A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Identification of the NiR-Producing Bacterium
2.3. Construction of NiR Heterologous Expression System
2.4. Purification of the Recombinant Protein
2.5. AhNiR Enzymatic and Catalytic Properties
2.6. Structural Modeling and Catalytic Simulation
2.7. Analytical Techniques
3. Results and Discussion
3.1. Identification of Strains
3.2. Construction of AhNiR Heterologous Expression System and Expression
3.3. Enzymatic Properties and Catalytic Properties of AhNiR
3.4. Structural Evaluation of AhNiR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez-Espinosa, R.M.; Cole, J.A.; Richardson, D.J.; Watmough, N.J. Enzymology and ecology of the nitrogen cycle. Biochem. Soc. Trans. 2011, 39, 175–178. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Y.; Hu, H.; Liu, F.; Zhang, Y.; Deng, R. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark. Chemosphere 2015, 130, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Fallowfield, H.; Guan, H.; Liu, F. Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification approach in an aerobic environment. Water Air Soil Pollut. 2012, 223, 4029–4038. [Google Scholar] [CrossRef]
- Shinn, C.; Marco, A.; Serrano, L. Influence of low levels of water salinity on toxicity of nitrite to anuran larvae. Chemosphere 2013, 92, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Zhang, S.; Gu, P.; Shen, C.; Wang, W.; Peng, Y. Initial nitrite concentration promote nitrite-oxidizing bacteria activity recovery from transient anoxia: Experimental and modeling investigations. Bioresour. Technol. 2019, 289, 121711. [Google Scholar] [CrossRef]
- Hird, K.; Campeciño, J.O.; Lehnert, N.; Hegg, E.L. Recent mechanistic developments for cytochrome c nitrite reductase, the key enzyme in the dissimilatory nitrate reduction to ammonium pathway. J. Inorg. Biochem. 2024, 256, 112542. [Google Scholar] [CrossRef]
- Gahlaut, A.; Hooda, V.; Gothwal, A.; Hooda, V. Enzyme-based ultrasensitive electrochemical biosensors for rapid assessment of nitrite toxicity: Recent advances and perspectives. Crit. Rev. Anal. Chem. 2019, 49, 32–43. [Google Scholar] [CrossRef]
- Yuan, J.; Zeng, X.; Zhang, P.; Leng, L.; Du, Q.; Pan, D. Nitrite reductases of lactic acid bacteria: Regulation of enzyme synthesis and activity, and different applications. Food Biosci. 2024, 59, 103833. [Google Scholar] [CrossRef]
- Albertsson, I.; Sjöholm, J.; Ter Beek, J.; Watmough, N.J.; Widengren, J.; Ädelroth, P. Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans. Sci. Rep. 2019, 9, 17234. [Google Scholar] [CrossRef]
- Barreiro, D.S.; Oliveira, R.N.S.; Pauleta, S.R. Biochemical characterization of the copper nitrite reductase from Neisseria gonorrhoeae. Biomolecules 2023, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Stein, N.; Mao, Y.X.; Shahid, S.; Schmidt, M.; Bennett, B.; Pacheco, A.A. Trapping of a putative intermediate in the cytochrome c nitrite reductase (ccNiR)-catalyzed reduction of nitrite: Implications for the ccNiR reaction mechanism. J. Am. Chem. Soc. 2019, 141, 13358–13371. [Google Scholar] [CrossRef]
- Pitts, W.C.; Deb, A.; Penner-Hahn, J.E.; Pecoraro, V.L. Revving up a designed copper nitrite reductase using noncoded active site ligands. ACS Catal. 2024, 14, 4362–4368. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yang, X.Y.; Xu, Q.; Cui, H.L. Characterization of a novel Cu-containing dissimilatory nitrite reductase from the haloarchaeon Halorussus sp. YCN54. Extremophiles 2020, 24, 403–411. [Google Scholar] [CrossRef]
- Gao, H.F.; Li, C.Q.; Ramesh, B.; Hu, N. Cloning, purification and characterization of novel Cu-containing nitrite reductase from the Bacillus firmus GY-49. World J. Microbiol. Biotechnol. 2018, 34, 10. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Yuan, L.; Ding, J.-H.; Zou, Z.-C. A Preparation Method and Application of Nitrite Reductase. China Patent ZL 2021 1 0938894.9, 12 November 2021. [Google Scholar]
- He, T.X.; Li, Z.L. Identification and denitrification characterization of a novel hypothermia and aerobic nitrite-denitrifying bacterium, Arthrobacter arilaitensis strain Y-10. Desalination Water Treat. 2016, 57, 19181–19189. [Google Scholar] [CrossRef]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.G. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Williams & Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Schnell, R.; Sandalova, T.; Hellman, U.; Lindqvist, Y.; Schneider, G. Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent cys-tyr bond in the active site. J. Biol. Chem. 2005, 280, 27319–27328. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Espinosa, R.M.; Marhuenda-Egea, F.C.; Bonete, M.J. Purification and characterisation of a possible assimilatory nitrite reductase from the halophile archaeon Haloferax mediterranei. FEMS Microbiol. Lett. 2001, 196, 113–118. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.-G.; Zhu, J.-P.; He, L.; Lu, Z.-L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef] [PubMed]
- He, T.X.; Wu, Q.F.; Ding, C.Y.; Chen, M.P.; Zhang, M.M. Hydroxylamine and nitrite are removed effectively by Streptomyces mediolani strain EM-B2. Ecotoxicol. Environ. Saf. 2021, 224, 112693. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Su, J.F.; Zheng, Z.J.; Gao, J.; Ali, A. Denitrification performance and mechanism of a novel isolated Acinetobacter sp. FYF8 in oligotrophic ecosystem. Bioresour. Technol. 2021, 320, 124280. [Google Scholar] [CrossRef]
- Xia, L.; Li, X.M.; Fan, W.H.; Wang, J.L. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour. Technol. 2020, 301, 122749. [Google Scholar] [CrossRef]
- Zhao, T.T.; Chen, P.P.; Zhang, L.J.; Zhang, L.; Gao, Y.H.; Ai, S.; Liu, H.; Liu, X.Y. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen. Bioresour. Technol. 2021, 339, 125620. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Liang, M.H.; Zhao, S.; Chen, S.M.; Liu, J.S.; Liu, D.M.; Lu, Y.Z. Isolation, expression, and biochemical characterization: Nitrite reductase from Bacillus cereus LJ01. RSC Adv. 2020, 10, 37871–37882. [Google Scholar] [CrossRef] [PubMed]
- Gui, M.Y.; Chen, Q.; Ma, T.; Zheng, M.S.; Ni, J.R. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Appl. Microbiol. Biotechnol. 2017, 101, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Esclapez, J.; Zafrilla, B.; Martinez-Espinosa, R.M.; Bonete, M.J. Cu-NirK from Haloferax mediterranei as an example of metalloprotein maturation and exportation via Tat system. Biochim. Et Biophys. Acta-Proteins Proteom. 2013, 1834, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Horrell, S.; Kekilli, D.; Strange, R.W.; Hough, M.A. Recent structural insights into the function of copper nitrite reductases. Metallomics 2017, 9, 1470–1482. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.-Y.; Bonku, E.M.; Yuan, J.-F.; Yang, Z.-H. A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite. Biomolecules 2025, 15, 63. https://doi.org/10.3390/biom15010063
Yin X-Y, Bonku EM, Yuan J-F, Yang Z-H. A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite. Biomolecules. 2025; 15(1):63. https://doi.org/10.3390/biom15010063
Chicago/Turabian StyleYin, Xiao-Yan, Emmanuel Mintah Bonku, Jian-Feng Yuan, and Zhong-Hua Yang. 2025. "A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite" Biomolecules 15, no. 1: 63. https://doi.org/10.3390/biom15010063
APA StyleYin, X.-Y., Bonku, E. M., Yuan, J.-F., & Yang, Z.-H. (2025). A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite. Biomolecules, 15(1), 63. https://doi.org/10.3390/biom15010063