Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Comission. Pacto Verde: Propuestas Pioneras para Restaurar la Naturaleza en Europa de Aquí a 2050 y Reducir a la Mitad el uso de Plaguicidas de Aquí a 2030. Available online: https://ec.europa.eu/commission/presscorner/detail/es/ip_22_3746 (accessed on 12 July 2023).
- European Comission. Glyphosate. Available online: https://food.ec.europa.eu/plants/pesticides/approval-active-substances/renewal-approval/glyphosate_en (accessed on 27 January 2024).
- Roman, L.U.; Hernandez, J.D.; Del Rio, R.E.; Bucio, M.A.; Cerda-Garcia-Rojas, C.M.; Joseph-Nathan, P. Wagner-Meerwein rearrangements of longipinane derivatives. J. Org. Chem. 1991, 56, 1938. [Google Scholar] [CrossRef]
- Borgo, J.; Laurella, L.C.; Martini, F.; Catalán, C.A.N.; Sülsen, V.P. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021, 26, 2733. [Google Scholar] [CrossRef]
- Román, L.U.; Zepeda, L.G.; Morales, N.R.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Molecular Rearrangement of Rastevione Mesylate into Arteagane Derivatives. J. Nat. Prod. 1995, 58, 1808. [Google Scholar] [CrossRef]
- Román, L.U.; Zepeda, L.G.; Morales, N.R.; Flores, S.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Mechanistic Studies of the Longipinane to Arteagane Rearrangement. J. Nat. Prod. 1996, 59, 391. [Google Scholar] [CrossRef]
- Cerda-García-Rojas, C.M.; Flores-Sandoval, C.A.; Román, L.U.; Hernández, J.D.; Joseph-Nathan, P. A regioselective Wagner–Meerwein rearrangement directed towards the six-membered ring of the longipinane skeleton. Tetrahedron 2002, 58, 1061. [Google Scholar] [CrossRef]
- Román, L.U.; Cerda-García-Rojas, C.M.; Guzmán, R.; Armenta, C.; Hernández, J.D.; Joseph-Nathan, P. Jiquilpane Hydrocarbon Skeleton Generated by Two Successive Wagner−Meerwein Rearrangements of Longipinane Derivatives. J. Nat. Prod. 2002, 65, 1540. [Google Scholar] [CrossRef]
- Chacón-Morales, P.A.; Amaro-Luis, J.M. Meridane and Uladane, two unprecedented sesquiterpene skeletons obtained by Wagner–Meerwein rearrangements of Longipinane derivatives. Tetrahedron Lett. 2016, 57, 2713. [Google Scholar] [CrossRef]
- Reddy, D.S.; Kutateladze, A.G. Computational structure revision of a longipinane derivative meridane. Tetrahedron Lett. 2016, 57, 4727. [Google Scholar] [CrossRef]
- Román, L.U.; Rebeca Morales, N.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Gerardo Zepeda, L.; Flores-Sandoval, C.A.; Joseph-Nathan, P. Generation of the new quirogane skeleton by a vinylogous retro-Michael type rearrangement of longipinene derivatives. Tetrahedron 2001, 57, 7269. [Google Scholar] [CrossRef]
- Joseph-Nathan, P.; Meléndez-Rodríguez, M.; Cerda-García-Rojas, C.M.; Catalan, C.A.N. Photochemical rearrangements of highly functionalized longipinene derivatives. Tetrahedron Lett. 1996, 37, 8093. [Google Scholar] [CrossRef]
- Meléndez-Rodríguez, M.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Quirogane, Prenopsane, and Patzcuarane Skeletons Obtained by Photochemically Induced Molecular Rearrangements of Longipinene Derivatives. J. Nat. Prod. 2002, 65, 1398. [Google Scholar] [CrossRef] [PubMed]
- Román, L.U.; Hernández, J.D.; Cerda-García-Rojas, C.M.; Domínguez-López, R.M.; Joseph-Nathan, P. Molecular Rearrangements in the Longipinene Series. J. Nat. Prod. 1992, 55, 577. [Google Scholar] [CrossRef]
- Joseph-Nathan, P.; Cerda-Garcia-Rojas, C.M. Molecular rearrangements in longipinane derivatives. Pure Appl. Chem. 1994, 66, 2361. [Google Scholar] [CrossRef]
- Chacón-Morales, P.A.; Amaro-Luis, J.M.; Kutateladze, A.G. Structure determination and mechanism of formation of a seco- moreliane derivative supported by computational analysis. J. Nat. Prod. 2017, 80, 1214. [Google Scholar] [CrossRef] [PubMed]
- Armenta-Salinas, C.; Guzmán-Mejía, R.; García-Gutiérrez, H.A.; Román-Marín, L.U.; Hernández-Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Novel Sesquiterpene Skeletons by Multiple Wagner–Meerwein Rearrangements of a Longipinane-1,9-diol Derivative. J. Nat. Prod. 2019, 82, 3410. [Google Scholar] [CrossRef]
- Ruiz-Ferrer, C.; Román-Marín, L.U.; Hernández-Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P. Novel Sesquiterpenoid Skeletons by Wagner–Meerwein Rearrangements of Longipinane-9,13-diol-1-one Derivatives. J. Nat. Prod. 2021, 84, 1087. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Rodríguez, M.; Cerda-García-Rojas, C.M.; Catalán, C.A.N.; Joseph-Nathan, P. Mechanistic studies of the photochemical rearrangement of 1-oxolongipin-2-ene derivatives. Tetrahedron 2002, 58, 2331. [Google Scholar] [CrossRef]
- Barrero, A.F.; Herrador, M.M.; Molina, J.M.; Quílez, J.F.; Quirós, M. α-Longipinene Derivatives from Santolina viscosa. A Conformational Analysis of the Cycloheptane Ring. J. Nat. Prod. 1994, 57, 873. [Google Scholar] [CrossRef]
- Barrero, A.F.; Herrador, M.M.; Álvarez-Manzaneda, R.J.; Quirós, M.; Lara, A.; Quílez del Moral, J. Longipinene Derivatives from Santolina viscosa. J. Nat. Prod. 2000, 63, 587. [Google Scholar] [CrossRef]
- Shastri, M.H.; Dev, S. Studies in sesquiterpenes-LXa,b reversion of longipinane to himachalane system: Revision of structure of isocentdarol. Tetrahedron 1992, 48, 4905. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.; Klunzinger, P.; Deppmeier, B.; Driessen, A.; Uchida, N.; Hashimoto, M.; Fukushi, E.; Takata, Y. Efficient protocol for accurately calculating 13C chemical shifts of conformationally flexible natural products: Scope, assessment, and limitations. J. Nat. Prod. 2019, 82, 2299. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Rocha, J.; Andrés, M.F.; Díaz, C.E.; Burillo, J.; González-Coloma, A. Composition and biocidal properties of essential oil from pre-domesticated Spanish Satureja Montana. Ind. Crops Prod. 2020, 145, 111958. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Commun. 2014, 9, 1109. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Valcárcel, F.; Aguilar, A.; Olmeda, A.S. In vitro feeding of Hyalomma lusitanicum ticks on artificial membranes. Exp. Appl. Acarol. 2017, 72, 449. [Google Scholar] [CrossRef]
- Andrés, M.F.; González-Coloma, A.; Muñoz, R.; De la Peña, F.; Julio, L.F.; Burillo, J. Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants. Environ. Sci. Pollut. Res. 2018, 25, 29834. [Google Scholar] [CrossRef]
- Püntener, W. Manual for Field Trials in Plant Protection; Ciba-Geigy Limited: Basel, Switzerland, 1981; Volume 205. [Google Scholar]
Acid Catalyst | Longipinene 1 | Longipinene 2 | Longipinene 5 |
---|---|---|---|
zeolite Y-CBV720 | 8 * 12 (10%) 16 (5%) 17 (7%) | 9 (30%) 18 * | 10 (5%) 5 * |
H6SiW12O41 | 12 (18%) 17 * | 13 (38%) 18 * | 10 (4%) 15 * |
InCl3 | 8 * 16 (4%) 17 (4%) | 9 (14%) 11 (4%) 13 (3%) 14 (24%) 18 (26%) | 15 (36%) |
HSO3F | 8 * 12 (19%) 17 (10%) | 9 (16%) 13 (15%) 18 (29%) | 15 * |
C | 12 | 15 | 17 | 18 | ||||
---|---|---|---|---|---|---|---|---|
13C NMR Exp. | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | |
1 | 44.0 | 44.4 | 44.1 | 44.6 | 41.3 | 41.2 | 36.8 | 39.3 |
2 | 49.4 | 49.9 | 50.9 | 50.7 | 83.8 | 81.9 | 76.5 | 75.9 |
3 | 27.9 | 27.5 | 34.9 | 35.0 | 34.6 | 33.4 | 37.5 | 36.1 |
4 | 20.0 | 20.7 | 22.5 | 22.5 | 20.5 | 21.0 | 19.4 | 20.6 |
5 | 33.4 | 33.2 | 31.3 | 31.6 | 31.7 | 29.6 | 31.2 | 30.0 |
6 | 44.1 | 44.0 | 48.5 | 49.7 | 44.4 | 45.8 | 48.9 | 47.9 |
7 | 54.9 | 54.1 | 55.0 | 54.7 | 39.0 | 40.7 | 40.5 | 38.6 |
8 | 88.6 | 87.6 | 92.1 | 91.7 | 119.1 | 123.0 | 121.6 | 126.4 |
9 | 49.9 | 49.6 | 50.0 | 49.2 | 138.2 | 136.9 | 136.8 | 134.4 |
10 | 32.7 | 33.4 | 33.8 | 34.8 | 29.0 | 28.5 | 28.9 | 27.0 |
11 | 27.1 | 28.5 | 28.6 | 29.9 | 23.7 | 25.9 | 24.1 | 24.4 |
12 | 11.0 | 12.6 | 11.1 | 12.8 | 24.2 | 24.2 | 24.0 | 24.2 |
13 | 21.1 | 21.6 | 23.7 | 25.0 | 29.6 | 30.5 | 30.4 | 30.6 |
14 | 29.7 | 29.4 | 70.3 | 71.2 | 24.4 | 25.1 | 71.0 | 67.7 |
15 | 185.3 | 183.4 | 75.9 | 76.3 | 178.5 | 176.2 | 175.9 | 177.5 |
16 | - | - | - | - | - | - | 52.2 | 52.5 |
C | max absolute = 3.3; rms = 1.3 | max absolute = 3.5; rms = 1.7 | max absolute = 1.8; rms = 0.9 | max absolute = 17.1; rms = 7.8 | ||
13C NMR Exp | 13C NMR Theory | 13C NMR Theory | 13C NMR Exp. | 13C NMR Theory | 13C NMR Theory | |
1 | 85.4 | 84.1 | 85.6 | 44.2 | 44.6 | 42.1 |
2 | 42.4 | 42.5 | 40.7 | 51.3 | 50.8 | 51.0 |
3 | 32.4 | 31.6 | 31.6 | 35.2 | 35.2 | 35.4 |
4 | 22.0 | 21.9 | 20.8 | 22.7 | 22.6 | 28.6 |
5 | 41.7 | 40.4 | 39.9 | 32.7 | 32.8 | 26.7 |
6 | 48.4 | 47.8 | 47.8 | 55.0 | 55.3 | 65.3 |
7 | 45.2 | 46.2 | 42.0 | 55.1 | 54.5 | 72.2 |
8 | 119.6 | 122.9 | 123.1 | 91.7 | 91.1 | 83.8 |
9 | 135.7 | 136.2 | 136.9 | 48.6 | 49.3 | 65.5 |
10 | 24.7 | 24.7 | 24.7 | 33.7 | 34.8 | 42.7 |
11 | 31.8 | 32.8 | 33.0 | 28.5 | 29.7 | 24.1 |
12 | - | - | - | 10.9 | 12.7 | 15.6 |
13 | 16.2 | 17.1 | 17.4 | 23.8 | 25.1 | 27.4 |
14 | 22.5 | 23.5 | 23.3 | 176.7 | 177.5 | 76.1 |
15 | 183.4 | 181.4 | 181.2 | 74.5 | 75.1 | 177.7 |
16 | - | - | - | 52.0 | 52.5 | 52.9 |
Extract | μg/cm2 | S. littoralis | M. persicae | R. padi |
---|---|---|---|---|
E | %FI/SI | 23.1 ± 7.6 | 71.78 ± 6.87 | 48.25 ± 6.76 |
EC50 | >100 | 19.8 (11.4–34.3) | >100 | |
NF | %FI/SI | 78.2 ± 12.1 | 73.98 ± 6.95 | 60.9 ± 6.8 |
EC50 | 40.7 (24.8–67.2) | 19.5 (11.0–34.5) | ≈100 | |
AF | %FI/SI | 42.1 ± 10.5 | 53.47 ± 8.57 | 59.7 ± 6.3 |
EC50 | >100 | ≈100 | ≈100 | |
AEF | %FI/SI | 86.2 ± 8.7 | 80.8 ± 5.8 | 81.5 ± 5.8 |
EC50 | 32.2 (17.7–58.6) | 2.8 (1.2–6.3) | 13.7 (7.8–24.3) |
Compound | μg/cm2 | S. littoralis | M. persicae | R. padi |
---|---|---|---|---|
1 | %FI/SI | 18.0 ± 7.4 | 73.5 ± 7.5 | 63.2 ± 5.6 |
EC50 | >50 | 22.3 (16.0–31.2) | ≈50 | |
2 | %FI/SI | 39.7 ± 15.1 | 83.06 ± 8.14 | 62.56 ± 7.6 |
EC50 | >50 | 11.8 (8.2–17.0) | ≈50 | |
3 | %FI/SI | 29.9 ± 13.3 | 86.3 ± 6.02 | 78.7 ± 5.7 |
EC50 | >50 | 6.7 (3.7–12.2) | 8.0 (2.7–23.4) | |
4 | %FI/SI | 23.3 ± 5.7 | 85.8 ± 3.2 | 66 ± 6 |
EC50 | >50 | 11.5 (7.0–18.6) | >50 | |
5 | %FI/SI | 41.6 ± 18.9 | 70.5 ± 9.2 | 69.3 ± 5.5 |
EC50 | >50 | 11.2 (6.1–20.7) | 21.5 (16.2–28.5) | |
6 | %FI/SI | 27.9 ± 8.3 | 74.7 ± 6.9 | 5.06 ± 5.6 |
EC50 | >50 | 14.7 (8.3–25.7) | ≈50 | |
7 | %FI/SI | 29.0 ± 16.1 | 72.0 ± 7.2 | 35.5 ± 7.7 |
EC50 | >50 | 11.6 (6.4–21.1) | >50 | |
8 | %FI/SI | 50.4 ± 14.8 | 85.9 ± 3.3 | 73 ± 5 |
EC50 | ≈50 | 17.1 (12.7–22.9) | 25–50 | |
9 | %FI/SI | 11.3 ± 7.1 | 36.5 ± 7.1 | 57.5 ± 5.8 |
EC50 | >50 | >50 | >50 | |
12 | %FI/SI | 49.2 ± 13.6 | 85.5 ± 6.7 | 97 ± 1 |
EC50 | ≈50 | 5.5 (5.4–5.6) | 7.6 (7.5–7.6) | |
13 | %FI/SI | 14.9 ± 7.4 | 47.9 ± 7.9 | 30.5 ± 6.7 |
EC50 | >50 | >50 | >50 | |
15 | %FI/SI | 27.4 ± 11.7 | 85.9 ± 4.8 | 56.1 ± 8.2 |
EC50 | >50 | 12.5–25.0 | ≈50 | |
17 | %FI/SI | 19.2 ± 10.5 | 81.6 ± 6.8 | 74.3.8 ± 7.0 * |
EC50 | >50 | 8.1 (8.1–8.2) | 11.8 (9.3–27.2) | |
18 | %FI/SI | 39 ± 10 | 86.5 ± 6.7 | 75.9 ± 6.0 |
EC50 | >50 | 7.7 (5.3–11.1) | 17.7 (11.5–27.2) | |
19/19a | %FI/SI | 58.7 ± 11.3 | 87.8 ± 3.2 | 83.2 ± 3.5 |
EC50 | ≈50 | <0.78 | Nc | |
22 | %FI/SI | 37.9 ± 16.3 | 56.9 ± 10.4 | 24.8 ± 6.3 |
EC50 | >50 | >50 | >50 | |
23 | %FI/SI | 28.6 ± 13.2 | 31.8 ± 6.6 | 31.0 ± 6.9 |
EC50 | >50 | >50 | >50 | |
24 | %FI/SI | 30.3 ± 8.0 | 33.3 ± 9.5 | 35.2 ± 6.4 |
EC50 | >50 | >50 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-García, I.; Quílez del Moral, J.F.; Barrero, A.F.; González-Coloma, A.; Andrés, M.F.; López-Pérez, J.L.; Álvarez-Corral, M.; Rodríguez-García, I.; Muñoz-Dorado, M. Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity. Biomolecules 2024, 14, 780. https://doi.org/10.3390/biom14070780
Torres-García I, Quílez del Moral JF, Barrero AF, González-Coloma A, Andrés MF, López-Pérez JL, Álvarez-Corral M, Rodríguez-García I, Muñoz-Dorado M. Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity. Biomolecules. 2024; 14(7):780. https://doi.org/10.3390/biom14070780
Chicago/Turabian StyleTorres-García, Irene, José F. Quílez del Moral, Alejandro F. Barrero, Azucena González-Coloma, María Fe Andrés, José L. López-Pérez, Miriam Álvarez-Corral, Ignacio Rodríguez-García, and Manuel Muñoz-Dorado. 2024. "Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity" Biomolecules 14, no. 7: 780. https://doi.org/10.3390/biom14070780
APA StyleTorres-García, I., Quílez del Moral, J. F., Barrero, A. F., González-Coloma, A., Andrés, M. F., López-Pérez, J. L., Álvarez-Corral, M., Rodríguez-García, I., & Muñoz-Dorado, M. (2024). Molecular Diversity from Longipinenes of Santolina viscosa Lag. through Acid Catalysis: Biocidal Activity. Biomolecules, 14(7), 780. https://doi.org/10.3390/biom14070780