Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Characterization of the Essential Oil by Gas Chromatography–Mass Spectrometry (GC–MS)
2.3. Preparation of Liposomes Loaded with Curcumin and L. origanoides Essential Oil
2.4. Characterization of the Liposomes
2.4.1. Assessment of the Curcumin Encapsulation Efficiency
2.4.2. Assessment of the Encapsulation Efficiency of L. origanoides Essential Oil
2.4.3. Assessment of the Particle Size and Zeta Potential of Empty and Loaded Liposomes
2.5. Evaluation of the Antimicrobial Activity In Vitro of Free and Encapsulated Compounds in EYPC 20:2 Liposomes against S. aureus ATCC 25923
2.6. Assessment of Cytotoxic Activity in vitro
2.6.1. Selectivity Index
2.6.2. Statistical Analysis
3. Results
3.1. Lippia Origanoides Essential Oil
3.2. Chemical Characterization of the Essential Oil Using Gas Chromatography Coupled to Mass Spectrometry (GC–MS)
3.3. Preparation of Liposomes Loaded with Curcumin and L. origanoides Essential Oil
3.4. Liposome Characterization
3.4.1. Assessment of Curcumin Encapsulation Efficiency
3.4.2. Assessment of the Encapsulation Efficiency of the L. origanoides Essential Oil
3.4.3. Assessment of the Particle Size and Zeta Potential of Empty and Loaded Liposomes
3.5. Assessment of In Vitro Antimicrobial Activity
3.6. Assessment of In Vitro Cytotoxic Activity
3.7. Selectivity Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saavedra Lozano, J.; Santos Sebastian, M.; Gonzalez, F.; Hernández Sampelayo, T.; Navarro Gomez, M. Infecciones Bacterianas de La Piel y Tejidos Blandos. Protoc. Diagn. Ter. AEP Infectol. Pediátr. 2010, 5, 17. [Google Scholar]
- Chambers, E.S.; Vukmanovic-Stejic, M. Skin barrier immunity and ageing. Immunology 2020, 160, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Aly, R. Microbial Infections of Skin and Nails. In Medical Microbiology, 4th ed.; Baron, S., Ed.; Medical Branch at Galveston, University of Texas: Galveston, TX, USA, 1996. [Google Scholar]
- Valderrama-Beltrán, S.; Cortés, J.A.; Caro, M.A.; Cely-Andrado, L.; Osorio-Pinzón, J.V.; Gualtero, S.M.; Berrio-Medina, I.; Rodriguez, J.Y.; Granada-Copete, A.M.; Guevara, F.; et al. Guía de práctica clínica para el diagnóstico y manejo de las infecciones de piel y tejidos blandos en Colombia. Infectio 2019, 23, 318–346. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 April 2023).
- McNulty, C.A.M.; Richards, J.; Livermore, D.M.; Little, P.; Charlett, A.; Freeman, E.; Harvey, I.; Thomas, M. Clinical relevance of laboratory-reported antibiotic resistance in acute uncomplicated urinary tract infection in primary care. J. Antimicrob. Chemother. 2006, 58, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Praditya, D.; Kirchhoff, L.; Brüning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective Properties of the Golden Spice Curcumin. Front. Microbiol. 2019, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Ternullo, S.; Werning, L.V.S.; Holsæter, A.M.; Škalko-Basnet, N. Curcumin-In-Deformable Liposomes-In-Chitosan-Hydrogel as a Novel Wound Dressing. Pharmaceutics 2020, 12, 8. [Google Scholar] [CrossRef]
- Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin Nanoparticles: Preparation, Characterization, and Antimicrobial Study. J. Agric. Food Chem. 2011, 59, 2056–2061. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef]
- Chin, S.F.; Yazid, S.N.A.M.; Pang, S.C. Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin. Int. J. Polym. Sci. 2014, 2014, 340121. [Google Scholar] [CrossRef]
- Amini, A.; Soleimani, H.; Rezaei, F.; Ghoreishi, S.K.; Chien, S.; Bayat, M. The Combined Effect of Photobiomodulation and Curcumin on Acute Skin Wound Healing in Rats. J. Lasers Med. Sci. 2021, 12, e9. [Google Scholar] [CrossRef] [PubMed]
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Dulbecco, P.; Savarino, V. Therapeutic potential of curcumin in digestive diseases. World J. Gastroenterol. 2013, 19, 9256–9270. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A. Aceites Esenciales; Facultad Química Farmacéutica, Universidad de Antioquia: Medellín, Colombia, 2003; pp. 1–34. [Google Scholar]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Terranova, M.; Gaona, R.C.; Sánchez-Guerrero, H. Use of Plant Secondary Metabolites to Reduce Ruminal Methanogenesis. Trop. Subtrop. Agroecosys. 2014, 17, 489–499. [Google Scholar]
- Dos Santos, F.J.; Lopes, J.A.D.; Cito, A.M.G.L.; de Oliveira, E.H.; de Lima, S.G.; Reis, F.d.A. Composition and Biological Activity of Essential Oils from Lippia origanoides H.B.K. J. Essent. Oil Res. 2004, 16, 504–506. [Google Scholar] [CrossRef]
- Zapata, B.; Durán, C.; Stashenko, E.; Correa-Royero, J.; Betancur-Galvis, L. Actividad Citotóxica de Aceites Esenciales de Lippia origanoides H.B.K. y Componentes Mayoritarios. Rev. Univ. Ind. Santander Salud 2009, 41, 215–222. [Google Scholar]
- Henao, J.; Muñoz, L.; Rios, E.; Padilla, L. Extracción y Caracterización Del Aceite Esencial de Lippia origanoides H.B.K. “Orégano de Monte” Cultivado En El Quindío y Evaluación de La Actividad Antimicrobiana. Rev. Investig. Univ. Quindío 2010, 21, 82–86. [Google Scholar] [CrossRef]
- Chataing, B.; Rojas, L.; Usubillaga, A.; Mora, D. Chemical Composition and Bioactivity on Bacteria and Fungi of the Essential Oil from Lippia origanoides H.B.K. J. Essent. Oil Bear. Plants 2012, 15, 454–460. [Google Scholar] [CrossRef]
- Sarrazin, S.L.F.; da Silva, L.A.; Oliveira, R.B.; Raposo, J.D.A.; da Silva, J.K.R.; Salimena, F.R.G.; Maia, J.G.S.; Mourão, R.H.V. Antibacterial action against food-borne microorganisms and antioxidant activity of carvacrol-rich oil from Lippia origanoides Kunth. Lipids Health Dis. 2015, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Baldissera, M.D.; Souza, C.d.F.; Mourão, R.H.V.; da Silva, L.V.F.; Monteiro, S.G. Trypanocidal action of Lippia alba and Lippia origanoides essential oils against Trypanosoma evansi in vitro and in vivo used mice as experimental model. J. Parasit. Dis. 2017, 41, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, C.; Pina, E.; Taleb-Contini, S.; Bertoni, B.; Cestari, I.; Espanha, L.; Varanda, E.; Camilo, K.; Martinez, E.; França, S.; et al. Lippia origanoides essential oil: An efficient and safe alternative to preserve food, cosmetic and pharmaceutical products. J. Appl. Microbiol. 2017, 122, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.M.; Arango, O.; Álvarez, D.E.; Hurtado, A.M. Actividad Biocida del Aceite Esencial de Lippia origanoides H.B.K sobre Phytophthora infestans (Mont.) de Bary. Inf. Tecnol. 2019, 30, 45–54. [Google Scholar] [CrossRef]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential Oils of Aromatic Plants with Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics 2020, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Sherry, M.; Charcosset, C.; Fessi, H.; Greige-Gerges, H. Essential oils encapsulated in liposomes: A review. J. Liposome Res. 2013, 23, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Moghimipour, E.; Aghel, N.; Mahmoudabadi, A.Z.; Ramezani, Z.; Handali, S. Preparation and Characterization of Liposomes Containing Essential Oil of Eucalyptus camaldulensis Leaf. Jundishapur J. Nat. Pharm. Prod. 2012, 7, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Santo, I.E.; Campardelli, R.; Albuquerque, E.C.; de Melo, S.V.; Della Porta, G.; Reverchon, E. Liposomes preparation using a supercritical fluid assisted continuous process. Chem. Eng. J. 2014, 249, 153–159. [Google Scholar] [CrossRef]
- Colzi, I.; Troyan, A.N.; Perito, B.; Casalone, E.; Romoli, R.; Pieraccini, G.; Škalko-Basnet, N.; Adessi, A.; Rossi, F.; Gonnelli, C.; et al. Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better. Eur. J. Pharm. Biopharm. 2015, 94, 411–418. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Grimaldi, N.; Andrade, F.; Segovia, N.; Ferrer-Tasies, L.; Sala, S.; Veciana, J.; Ventosa, N. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 2016, 45, 6520–6545. [Google Scholar] [CrossRef] [PubMed]
- Salim, M.; Minamikawa, H.; Sugimura, A.; Hashim, R. Amphiphilic designer nano-carriers for controlled release: From drug delivery to diagnostics. MedChemComm 2014, 5, 1602–1618. [Google Scholar] [CrossRef]
- Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009, 112, 77–83. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D.S. Molecular Cloning Sambrook and Russell; Cold Springs Harbor Lab Press: Long Island, NY, USA, 2006. [Google Scholar]
- Zhang, H. Thin-film hydration followed by extrusion method for liposome preparation. In Liposomes: Methods and Protocols; Springer: New York, NY, USA, 2017; Volume 1522, pp. 17–22. ISBN 9781461491644. [Google Scholar]
- Fadhil, G. Spectrophotometric Determination of Thymol in Pharmaceutical Preparations via Oxidative Coupling Reaction with 2,4-Dinitrophenylhydrazine in the Presence of Potassium Periodate. Iraqi J. Sci. 2014, 55, 27–34. [Google Scholar]
- Segovia, L.J.T.; Ramírez, G.A.T.; Arias, D.C.H.; Duran, J.D.R.; Bedoya, J.P.; Osorio, J.C.C. Identification and characterization of novel cecropins from the Oxysternon conspicillatum neotropic dung beetle. PLoS ONE 2017, 12, e0187914. [Google Scholar] [CrossRef]
- Lopez, R.M.; Ocazionez, E.R.; Martinez, J.R.; Stashenko, E.E. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.P.; Silva, N.d.F.; Andrade, E.H.A.; Gratieri, T.; Setzer, W.N.; Maia, J.G.S.; da Silva, J.K.R. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS ONE 2017, 12, e0175598. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, E.T.S.; Almeida, R.R.; de Carvalho, S.Y.B.; de Carvalho, G.S.G.; Mano, V.; Pereira, A.C.; Guimarães, L.G.d.L. Lippia origanoides Kunth. essential oil loaded in nanogel based on the chitosan and ρ-coumaric acid: Encapsulation efficiency and antioxidant activity. Ind. Crop. Prod. 2018, 125, 85–94. [Google Scholar] [CrossRef]
- Almeida, R.R.; Damasceno, E.T.S.; de Carvalho, S.Y.B.; de Carvalho, G.S.G.; Gontijo, L.A.P.; Guimarães, L.G.d.L. Chitosan nanogels condensed to ferulic acid for the essential oil of Lippia origanoides Kunth encapsulation. Carbohydr. Polym. 2018, 188, 268–275. [Google Scholar] [CrossRef]
- Celis, C.N.; Escobar, P.; Hipólito, J.; Stashenko, E.E. Estudio comparativo de la composición y actividad biológica de los aceites esenciales extraídos de Lippia alba, Lippia origanoides y Phyla dulcis, especies de la familia Verbenaceae. Sci. Tech. 2007, 13, 103–105. [Google Scholar]
- Álvarez-Sánchez, D.; Hurtado-Benavides, A.; Chaves-Morillo, D.; Andrade-Díaz, D. Actividad biocida del aceite esencial de Lippia origanoides H.B.K. (Verbenaceae) sobre Rhizoctonia solani: In vitro. Rev. Colomb. Cienc. Hortíc. 2018, 12, 668–676. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.-H.; Joung, D.-K.; Kim, Y.-S.; Kang, O.-H.; Kim, S.-B.; Seo, Y.-S.; Kim, Y.-C.; Lee, D.-S.; Shin, D.-W.; Kweon, K.-T.; et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-Y.; Chen, D.-Y.; Wen, H.-W.; Ou, J.-L.; Chiou, S.-S.; Chen, J.-M.; Wong, M.-L.; Hsu, W.-L. Inhibition of Enveloped Viruses Infectivity by Curcumin. PLoS ONE 2013, 8, e62482. [Google Scholar] [CrossRef]
- Zandi, K.; Ramedani, E.; Khosro, M.; Tajbakhsh, S.; Dailami, I.; Rastian, Z.; Fouladvand, M.; Yousefi, F.; Farshadpour, F. Natural Product Communications Evaluation of Antiviral Activities of Curcumin Derivatives. Nat. Prod. Commun. 2010, 5, 8–11. [Google Scholar]
- Padilla, S.L.; Rodríguez, A.; Gonzales, M.M.; Gallego, G.J.C.; Castaño, O.J.C. Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch. Virol. 2014, 159, 573–579. [Google Scholar] [CrossRef]
- Huang, H.-I.; Chio, C.-C.; Lin, J.-Y. Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS ONE 2018, 13, e0191617. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef] [PubMed]
- Larsson, P.; Engqvist, H.; Biermann, J.; Rönnerman, E.W.; Forssell-Aronsson, E.; Kovács, A.; Karlsson, P.; Helou, K.; Parris, T.Z. Optimization of cell viability assays to improve replicability and reproducibility of cancer drug sensitivity screens. Sci. Rep. 2020, 10, 5798. [Google Scholar] [CrossRef]
- Pandelidou, M.; Dimas, K.; Georgopoulos, A.; Hatziantoniou, S.; Demetzos, C. Preparation and Characterization of Lyophilised EGG PC Liposomes Incorporating Curcumin and Evaluation of Its Activity Against Colorectal Cancer Cell Lines. J. Nanosci. Nanotechnol. 2011, 11, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules 2012, 17, 5972–5987. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Huang, H.-Y. In Vitro Anti-Propionibacterium Activity by Curcumin Containing Vesicle System. Chem. Pharm. Bull. 2013, 61, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Huang, H.-Y. Antimicrobial Activity of Curcumin-Loaded Myristic Acid Microemulsions against Staphylococcus epidermidis. Chem. Pharm. Bull. 2012, 60, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- De Leo, V.; Milano, F.; Mancini, E.; Comparelli, R.; Giotta, L.; Nacci, A.; Longobardi, F.; Garbetta, A.; Agostiano, A.; Catucci, L. Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process. Molecules 2018, 23, 739. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, X.; Chai, S.; Chen, Z.; An, X.; Shen, W. Effects of Curcumin Concentration and Temperature on the Spectroscopic Properties of Liposomal Curcumin. J. Agric. Food Chem. 2012, 60, 1865–1870. [Google Scholar] [CrossRef]
- Ternullo, S.; Gagnat, E.; Julin, K.; Johannessen, M.; Basnet, P.; Vanić, Ž.; Škalko-Basnet, N. Liposomes augment biological benefits of curcumin for multitargeted skin therapy. Eur. J. Pharm. Biopharm. 2019, 144, 154–164. [Google Scholar] [CrossRef]
- D’Souza, G.G.M. Liposomes: Methods and Protocols; Springer: New York, NY, USA, 2017; Volume 1522. [Google Scholar] [CrossRef]
- Briuglia, M.-L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015, 5, 231–242. [Google Scholar] [CrossRef]
- Wang, D.-Y.; van der Mei, H.C.; Ren, Y.; Busscher, H.J.; Shi, L.; Wang, D.-Y.; van der Mei, H.C.; Ren, Y.; Busscher, H.J.; Shi, L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front. Chem. 2020, 7, 872. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Khalil, H.; Wang, R.; Lu, T.; Zhao, W.; Zhang, Y.; Chen, T.; Chen, J. Fusion between fluid liposomes and intact bacteria: Study of driving parameters and in vitro bactericidal efficacy. Int. J. Nanomed. 2016, 11, 4025–4036. [Google Scholar] [CrossRef] [PubMed]
- Battista, S.; Maggi, M.A.; Bellio, P.; Galantini, L.; D’archivio, A.A.; Celenza, G.; Colaiezzi, R.; Giansanti, L. Curcuminoids-loaded liposomes: Influence of lipid composition on their physicochemical properties and efficacy as delivery systems. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124759. [Google Scholar] [CrossRef]
- Ferreira, M.; Ogren, M.; Dias, J.N.R.; Silva, M.; Gil, S.; Tavares, L.; Aires-Da-Silva, F.; Gaspar, M.M.; Aguiar, S.I. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules 2021, 26, 2047. [Google Scholar] [CrossRef]
- Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the Solubility and Pharmacological Efficacy of Curcumin by Heat Treatment. ASSAY Drug Dev. Technol. 2007, 5, 567–576. [Google Scholar] [CrossRef]
- Krause, S.T.; Liao, P.; Crocoll, C.; Boachon, B.; Förster, C.; Leidecker, F.; Wiese, N.; Zhao, D.; Wood, J.C.; Buell, C.R.; et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc. Natl. Acad. Sci. USA 2021, 118, e2110092118. [Google Scholar] [CrossRef]
- Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm. 2005, 59, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Liu, B.; Zheng, Z.; You, X.; Pu, Y.; Li, Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem. Eng. Res. Des. 2010, 88, 1102–1107. [Google Scholar] [CrossRef]
- Detoni, C.B.; de Oliveira, D.M.; Santo, I.E.; Pedro, A.S.; El-Bacha, R.; Velozo, E.d.S.; Ferreira, D.; Sarmento, B.; Cabral-Albuquerque, E.C.d.M. Evaluation of thermal-oxidative stability and antiglioma activity of Zanthoxylum tingoassuiba essential oil entrapped into multi- and unilamellar liposomes. J. Liposome Res. 2012, 22, 1–7. [Google Scholar] [CrossRef]
- Karewicz, A.; Bielska, D.; Gzyl-Malcher, B.; Kepczynski, M.; Lach, R.; Nowakowska, M. Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids Surf. B Biointerfaces 2011, 88, 231–239. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time (min) | Area % | Compound | Retention Time (min) | Area % |
---|---|---|---|---|---|
1. alpha-Phellandrene | 8.252 | 0.28 | 27. L-alpha-Terpineol | 19.977 | 1.03 |
2. alpha-Pinene | 8.500 | 0.27 | 28. cis-Piperitol | 20.816 | 0.13 |
3. Sabinene | 10.030 | 1.78 | 29. Citronellol | 21.786 | 3.88 |
4. beta-Pinene | 10.159 | 0.14 | 30. 2-Isopropyl-5-methylanisole | 22.118 | 1.46 |
5. 1-Octen-3-ol | 10.304 | 0.24 | 31. 2-Isopropyl-5-methylanisole | 22.597 | 2.27 |
6. beta-Myrcene | 10.751 | 1.39 | 32. Geraniol | 23.170 | 5.28 |
7. alpha-Phellandrene | 11.305 | 0.37 | 33. Thymol | 25.265 | 7.28 |
8. Terpinolene | 11.825 | 5.83 | 34. Carvacrol | 25.800 | 0.27 |
9. p-Cymene | 12.171 | 2.41 | 35. gamma-Elemene | 27.677 | 0.16 |
10. D-Limonene | 12.362 | 3.44 | 36. alpha-Terpinyl acetate | 28.382 | 0.46 |
11. Trans-beta-Ocimene | 12.781 | 3.05 | 37. 2,6-Dimethyl 2,6-octadiene | 28.606 | 0.71 |
12. beta-cis-Ocimene | 13.257 | 0.32 | 38. Neryl acetate | 30.375 | 0.89 |
13. gamma-Terpinene | 13.722 | 14.72 | 39. (−)-beta-Elemene | 30.819 | 0.45 |
14. p-Menth-8-en-1-ol, stereoisomer | 14.120 | 0.37 | 40. Isocaryophyllene | 32.370 | 1.7 |
15. Terpinolene | 15.096 | 1.89 | 41. Humulene | 34.335 | 0.09 |
16. beta-Terpineol | 15.527 | 1.84 | 42. alpha-Amorphene | 35.694 | 0.04 |
17. Linalool | 15.635 | 0.53 | 43. alpha-Amorphene | 35.927 | 1.41 |
18. 1-Octen-3-yl-acetate | 16.218 | 0.99 | 44. gamma-Elemene | 36.837 | 1.57 |
19. cis-4-(Isopropyl)-1-methylcyclohex-2-en-1-ol | 16.651 | 0.57 | 45. alpha-Muurolene | 37.081 | 0.06 |
20. 3-Tetradecanol acetate | 16.813 | 0.07 | 46. beta-Bisabolene | 37.596 | 0.06 |
21. 2,6-dimethyl -2,4,6-Octatriene | 17.028 | 0.13 | 47. gamma-Muurolene | 37.849 | 0.1 |
22. 3-Methyl-4-methylenebicyclo (3.2.1) oct-2-ene | 17.337 | 0.02 | 48. (+)-delta-Cadinene | 38.401 | 0.38 |
23. cis-4-(Isopropyl)-1-methylcyclohex-2-en-1-ol | 17.518 | 0.41 | 49. Elemol | 39.872 | 0.54 |
24. Isopulegol | 17.799 | 0.36 | 50. alpha-Muurolol | 45.120 | 0.18 |
25. Citronellal | 18.142 | 10.08 | 51. Viridiflorol | 45.829 | 0.26 |
26. Terpinen-4-ol | 19.324 | 17.84 | Total | 100 |
Formulation | Lipid (mg/mL) | Curcumin (µg/mL) | LEO (µg/mL) | Encapsulated Curcumin µg/mL ± SD | Encapsulation Efficiency (%) ± SD |
---|---|---|---|---|---|
Empty | 10 (EYPC) | - | - | - | - |
20:1 | 300 | 300 | 156.60 ± 2.71 | 52.2 ± 0.90 | |
20:2 | 600 | 600 | 257.08 ± 0.99 | 42.85 ± 0.16 | |
20:4 | 1200 | 1200 | 256.28 ± 1.43 | 21.36 ± 0.12 | |
20:6 | 1800 | 1800 | 195.97 ± 8.96 | 10.89 ± 0.50 | |
Empty | 10 (DSPC) | - | - | - | - |
20:2 | 580 | 580 | 203.97 ± 6.70 | 35.17 ± 1.15 |
Compound | Retention Time (min) | Area % |
---|---|---|
1. Terpinen-4-ol | 19.099 | 12.28 |
2. Citronellol | 21.509 | 6.89 |
3. Nitro-cyclopentane | 22.816 | 5.23 |
4. Thymol | 25.037 | 63.34 |
5. p-Cymen-7-ol | 25.479 | 4.13 |
6. 4-Hydroxy-3-methylacetophenone | 25.903 | 8.12 |
Particle Size (nm) ± SD | Zeta Potential (mV) ± SD | Polydispersity Index (PdI) | ||||
---|---|---|---|---|---|---|
Empty | Loaded | Empty | Loaded | Empty | Loaded | |
EYPC 0 | 122.3 ± 35.57 | 115.6 ± 38.32 | −27.3 ± 4.89 | −24.1 ± 11 | 0.213 | 0.114 |
1 | 125.7 ± 47.27 | 110 ± 34.38 | −19.08 ± 13.5 | −20.3 ± 10.3 | 0.161 | 0.141 |
2 | 136.8 ± 46.73 | 111.8 ± 33.18 | −20.5 ± 8.95 | −16.3 ± 7.29 | 0.089 | 0.148 |
8 | 113.7 ± 43.57 | 112.6 ± 31.65 | −13.6 ± 5.45 | −16.7 ± 5.38 | 0.124 | 0.057 |
DSPC (Upon sample reception) | Peak 1 (99.5%): 463.7 ± 286.2 Peak 2 (0.5%): 5292 ± 408.6 | Peak 1 (80%): 690.4 ± 380.5 Peak 2 (20%): 4569 ± 904.6 | −13.20 ± 4.4 | −6.96 ± 3.57 | 0.230 | 0.577 |
[MIC] (µg/mL) | [CC50] (µg/mL) | SI |
---|---|---|
4821.33 | 186.8 | −1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedoya-Agudelo, J.P.; López-Carvajal, J.E.; Quiguanás-Guarín, E.S.; Cardona, N.; Padilla-Sanabria, L.; Castaño-Osorio, J.C. Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil. Biomolecules 2024, 14, 851. https://doi.org/10.3390/biom14070851
Bedoya-Agudelo JP, López-Carvajal JE, Quiguanás-Guarín ES, Cardona N, Padilla-Sanabria L, Castaño-Osorio JC. Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil. Biomolecules. 2024; 14(7):851. https://doi.org/10.3390/biom14070851
Chicago/Turabian StyleBedoya-Agudelo, Juan Pablo, Jhon Esteban López-Carvajal, Edwin Stiven Quiguanás-Guarín, Nestor Cardona, Leonardo Padilla-Sanabria, and Jhon Carlos Castaño-Osorio. 2024. "Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil" Biomolecules 14, no. 7: 851. https://doi.org/10.3390/biom14070851
APA StyleBedoya-Agudelo, J. P., López-Carvajal, J. E., Quiguanás-Guarín, E. S., Cardona, N., Padilla-Sanabria, L., & Castaño-Osorio, J. C. (2024). Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil. Biomolecules, 14(7), 851. https://doi.org/10.3390/biom14070851