, 131–140. [Google Scholar] [CrossRef]
Gene | Primers (5′–3′) | Amplicon (Base Pairs) | CpG Sites—Coverage |
---|---|---|---|
CHI3L1 | F-aggaagagagGTTTTTAGGTTGGGTAAGGGTTAGA R-cagtaatacgactcactatagggagaaggctCATCAAACTTAAATTCCAAAACCTC | 354 | 8–5 |
PI3 | F-aggaagagagTTTTGAGGGAAAGTTTTTAGGTTTT R-cagtaatacgactcactatagggagaaggctTCAAAAATACTCCCTATCCTAACCC | 335 | 5–5 |
HC Subjects | NA Patients | AA Patients | ||
---|---|---|---|---|
N | 12 | 22 | 20 | |
Gender, N (%) | Male | 4 (33.3) | 6 (27.3) | 4 (20) |
Female | 8 (66.7) | 16 (72.7) | 16 (80) | |
Age (years), mean ± SD | 48.5 ±9.5 | 58.3 ±13.8 * | 41 ±17.2 # | |
Asthma severity, N (%) | Moderate/mild | - | 10 (45.5) | 10 (50) |
Severe | - | 12 (54.5) | 10 (50) | |
Pulmonary function, mean ± SD | FVC (%) | - | 80.6 ±24.4 | 72.4 ±16.5 |
FEV1 (%) | - | 75.6 ±23 | 73.1 ±16.1 | |
Blood analysis, mean ± SD | Total IgE (kU/L) | 41.9 ± 75.9 | 93.5 ± 87.5 ** | 405.2 ± 472.7 ***,## |
Eosinophils (cells/mm3) | - | 278.6 ± 162.5 | 480.1 ± 288.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baos, S.; Cremades-Jimeno, L.; de Pedro, M.Á.; López-Ramos, M.; Fernández-Santamaría, R.; Rosales-Ariza, C.; Quiralte, J.; Florido, F.; González-Mangado, N.; Rodríguez-Nieto, M.J.; et al. Evaluating the Influence of CHI3L1 and PI3 Methylation in Allergic and Nonallergic Asthma. Biomolecules 2025, 15, 1363. https://doi.org/10.3390/biom15101363
Baos S, Cremades-Jimeno L, de Pedro MÁ, López-Ramos M, Fernández-Santamaría R, Rosales-Ariza C, Quiralte J, Florido F, González-Mangado N, Rodríguez-Nieto MJ, et al. Evaluating the Influence of CHI3L1 and PI3 Methylation in Allergic and Nonallergic Asthma. Biomolecules. 2025; 15(10):1363. https://doi.org/10.3390/biom15101363
Chicago/Turabian StyleBaos, Selene, Lucía Cremades-Jimeno, María Ángeles de Pedro, María López-Ramos, Rubén Fernández-Santamaría, Cristina Rosales-Ariza, Joaquín Quiralte, Fernando Florido, Nicolás González-Mangado, María Jesús Rodríguez-Nieto, and et al. 2025. "Evaluating the Influence of CHI3L1 and PI3 Methylation in Allergic and Nonallergic Asthma" Biomolecules 15, no. 10: 1363. https://doi.org/10.3390/biom15101363
APA StyleBaos, S., Cremades-Jimeno, L., de Pedro, M. Á., López-Ramos, M., Fernández-Santamaría, R., Rosales-Ariza, C., Quiralte, J., Florido, F., González-Mangado, N., Rodríguez-Nieto, M. J., Peces-Barba, G., Sastre, J., & Cárdaba, B. (2025). Evaluating the Influence of CHI3L1 and PI3 Methylation in Allergic and Nonallergic Asthma. Biomolecules, 15(10), 1363. https://doi.org/10.3390/biom15101363