‘Whole-Body’ Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions
Abstract
:1. Introduction
- (i)
- The diversity of genomic loci reported to show variant associations with risk for schizophrenia, which may include loci also associated with risk for dysfunction external to the brain; this may involve pleiotropic effects via one or more regulatory molecules distributed across other bodily regions and dysfunctions;
- (ii)
- Body systems that during early fetal life share an intimate embryonic relationship with the nervous system, including one or more regulatory molecules; while these systems subsequently differentiate into the brain and other anatomically and functionally distinct organs, each may retain the shared involvement of one or more of those regulatory molecules and, hence, of dysfunctions associated with their dysregulation. These effects may be modulated by endogenous processes and external events across development from infancy to adolescence–young adulthood and the emergence of the diagnostic symptoms of psychotic illness.
2. Evidence for a ‘Whole-Body’ Concept of Schizophrenia
2.1. Abnormalities of Surface Anatomy and Cardiovascular Structure and Function
2.2. Metabolic Syndrome and Diabetes
2.3. Immune–Inflammatory Processes
2.4. Malignant Disease
2.5. Gut–Brain Axis
3. miRNAs and Schizophrenia
3.1. miRNA-143 and Risk for Schizophrenia
3.2. Molecular Biology of miRNA-143
3.3. miRNA-143 and Pathobiological Mechanisms Related to Schizophrenia
3.4. miRNA-143 and Clinical Response to Antipsychotics in Schizophrenia
3.5. miRNA-143 in Disorders Related Phenomenologically to Schizophrenia
4. miRNA-143 and Whole-Body Aspects of Schizophrenia
4.1. miRNA-143 and Cardiovascular Disease
4.2. miRNA-143, Metabolic Syndrome, and Diabetes
4.3. miRNA-143, Immunity, and Inflammation
4.4. miRNA-143 and Malignant Disease
4.5. miRNA-143 and the Gut–Brain Axis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tandon, R.; Nasrallah, H.; Akbarian, S.; Carpenter, W.T., Jr.; DeLisi, L.E.; Gaebel, W.; Green, M.F.; Gur, R.E.; Heckers, S.; Kane, J.M.; et al. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr. Res. 2024, 264, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Trubetskoy, V.; Pardiñas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Bukala, B.R.; Beck, K. Schizophrenia: From neurochemistry to circuits, symptoms and treatments. Nat. Rev. Neurol. 2024, 20, 22–35. [Google Scholar] [CrossRef]
- Sabe, M.; Pillinger, T.; Kaiser, S.; Chen, C.; Taipale, H.; Tanskanen, A.; Tiihone, J.; Leucht, S.; Correll, C.U.; Solmi, M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. [Google Scholar] [CrossRef]
- Coutts, F.; Koutsouleris, N.; McGuire, P. Psychotic disorders as a framework for precision psychiatry. Nat. Rev. Neurol. 2023, 19, 221–234. [Google Scholar] [CrossRef]
- Efthimiou, O.; Taipale, H.; Radua, J.; Schneider-Thoma, J.; Pinzón-Espinosa, J.; Ortuño, M.; Vinkers, C.H.; Mittendorfer-Rutz, E.; Cardoner, N.; Tanskanen, A.; et al. Efficacy and effectiveness of antipsychotics in schizophrenia: Network meta-analyses combining evidence from randomised controlled trials and real-world data. Lancet Psychiatry 2024, 11, 102–111. [Google Scholar] [CrossRef]
- Shah, J.L.; Jones, N.; van Os, J.; McGorry, P.D.; Gülöksüz, S. Early intervention service systems for youth mental health: Integrating pluripotentiality, clinical staging, and transdiagnostic lessons from early psychosis. Lancet Psychiatry 2022, 9, 413–422. [Google Scholar] [CrossRef]
- Jonas, K.G.; Cannon, T.D.; Docherty, A.R.; Dwyer, D.; Gur, R.C.; Gur, R.E.; Nelson, B.; Reininghaus, U.; Kotov, R. Psychosis superspectrum I: Nosology, etiology, and lifespan development. Mol. Psychiatry 2024, 29, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Kotov, R.; Carpenter, W.T.; Cicero, D.C.; Correll, C.U.; Martin, E.A.; Young, J.W.; Zald, D.H.; Jonas, K.G. Psychosis superspectrum II: Neurobiology, treatment, and implications. Mol. Psychiatry 2024, 29, 1293–1309. [Google Scholar] [CrossRef]
- Waddington, J.L. From operational diagnostic to dimensional-continuum concepts of psychotic and non-psychotic illness: Embracing catatonia across psychopathology and intrinsic movement disorder in neural network dysfunction. Schizophr. Res. 2024, 263, 99–108. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Davey, C.G.; Mehta, U.M.; Shah, J.; Torous, J.; Allen, N.B.; Avenevoli, S.; Bella-Awusah, T.; Chanen, A.; Chen, E.Y.H.; et al. Towards a youth mental health paradigm: A perspective and roadmap. Mol. Psychiatry 2023, 28, 3171–3181. [Google Scholar] [CrossRef]
- Salazar de Pablo, G.; Guinart, D.; Armendariz, A.; Aymerich, C.; Catalan, A.; Alameda, L.; Rogdaki, M.; Martinez Baringo, E.; Soler-Vidal, J.; Oliver, D.; et al. Duration of untreated psychosis and outcomes in first-episode psychosis: Systematic review and meta-analysis of early detection and intervention strategies. Schizophr. Bull. 2024, 50, 771–783. [Google Scholar] [CrossRef]
- Murray, R.M.; Lewis, S.W. Is schizophrenia a neurodevelopmental disorder? Br. Med. J. 1987, 295, 681–682. [Google Scholar] [CrossRef]
- Weinberger, D.R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 1987, 44, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Waddington, J.L. Schizophrenia: Developmental neuroscience and pathobiology. Lancet 1993, 341, 531–536. [Google Scholar] [CrossRef]
- McGrath, J.J.; Féron, F.P.; Burne, T.H.; Mackay-Sim, A.; Eyles, D.W. The neurodevelopmental hypothesis of schizophrenia: A review of recent developments. Ann. Med. 2003, 35, 86–93. [Google Scholar] [CrossRef]
- Waddington, J.L.; Hennessy, R.J.; O’Tuathaigh, C.M.P.; Owoeye, O.; Russell, V. Schizophrenia and the lifetime trajectory of psychotic illness: Developmental neuroscience and pathobiology, redux. In The Origins of Schizophrenia; Brown, A.S., Patterson, G.R., Eds.; Columbia University Press: New York, NY, USA, 2012; pp. 3–21. [Google Scholar]
- Murray, R.M.; Bhavsar, V.; Tripoli, G.; Howes, O. 30 Years on: How the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophr. Bull. 2017, 43, 1190–1196. [Google Scholar] [CrossRef]
- Weinberger, D.R. Future of days past: Neurodevelopment and schizophrenia. Schizophr. Bull. 2017, 43, 1164–1168. [Google Scholar] [CrossRef]
- Howes, O.D.; Shatalina, E. Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. Biol. Psychiatry 2022, 92, 501–513. [Google Scholar] [CrossRef]
- Pillinger, T.; D’Ambrosio, E.; McCutcheon, R.; Howes, O.D. Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models. Mol. Psychiatry 2019, 24, 776–794. [Google Scholar] [CrossRef]
- Waddington, J.L.; Zhen, X. Psychotic illness as a disorder of subtle, whole-body maldevelopment: Challenges and opportunities for drug discovery. In Drug Discovery for Schizophrenia; Lipina, T.V., Ed.; Royal Society of Chemistry: London, UK, 2024; pp. 19–30. [Google Scholar]
- Oakley, P.; Kisely, S.; Baxter, A.; Harris, M.; Desoe, J.; Dziouba, A.; Siskind, D. Increased mortality among people with schizophrenia and other non-affective psychotic disorders in the community: A systematic review and meta-analysis. J. Psychiatr. Res. 2018, 102, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Plana-Ripoll, O.; Pedersen, C.B.; Agerbo, E.; Holtz, Y.; Erlangsen, A.; Canudas-Romo, V.; Andersen, P.K.; Charlson, F.J.; Christensen, M.K.; Erskine, H.E.; et al. A comprehensive analysis of mortality-related health metrics associated with mental disorders: A nationwide, register-based cohort study. Lancet 2019, 394, 1827–1835. [Google Scholar] [CrossRef] [PubMed]
- Momen, N.C.; Plana-Ripoll, O.; Agerbo, E.; Benros, M.E.; Børglum, A.D.; Christensen, M.K.; Dalsgaard, S.; Degenhardt, L.; de Jonge, P.; Debost, J.P.G.; et al. Association between mental disorders and subsequent medical conditions. N. Engl. J. Med. 2020, 382, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.K.; Chesney, E.; Teng, W.N.; Hollandt, S.; Pritchard, M.; Shetty, H.; Stewart, R.; McGuire, P.; Patel, R. Life expectancy, mortality risks and cause of death in patients with serious mental illness in South East London: A comparison between 2008–2012 and 2013–2017. Psychol. Med. 2023, 53, 887–896. [Google Scholar] [CrossRef]
- Tian, Y.E.; Cropley, V.; Maier, A.B.; Lautenschlager, N.T.; Breakspear, M.; Zalesky, A. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 2023, 29, 1221–1231. [Google Scholar] [CrossRef]
- Caspi, A.; Shireby, G.; Mill, J.; Moffitt, T.E.; Sugden, K.; Hannon, E. Accelerated pace of aging in schizophrenia: Five case-control studies. Biol. Psychiatry 2024, 95, 1038–1047. [Google Scholar] [CrossRef]
- Kochunov, P.V.; Hong, L.E. Is schizophrenia a disorder of accelerated whole-system aging? Biol. Psychiatry 2024, 95, 988–989. [Google Scholar] [CrossRef] [PubMed]
- Waddington, J.L.; Brown, A.S.; Lane, A.; Schaefer, C.A.; Goetz, R.R.; Bresnahan, M.; Susser, E.S. Congenital anomalies and early functional impairments in a prospective birth cohort: Risk of schizophrenia-spectrum disorder in adulthood. Br. J. Psychiatry 2008, 192, 264–267. [Google Scholar] [CrossRef]
- Xu, T.; Chan, R.C.; Compton, M.T. Minor physical anomalies in patients with schizophrenia, unaffected first-degree relatives, and healthy controls: A meta-analysis. PLoS ONE 2011, 6, e24129. [Google Scholar] [CrossRef]
- Osimo, E.F.; Brugger, S.P.; de Marvao, A.; Pillinger, T.; Whitehurst, T.; Statton, B.; Quinlan, M.; Berry, A.; Cook, S.A.; O’Regan, D.P.; et al. Cardiac structure and function in schizophrenia: Cardiac magnetic resonance imaging study. Br. J. Psychiatry 2020, 217, 450–457. [Google Scholar] [CrossRef]
- Pillinger, T.; Osimo, E.F.; de Marvao, A.; Shah, M.; Francis, C.; Huang, J.; D’Ambrosio, E.; Firth, J.; Nour, M.M.; McCutcheon, R.A.; et al. Effect of polygenic risk for schizophrenia on cardiac structure and function: A UK Biobank observational study. Lancet Psychiatry 2023, 10, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Wampers, M.; Mitchell, A.J.; Correll, C.U.; De Herdt, A.; Probst, M.; De Hert, M. A meta-analysis of cardio-metabolic abnormalities in drug naïve, first-episode and multi-episode patients with schizophrenia versus general population controls. World Psychiatry 2013, 12, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Vancampfort, D.; De Herdt, A.; Yu, W.; De Hert, M. Is the prevalence of metabolic syndrome and metabolic abnormalities increased in early schizophrenia? A comparative meta-analysis of first episode, untreated and treated patients. Schizophr. Bull. 2013, 39, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; Beck, K.; Gobjila, C.; Donocik, J.G.; Jauhar, S.; Howes, O.D. Impaired glucose homeostasis in first-episode schizophrenia: A systematic review and meta-analysis. JAMA Psychiatry 2017, 74, 261–269. [Google Scholar] [CrossRef]
- Pillinger, T.; Beck, K.; Stubbs, B.; Howes, O.D. Cholesterol and triglyceride levels in first-episode psychosis: Systematic review and meta-analysis. Br. J. Psychiatry 2017, 211, 339–349. [Google Scholar] [CrossRef]
- Pillinger, T.; McCutcheon, R.A.; Howes, O.D. Variability of glucose, insulin, and lipid disturbances in first-episode psychosis: A meta-analysis. Psychol. Med. 2023, 53, 3150–3156. [Google Scholar] [CrossRef]
- Morera, D.; Miller, B.J. Meta-analysis of a family history of diabetes in schizophrenia. Schizophr. Res. 2023, 264, 90–94. [Google Scholar] [CrossRef]
- Pillinger, T.; Osimo, E.F.; Brugger, S.; Mondelli, V.; McCutcheon, R.A.; Howes, O.D. A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr. Bull. 2019, 45, 1120–1133. [Google Scholar] [CrossRef]
- Halstead, S.; Siskind, D.; Amft, M.; Wagner, E.; Yakimov, V.; Liu, Z.S.J.; Walder, K.; Warren, N. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: A systematic review and network meta-analysis. Lancet Psychiatry 2023, 10, 260–271. [Google Scholar] [CrossRef]
- Osimo, E.F.; Sweeney, M.; de Marvao, A.; Berry, A.; Statton, B.; Perry, B.I.; Pillinger, T.; Whitehurst, T.; Cook, S.A.; O’Regan, D.P.; et al. Adipose tissue dysfunction, inflammation, and insulin resistance: Alternative pathways to cardiac remodelling in schizophrenia. A multimodal, case-control study. Transl. Psychiatry 2021, 11, 614. [Google Scholar] [CrossRef]
- Clausen, M.; Christensen, R.H.B.; da Re, M.; Benros, M.E. Immune cell alterations in psychotic disorders: A comprehensive systematic review and meta-analysis. Biol. Psychiatry 2024, 96, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Wu, J.; Long, Y.; Tao, J.; Xu, J.; Yuan, X.; Yu, N.; Wu, R.; Zhang, Y. Mortality of site-specific cancer in patients with schizophrenia: A systematic review and meta-analysis. BMC Psychiatry 2019, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Wootten, J.C.; Wiener, J.C.; Blanchette, P.S.; Anderson, K.K. Cancer incidence and stage at diagnosis among people with psychotic disorders: Systematic review and meta-analysis. Cancer Epidemiol. 2022, 80, 102233. [Google Scholar] [CrossRef]
- Zhou, K.; Zhu, L.; Chen, N.; Huang, G.; Feng, G.; Wu, Q.; Wei, X.; Gou, X. Causal associations between schizophrenia and cancers risk: A Mendelian randomization study. Front. Oncol. 2023, 13, 1258015. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The role of the gut microbiome in the development of schizophrenia. Schizophr. Res. 2021, 234, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Guo, P.; Li, Y.; Liu, L.; Yan, R.; Liu, S.; Wang, S.; Xue, F.; Zhou, X.; Yuan, Z. Role of the gut-brain axis in the shared genetic etiology between gastrointestinal tract diseases and psychiatric disorders: A genome-wide pleiotropic analysis. JAMA Psychiatry 2023, 80, 360–370. [Google Scholar] [CrossRef]
- Santo, F.D.; González-Blanco, L.; García-Portilla, M.P.; Alfonso, M.; Hernandez, C.; Sanchez-Autet, M.; Bernardo, M.; Anmella, G.; Amoretti, S.; Safont, G.; et al. From gut to brain: A network model of intestinal permeability, inflammation, and psychotic symptoms in schizophrenia. Eur. Neuropsychopharmacol. 2024, 79, 32–37. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, X.; Zhu, Z.; Pang, L.; Ding, S.; Li, X.; Kang, Y.; Hei, G.; Zhang, L.; Zhang, X.; et al. Multiomics analyses reveal microbiome-gut-brain crosstalk centered on aberrant gamma-aminobutyric acid and tryptophan metabolism in drug-naïve patients with first-episode schizophrenia. Schizophr. Bull. 2024, 50, 187–198. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Henshall, D. Fine-Tuning Life: A Guide to microRNAs, Your Genome’s Master Regulators; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Cao, T.; Zhen, X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther. 2018, 24, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Carollo, A.; Neoh, M.J.Y.; Esposito, G. Mapping miRNA research in schizophrenia: A scientometric review. Int. J. Mol. Sci. 2022, 24, 436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.C.; Du, Y.; Chen, L.; Yuan, Z.Q.; Cheng, Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci. Biobehav. Rev. 2023, 146, 105064. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Gao, J. Peripheral blood MicroRNAs as biomarkers of schizophrenia: Expectations from a meta-analysis that combines deep learning methods. World J. Biol. Psychiatry 2024, 25, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, S.; Mirani Sargazi, F.; Heidari Nia, M.; Sheervalilou, R.; Saravani, R.; Mirinejad, S.; Shakiba, M. Functional variants of miR-143 are associated with schizophrenia susceptibility: A preliminary population-based study and bioinformatics analysis. Biochem. Genet. 2022, 60, 868–881. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Kuo, W.H.; Hung, J.H.; Lee, C.Y.; Lee, Y.H.; Chang, Y.C.; Lin, W.C.; Shen, C.Y.; Huang, C.S.; Hsieh, F.J.; et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol. Cancer 2015, 14, 36. [Google Scholar] [CrossRef]
- Asghariazar, V.; Kadkhodayi, M.; Sarailoo, M.; Jolfayi, A.G.; Baradaran, B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol. Res. Pract. 2023, 250, 154792. [Google Scholar] [CrossRef]
- Wang, P.; Cao, T.; Chen, J.; Jiang, Y.; Wang, C.; Waddington, J.L.; Zhen, X. D2 receptor-mediated miRNA-143 expression is associated with the effects of antipsychotic drugs on phencyclidine-induced schizophrenia-related locomotor hyperactivity and with Neuregulin-1 expression in mice. Neuropharmacology 2019, 157, 107675. [Google Scholar] [CrossRef]
- Xie, K.; Wang, Z.; Qi, L.; Zhao, X.; Wang, Y.; Qu, J.; Xu, P.; Huang, L.; Zhang, W.; Yang, Y.; et al. Profiling microRNAs with associated spatial dynamics in acute tissue slices. ACS Nano 2021, 15, 4881–4892. [Google Scholar] [CrossRef]
- O’Tuathaigh, C.M.; Harte, M.; O’Leary, C.; O’Sullivan, G.J.; Blau, C.; Lai, D.; Harvey, R.P.; Tighe, O.; Fagan, A.J.; Kerskens, C.; et al. Schizophrenia-related endophenotypes in heterozygous neuregulin-1 ‘knockout’ mice. Eur. J. Neurosci. 2010, 31, 349–358. [Google Scholar] [CrossRef]
- O’Tuathaigh, C.M.; Fumagalli, F.; Desbonnet, L.; Perez-Branguli, F.; Moloney, G.; Loftus, S.; O’Leary, C.; Petit, E.; Cox, R.; Tighe, O.; et al. Epistatic and independent effects on schizophrenia-related phenotypes following co-disruption of the risk factors Neuregulin-1 × DISC1. Schizophr. Bull. 2017, 43, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Mostaid, M.S.; Lloyd, D.; Liberg, B.; Sundram, S.; Pereira, A.; Pantelis, C.; Karl, T.; Weickert, C.S.; Everall, I.P.; Bousman, C.A. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci. Biobehav. Rev. 2016, 68, 387–409. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Cong, Q.; Chen, D.; Yi, Z.; Huang, H.; Wang, C.; Li, M.; Zeng, R.; Liu, Y.; et al. miR143-3p-mediated NRG-1-dependent mitochondrial dysfunction contributes to olanzapine resistance in refractory schizophrenia. Biol. Psychiatry 2022, 92, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Staines, L.; Healy, C.; Murphy, F.; Byrne, J.; Murphy, J.; Kelleher, I.; Cotter, D.; Cannon, M. Incidence and persistence of psychotic experiences in the general population: Systematic review and meta-analysis. Schizophr. Bull. 2023, 49, 1007–1021. [Google Scholar] [CrossRef]
- Tomita, Y.; Suzuki, K.; Yamasaki, S.; Toriumi, K.; Miyashita, M.; Ando, S.; Endo, K.; Yoshikawa, A.; Tabata, K.; Usami, S.; et al. Urinary exosomal microRNAs as predictive biomarkers for persistent psychotic-like experiences. Schizophrenia 2023, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Clancy, M.J.; Clarke, M.C.; Connor, D.J.; Cannon, M.; Cotter, D.R. The prevalence of psychosis in epilepsy; a systematic review and meta-analysis. BMC Psychiatry 2014, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Surges, R.; Kretschmann, A.; Abnaof, K.; van Rikxoort, M.; Ridder, K.; Fröhlich, H.; Danis, B.; Kaminski, R.M.; Foerch, P.; Elger, C.E.; et al. Changes in serum miRNAs following generalized convulsive seizures in human mesial temporal lobe epilepsy. Biochem. Biophys. Res. Commun. 2016, 481, 13–18. [Google Scholar] [CrossRef]
- Dlouhá, D.; Hubáček, J.A. Regulatory RNAs and cardiovascular disease—With a special focus on circulating microRNAs. Physiol. Res. 2017, 66 (Suppl. S1), S21–S38. [Google Scholar] [CrossRef]
- Gangwar, R.S.; Rajagopalan, S.; Natarajan, R.; Deiuliis, J.A. Noncoding RNAs in cardiovascular disease: Pathological relevance and emerging role as biomarkers and therapeutics. Am. J. Hypertens. 2018, 31, 150–165. [Google Scholar] [CrossRef]
- Murase, H.; Minatoguchi, S.; Heishima, K.; Yasuda, S.; Satake, A.; Yoshizumi, R.; Komaki, H.; Baba, S.; Ojio, S.; Tanaka, T.; et al. Plasma microRNA-143 and microRNA-145 levels are elevated in patients with left ventricular dysfunction. Heart Vessel. 2024; in press. [Google Scholar] [CrossRef]
- Al-Rawaf, H.A. Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clin. Nutr. 2019, 38, 2231–2238. [Google Scholar] [CrossRef]
- Das, S.; Mohamed, I.N.; Teoh, S.L.; Thevaraj, T.; Ku Ahmad Nasir, K.N.; Zawawi, A.; Salim, H.H.; Zhou, D.K. Micro-RNA and the features of metabolic syndrome: A narrative review. Mini Rev. Med. Chem. 2020, 20, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Riches, K.; Alshanwani, A.R.; Warburton, P.; O’Regan, D.J.; Ball, S.G.; Wood, I.C.; Turner, N.A.; Porter, K.E. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with Type 2 diabetes drive persistent changes in phenotype and function. J. Mol. Cell. Cardiol. 2014, 74, 240–250. [Google Scholar] [CrossRef]
- Nemecz, M.; Stefan, D.S.; Comarița, I.K.; Constantin, A.; Tanko, G.; Guja, C.; Georgescu, A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc. Diabetol. 2023, 22, 260. [Google Scholar] [CrossRef] [PubMed]
- Xihua, L.; Shengjie, T.; Weiwei, G.; Matro, E.; Tingting, T.; Lin, L.; Fang, W.; Jiaqiang, Z.; Fenping, Z.; Hong, L. Circulating miR-143-3p inhibition protects against insulin resistance in metabolic syndrome via targeting of the insulin-like growth factor 2 receptor. Transl. Res. 2019, 205, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, R.; Fuente, H.; Lamana, A.; Sampedro-Núñez, M.; Ramos-Levi, A.; Serrano-Somavilla, A.; García-Vicuña, R.; Ortiz, A.M.; Daudén, E.; Llamas-Velasco, M.; et al. Utility of circulating serum miRNA profiles to evaluate the potential risk and severity of immune-mediated inflammatory disorders. J. Autoimmun. 2020, 111, 102472. [Google Scholar] [CrossRef]
- Wang, J.; Luo, G.Y.; Tian, T.; Zhao, Y.Q.; Meng, S.Y.; Wu, J.H.; Han, W.X.; Deng, B.; Ni, J. Shared genetic basis and causality between schizophrenia and inflammatory bowel disease: Evidence from a comprehensive genetic analysis. Psychol. Med. 2024; in press. [Google Scholar] [CrossRef]
- Pekow, J.R.; Dougherty, U.; Mustafi, R.; Zhu, H.; Kocherginsky, M.; Rubin, D.T.; Hanauer, S.B.; Hart, J.; Chang, E.B.; Fichera, A.; et al. miR-143 and miR-145 are downregulated in ulcerative colitis: Putative regulators of inflammation and protooncogenes. Inflamm. Bowel Dis. 2012, 18, 94–100. [Google Scholar] [CrossRef]
- Lin, X.T.; Zheng, X.B.; Fan, D.J.; Yao, Q.Q.; Hu, J.C.; Lian, L.; Wu, X.J.; Lan, P.; He, X.S. MicroRNA-143 targets ATG2B to inhibit autophagy and increase inflammatory responses in Crohn’s disease. Inflamm. Bowel Dis. 2018, 24, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Iorio, M.V.; Ferracin, M.; Liu, C.G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65, 7065–7070. [Google Scholar] [CrossRef]
- Kodahl, A.R.; Lyng, M.B.; Binder, H.; Cold, S.; Gravgaard, K.; Knoop, A.S.; Ditzel, H.J. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: A case control study. Mol. Oncol. 2014, 8, 874–883. [Google Scholar] [CrossRef]
- Michael, M.Z.; O’ Connor, S.M.; van Holst Pellekaan, N.G.; Young, G.P.; James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003, 1, 882–891. [Google Scholar]
- Wang, C.J.; Zhou, Z.G.; Wang, L.; Yang, L.; Zhou, B.; Gu, J.; Chen, H.Y.; Sun, X.F. Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis. Markers 2009, 26, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ellakwa, D.E.; Mushtaq, N.; Khan, S.; Jabbar, A.; Abdelmalek, M.A.; Wadan, A.S.; Ellakwa, T.E.; Raza, A. Molecular functions of microRNAs in colorectal cancer: Recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance. Naunyn Schmiedeberg Arch. Pharmacol. 2024, 397, 5617–5630. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Wang, J.; Sun, J.; Qiu, X.; Liu, X.; Wang, Q.; Yang, F.; Ge, L.; Liu, Z. The effects of gut microbiota colonizing on the porcine hypothalamus revealed by whole transcriptome analysis. Front. Microbiol. 2022, 13, 970470. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.T.; Zakharenko, S.S. MicroRNAs in the onset of schizophrenia. Cells 2021, 10, 2679. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Freude, K. Implications of SNP-triggered miRNA dysregulation in schizophrenia development. Front. Genet. 2024, 15, 1321232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sjölander, A.; Ploner, A.; Lu, D.; Bulik, C.M.; Bergen, S.E. Novel disease associations with schizophrenia genetic risk revealed in ~400,000 UK Biobank participants. Mol. Psychiatry 2022, 27, 1448–1454. [Google Scholar] [CrossRef]
- Brandt, V.; Zhang, Y.; Carr, H.; Golm, D.; Correll, C.U.; Arrondo, G.; Firth, J.; Hassan, L.; Solmi, M.; Cortese, S. First evidence of a general disease (“d”) factor, a common factor underlying physical and mental illness. World Psychiatry 2023, 22, 335–337. [Google Scholar] [CrossRef]
Domain of Abnormality in Schizophrenia | miRNA-143 Findings |
---|---|
Risk for schizophrenia | miRNA-143 implicated in clinical risk for schizophrenia |
Brain pathobiology | miRNA-143 implicated in the most widely adopted rodent model of schizophrenia |
Therapeutic response to antipsychotics | miRNA-143 implicated in the most widely adopted rodent model of schizophrenia and therapeutic response in schizophrenia |
Cardiovascular disease | miRNA-143 implicated in cardiovascular disease |
Metabolic syndrome and diabetes | miRNA-143 implicated in metabolic syndrome and diabetes |
Immune–inflammatory disorder | miRNA-143 implicated in immune–inflammatory disorder |
Malignant disease | miRNA-143 implicated in malignant disease |
Gut–brain axis dysfunction | miRNA-143 implicated in porcine model of gut–brain axis dysfunction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waddington, J.L.; Wang, X.; Zhen, X. ‘Whole-Body’ Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules 2024, 14, 1185. https://doi.org/10.3390/biom14091185
Waddington JL, Wang X, Zhen X. ‘Whole-Body’ Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules. 2024; 14(9):1185. https://doi.org/10.3390/biom14091185
Chicago/Turabian StyleWaddington, John L., Xiaoyu Wang, and Xuechu Zhen. 2024. "‘Whole-Body’ Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions" Biomolecules 14, no. 9: 1185. https://doi.org/10.3390/biom14091185
APA StyleWaddington, J. L., Wang, X., & Zhen, X. (2024). ‘Whole-Body’ Perspectives of Schizophrenia and Related Psychotic Illness: miRNA-143 as an Exemplary Molecule Implicated across Multi-System Dysfunctions. Biomolecules, 14(9), 1185. https://doi.org/10.3390/biom14091185