Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update
Abstract
:1. Introduction
2. Methods
3. Why Biomarkers in PAH?
4. Role of Biomarkers in the Screening and Diagnosis of PAH
5. Biomarker-Guided Therapies for PAH
5.1. Endothelin Pathway
5.2. Nitric Oxide and Cyclic Guanosine Pathway
5.3. Inflammation
5.4. Hypoxia/Organ and Tissue Damage
6. Role of Biomarkers in the Prognosis of PAH
7. Future Developments
8. Limitations of the Current Evidence
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.; Brida, M.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731, Erratum in Eur. Heart J. 2023, 44, 1312. [Google Scholar] [CrossRef] [PubMed]
- Cullivan, S.; Higgins, M.; Gaine, S. Diagnosis and management of pulmonary arterial hypertension. Breathe 2022, 18, 220168. [Google Scholar] [CrossRef] [PubMed]
- Perros, F.; Jutant, É.M.; Savale, L.; Dorfmüller, P.; Humbert, M.; Montani, D. Physiopathologie et traitements de l’hypertension artérielle pulmonaire [Physiopathology and treatment of pulmonary arterial hypertension]. Med. Sci. 2023, 39, 359–369. [Google Scholar]
- Hojda, S.E.; Chis, I.C.; Clichici, S. Biomarkers in pulmonary arterial hypertension. Diagnostics 2022, 12, 3033. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, J.D.; Pan, I.Z.; Dechand, J.; Jacobs, J.A.; Jones, T.L.; McKellar, S.H.; Beck, E.; Hatton, N.D.; Ryan, J.J. Management of Pulmonary Arterial Hypertension. Curr. Cardiovasc. Risk Rep. 2021, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Leber, L.; Beaudet, A.; Muller, A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Identification of the most accurate estimates from a systematic literature review. Pulm. Circ. 2021, 11, 2045894020977300. [Google Scholar] [CrossRef] [PubMed]
- Banaszkiewicz, M.; Gąsecka, A.; Darocha, S.; Florczyk, M.; Pietrasik, A.; Kędzierski, P.; Piłka, M.; Torbicki, A.; Kurzyna, M. Circulating Blood-Based Biomarkers in Pulmonary Hypertension. J. Clin. Med. 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.M.; Bossone, E.; Salzano, A.; D’Assante, R.; Monaco, F.; Ferrara, F.; Arcopinto, M.; Vriz, O.; Suzuki, T.; Cittadini, A. Biomarkers in Pulmonary Hypertension. Heart Fail. Clin. 2018, 14, 393–402. [Google Scholar] [CrossRef]
- Salzano, A.; D’Assante, R.; Israr, M.Z.; Eltayeb, M.; D’Agostino, A.; Bernieh, D.; De Luca, M.; Rega, S.; Ranieri, B.; Mauro, C.; et al. Biomarkers in Heart Failure: Clinical Insights. Heart Fail. Clin. 2021, 17, 223–243. [Google Scholar] [CrossRef]
- Warwick, G.; Thomas, P.S.; Yates, D.H. Biomarkers in pulmonary hypertension. Eur. Respir. J. 2008, 32, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Pezzuto, B.; Badagliacca, R.; Poscia, R.; Ghio, S.; D’Alto, M.; Vitulo, P.; Mulè, M.; Albera, C.; Volterrani, M.; Fedele, F.; et al. Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J. Heart Lung Transplant. 2015, 34, 282–305. [Google Scholar] [CrossRef] [PubMed]
- Bozkanat, E.; Tozkoparan, E.; Baysan, O.; Deniz, O.; Ciftci, F.; Yokusoglu, M. The significance of elevated brain natriuretic peptide levels in chronic obstructive pulmonary disease. J. Int. Med. Res. 2005, 33, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, N.; Nishikimi, T.; Okano, Y.; Uematsu, M.; Satoh, T.; Kyotani, S.; Kuribayashi, S.; Hamada, S.; Kakishita, M.; Nakanishi, N.; et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 1998, 31, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.A.; Durrington, C.; Condliffe, R.; Kiely, D.G. BNP/NT-proBNP in pulmonary arterial hypertension: Time for point-of-care testing? Eur. Respirat. Rev. 2020, 29, 200009. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gomes, J.; Gandra, I.; Adão, R.; Perros, F.; Brás-Silva, C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front. Cardiovasc. Med. 2022, 9, 924873. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, J.; Tranche-Iparraguirre, S.; Marín-Iranzo, R.; Fernández-Rodríguez, E.; Riesgo-García, A.; García-Casas, J.; Hevia-Rodríguez, E. Cystatin C and cardiovascular risk in the general population. Rev. Española Cardiol. 2010, 63, 415–422. [Google Scholar] [CrossRef]
- Fenster, B.E.; Lasalvia, L.; Schroeder, J.D.; Smyser, J.; Silveira, L.J.; Buckner, J.K.; Brown, K.K. Cystatin C: A potential biomarker for pulmonary arterial hypertension. Respirology 2014, 19, 583–589. [Google Scholar] [CrossRef]
- Coll, E.; Botey, A.; Alvarez, L.; Poch, E.; Quintó, L.; Saurina, A.; Vera, M.; Piera, C.; Darnell, A. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am. J. Kidney Dis. 2000, 36, 29–34. [Google Scholar] [CrossRef]
- Duan, A.; Huang, Z.; Zhao, Z.; Zhao, Q.; Jin, Q.; Yan, L.; Zhang, Y.; Li, X.; Zhang, S.; Hu, M.; et al. The potential of cystatin C as a predictive biomarker in pulmonary hypertension. BMC Pulm. Med. 2023, 23, 311. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.J.; Levy, R.D.; Cernacek, P.; Langleben, D. Increased plasma endothelin-1 in pulmonary hypertension: Marker or mediator of disease? Ann. Intern. Med. 1991, 114, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012. [Google Scholar] [PubMed]
- Corder, R.; Carrier, M.; Khan, N.; Klemm, P.; Vane, J.R. Cytokine regulation of endothelin-1 release from bovine aortic endothelial cells. J. Cardiovasc. Pharmacol. 1995, 26 (Suppl. S3), S56–S58. [Google Scholar] [CrossRef] [PubMed]
- Chester, A.H.; Yacoub, M.H. The role of endothelin-1 in pulmonary arterial hypertension. Glob. Cardiol. Sci. Pract. 2014, 2014, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Santos-Ribeiro, D.; Mendes-Ferreira, P.; Maia-Rocha, C.; Adão, R.; Leite-Moreira, A.F.; Brás-Silva, C. Pulmonary arterial hypertension: Basic knowledge for clinicians. Arch. Cardiovasc. Dis. 2016, 109, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Bruzzi, I.; Remuzzi, G.; Benigni, A. Endothelin: A mediator of renal disease progression. J. Nephrol. 1997, 10, 179–183. [Google Scholar] [PubMed]
- Shah, R. Endothelins in health and disease. Eur. J. Intern. Med. 2007, 18, 272–282. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, T.; Xu, X.; Wang, M.; Zhong, L.; Yang, Y.; Zhai, Z.; Xiao, F.; Wang, C. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: A case control study. BMC Pulm. Med. 2015, 15, 50. [Google Scholar] [CrossRef]
- Kielstein, J.T.; Bode-Böger, S.M.; Hesse, G.; Martens-Lobenhoffer, J.; Takacs, A.; Fliser, D.; Hoeper, M.M. Asymmetrical dimethylarginine in idiopathic pulmonary arterial hypertension. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1414–1418. [Google Scholar] [CrossRef]
- Sanli, C.; Oguz, D.; Olgunturk, R.; Tunaoglu, F.S.; Kula, S.; Pasaoglu, H.; Gulbahar, O.; Cevik, A. Elevated homocysteine and asymmetric dimethyl arginine levels in pulmonary hypertension associated with congenital heart disease. Pediatr. Cardiol. 2012, 33, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zheng, Y.; Long, Y.; Zhang, X.; Zhang, L.; Tian, D.; Zhou, D.; Lv, Q.Z. Effect of iloprost on biomarkers in patients with congenital heart disease-pulmonary arterial hypertension. Clin. Exp. Pharmacol. Physiol. 2017, 44, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, M.; Humbert, M.; Francoual, J.; Claise, C.; Duroux, P.; Simonneau, G.; Lindenbaum, A. Urinary cGMP concentrations in severe primary pulmonary hypertension. Thorax 1998, 53, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Marsh, L.M.; Pieper, M.; Stacher, E.; Ghanim, B.; Kovacs, G.; König, P.; Wilkens, H.; Haitchi, H.M.; Hoefler, G.; et al. Compartment-specific expression of collagens and their processing enzymes in intrapulmonary arteries of IPAH patients. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 308, L1002–L1013. [Google Scholar] [CrossRef] [PubMed]
- Damico, R.; Kolb, T.M.; Valera, L.; Wang, L.; Housten, T.; Tedford, R.J.; Kass, D.A.; Rafaels, N.; Gao, L.; Barnes, K.C.; et al. Serum endostatin is a genetically determined predictor of survival in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2015, 191, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Daly, C.M.; Griffiths, M.; Simpson, C.E.; Yang, J.; Damico, R.L.; Vaidya, R.D.; Williams, M.; Brandal, S.; Jone, P.N.; Polsen, C.; et al. Angiostatic Peptide, Endostatin, Predicts Severity in Pediatric Congenital Heart Disease-Associated Pulmonary Hypertension. J. Am. Heart Assoc. 2021, 10, e021409. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Qin, S.; Su, D.; Wang, K.; Huang, Y.; Huang, Y.; Pang, Y. Metabolic Reprogramming of the Right Ventricle and Pulmonary Arteries in a Flow-Associated Pulmonary Arterial Hypertension Rat Model. ACS Omega 2021, 7, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Ngo, D.; Hemnes, A.R.; Farrell, L.; Domos, C.; Pappagianopoulos, P.P.; Dhakal, B.P.; Souza, A.; Shi, X.; Pugh, M.E.; et al. Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2016, 67, 174–189. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.M.; Nagaraj, C.; Meinitzer, A.; Sharma, N.; Papp, R.; Foris, V.; Ghanim, B.; Kwapiszewska, G.; Kovacs, G.; Klepetko, W.; et al. Importance of kynurenine in pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L741–L751. [Google Scholar] [CrossRef]
- Rhodes, C.J.; Ghataorhe, P.; Wharton, J.; Rue-Albrecht, K.C.; Hadinnapola, C.; Watson, G.; Bleda, M.; Haimel, M.; Coghlan, G.; Corris, P.A.; et al. Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation 2017, 135, 460–475. [Google Scholar] [CrossRef]
- Jasiewicz, M.; Moniuszko, M.; Pawlak, D.; Knapp, M.; Rusak, M.; Kazimierczyk, R.; Musial, W.J.; Dabrowska, M.; Kaminski, K.A. Activity of the kynurenine pathway and its interplay with immunity in patients with pulmonary arterial hypertension. Heart 2016, 102, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, Z.; Yang, Z. Ghrelin and its relation with N-terminal brain natriuretic peptide, endothelin-1 and nitric oxide in patients with idiopathic pulmonary hypertension. Cardiology 2013, 124, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xia, J.; Jia, P.; Zhao, J.; Sun, Y.; Wu, C.; Liu, B. Plasma Levels of Acylated Ghrelin in Children with Pulmonary Hypertension Associated with Congenital Heart Disease. Pediatr. Cardiol. 2015, 36, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Zhou, D.X.; Pan, W.Z.; Zhang, L.; Ge, J.B. Circulating ghrelin was negatively correlated with pulmonary arterial pressure in atrial septal defect patients. Chin. Med. J. (Engl.) 2013, 126, 3936–3939. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Liang, G.; Cheng, M. Predictive Value of GDF-15 and sST2 for Pulmonary Hypertension in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 2431–2438. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Hess, D.; Lewis, G.D.; Bloch, K.D.; Waxman, A.B.; Semigran, M.J. Vasoreactivity to inhaled nitric oxide with oxygen predicts long-term survival in pulmonary arterial hypertension. Pulm. Circ. 2011, 1, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Correale, M.; Ferraretti, A.; Monaco, I.; Grazioli, D.; Di Biase, M.; Brunetti, N.D. Endothelin-receptor antagonists in the management of pulmonary arterial hypertension: Where do we stand? Vasc Health Risk Manag. 2018, 14, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Leary, P.J.; Swenson, E.R. Randomized controlled trials: A solid platform for observational research. Eur. Heart J. 2017, 38, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Arnold, W.P.; Mittal, C.K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 1977, 74, 3203–3207. [Google Scholar] [CrossRef]
- Foster, M.W.; Hess, D.T.; Stamler, J.S. Protein S-nitrosylation in health and disease: A current perspective. Trends Mol. Med. 2009, 15, 391–404. [Google Scholar] [CrossRef]
- Lima, B.; Forrester, M.T.; Hess, D.T.; Stamler, J.S. S-nitrosylation in cardiovascular signaling. Circ. Res. 2010, 106, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Sonveaux, P.; Lobysheva, I.I.; Feron, O.; McMahon, T.J. Transport and peripheral bioactivities of nitrogen oxides carried by red blood cell hemoglobin: Role in oxygen delivery. Physiology 2007, 22, 97–112. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.J.; Ahearn, G.S.; Moya, M.P.; Gow, A.J.; Huang, Y.C.; Luchsinger, B.P.; Nudelman, R.; Yan, Y.; Krichman, A.D.; Bashore, T.M.; et al. A nitric oxide processing defect of red blood cells created by hypoxia: Deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc. Natl. Acad. Sci. USA 2005, 102, 14801–14806. [Google Scholar] [CrossRef] [PubMed]
- Carpagnano, G.E.; Radaeli, A.; Lacedonia, D.; Correale, M.; Carpagnano, G.; Palmiotti, A.; Barbaro, M.P.F.; Di Biase, M.; Brunetti, N.; Scioscia, G.; et al. Exhaled Nitric Oxide and Exhaled Breath Temperature as Potential Biomarkers in Patients with Pulmonary Hypertension. Biomed. Res. Int. 2018, 2018, 7292045. [Google Scholar] [CrossRef] [PubMed]
- Girgis, R.E.; Champion, H.C.; Diette, G.B.; Johns, R.A.; Permutt, S.; Sylvester, J.T. Decreased exhaled nitric oxide in pulmonary arterial hypertension: Response to bosentan therapy. Am. J. Respir. Crit. Care Med. 2005, 172, 352–357. [Google Scholar] [CrossRef]
- Ozkan, M.; Dweik, R.A.; Laskowski, D.; Arroliga, A.C.; Erzurum, S.C. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung 2001, 179, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Forrest, I.A.; Small, T.; Corris, P.A. Effect of nebulized epoprostenol (prostacyclin) on exhaled nitric oxide in patients with pulmonary hypertension due to congenital heart disease and in normal controls. Clin. Sci. 1999, 97, 99–102. [Google Scholar] [CrossRef]
- Holzmann, A.; Manktelow, C.; Weimann, J.; Bloch, K.D.; Zapol, W.M. Inhibition of lung phosphodiesterase improves responsiveness to inhaled nitric oxide in isolated-perfused lungs from rats challenged with endotoxin. Intensive Care Med. 2001, 27, 251–257. [Google Scholar] [CrossRef]
- Nagaya, N.; Kangawa, K. Adrenomedullin in the treatment of pulmonary hypertension. Peptides 2004, 25, 2013–2018. [Google Scholar] [CrossRef]
- Bouzina, H.; Rådegran, G. Plasma adrenomedullin peptides and precursor levels in pulmonary arterial hypertension disease severity and risk stratification. Pulm. Circ. 2020, 10, 2045894020931317. [Google Scholar] [CrossRef]
- Boucly, A.; Tu, L.; Guignabert, C.; Rhodes, C.; De Groote, P.; Prévot, G.; Bergot, E.; Bourdin, A.; Beurnier, A.; Roche, A.; et al. Cytokines as prognostic biomarkers in pulmonary arterial hypertension. Eur. Respir. J. 2023, 61, 2201232. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, E.; Lu, X.; Zuo, C.; He, Y.; Jia, D.; Zhu, Q.; Yu, Y.; Lv, A. Serum levels of tumor necrosis factor-related apoptosis-inducing ligand correlate with the severity of pulmonary hypertension. Pulm. Pharmacol. Ther. 2015, 33, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Correale, M.; Totaro, A.; Abruzzese, S.; Di Biase, M.; Brunetti, N.D. Acute phase proteins in acute coronary syndrome: An up-to-date. Cardiovasc. Hematol. Agents Med. Chem. 2012, 10, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Quarck, R.; Nawrot, T.; Meyns, B.; Delcroix, M. C-reactive protein: A new predictor of adverse outcome in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2009, 53, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Demelo-Rodriguez, P.; Galeano-Valle, F.; Salzano, A.; Biskup, E.; Vriz, O.; Cittadini, A.; Falsetti, L.; Ranieri, B.; Russo, V.; Stanziola, A.A.; et al. Pulmonary Embolism: A Practical Guide for the Busy Clinician. Heart Fail. Clin. 2020, 16, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Inwald, D.P.; McDowall, A.; Peters, M.J.; Callard, R.E.; Klein, N.J. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ. Res. 2003, 92, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Pamukcu, B.; Lip, G.Y.; Snezhitskiy, V.; Shantsila, E. The CD40-CD40L system in cardiovascular disease. Ann. Med. 2011, 43, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Damås, J.K.; Otterdal, K.; Yndestad, A.; Aass, H.; Solum, N.O.; Frøland, S.S.; Simonsen, S.; Aukrust, P.; Andreassen, A.K. Soluble CD40 ligand in pulmonary arterial hypertension: Possible pathogenic role of the interaction between platelets and endothelial cells. Circulation 2004, 110, 999–1005. [Google Scholar] [CrossRef]
- YanYun, P.; Wang, S.; Yang, J.; Chen, B.; Sun, Z.; Ye, L.; Zhu, J.; Wang, X. Interruption of CD40 Pathway Improves Efficacy of Transplanted Endothelial Progenitor Cells in Monocrotaline Induced Pulmonary Arterial Hypertension. Cell. Physiol. Biochem. 2015, 36, 683–696. [Google Scholar]
- Nagaya, N.; Uematsu, M.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Nakanishi, N.; Yamagishi, M.; Kunieda, T.; Miyatake, K. Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1999, 160, 487–492. [Google Scholar] [CrossRef]
- Liao, K.; Mackenzie, H.; Ait-Oudhia, S.; Manimaran, S.; Zeng, Y.; Akers, T.; Yun, T.; de Oliveira Pena, J. The Impact of Immunogenicity on the Pharmacokinetics, Efficacy, and Safety of Sotatercept in a Phase III Study of Pulmonary Arterial Hypertension. Clin. Pharmacol. Ther. 2023, 115, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Benza, R.L.; Gomberg-Maitland, M.; Elliott, C.G.; Farber, H.W.; Foreman, A.J.; Frost, A.E.; McGoon, M.D.; Pasta, D.J.; Selej, M.; Burger, C.D.; et al. Predicting Survival in Patients With Pulmonary Arterial Hypertension: The REVEAL Risk Score Calculator 2.0 and Comparison With ESC/ERS-Based Risk Assessment Strategies. Chest 2019, 156, 323–337. [Google Scholar] [CrossRef]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020, 17, 698–717. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, P.M.; van de Groep, L.D.; Veen, K.M.; van Thor, M.C.J.; Meertens, S.; Boersma, E.; Boomars, K.A.; Post, M.C.; van den Bosch, A.E. Prognostic value of brain natriuretic peptides in patients with pulmonary arterial hypertension: A systematic review and meta-analysis. Am. Heart J. 2022, 250, 34–44. [Google Scholar] [CrossRef]
- Simpson, C.E.; Damico, R.L.; Hassoun, P.M.; Martin, L.J.; Yang, J.; Nies, M.K.; Vaidya, R.D.; Brandal, S.; Pauciulo, M.W.; Austin, E.D.; et al. Noninvasive Prognostic Biomarkers for Left-Sided Heart Failure as Predictors of Survival in Pulmonary Arterial Hypertension. Chest 2020, 157, 1606–1616. [Google Scholar] [CrossRef]
- Correale, M.; Fioretti, F.; Tricarico, L.; Croella, F.; Brunetti, N.D.; Inciardi, R.M.; Mattioli, A.V.; Nodari, S. The Role of Congestion Biomarkers in Heart Failure with Reduced Ejection Fraction. J. Clin. Med. 2023, 12, 3834. [Google Scholar] [CrossRef] [PubMed]
- Soon, E.; Holmes, A.M.; Treacy, C.M.; Doughty, N.J.; Southgate, L.; Machado, R.D.; Trembath, R.C.; Jennings, S.; Barker, L.; Nicklin, P.; et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010, 122, 920–927. [Google Scholar] [CrossRef]
- Torbicki, A.; Kurzyna, M.; Kuca, P.; Fijałkowska, A.; Sikora, J.; Florczyk, M.; Pruszczyk, P.; Burakowski, J.; Wawrzynska, L. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 2003, 108, 844–848. [Google Scholar] [CrossRef]
- Salzano, A.; Cassambai, S.; Yazaki, Y.; Israr, M.Z.; Bernieh, D.; Wong, M.; Suzuki, T. The Gut Axis Involvement in Heart Failure: Focus on Trimethylamine N-oxide. Heart Fail. Clin. 2020, 16, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Israr, M.Z.; Salzano, A.; Sarmad, S.; Ng, L.L.; Suzuki, T. Differential implications of gut-related metabolites on outcomes between heart failure and myocardial infarction. Eur. J. Prev. Cardiol. 2023, 31, 368–372. [Google Scholar] [CrossRef]
- Israr, M.Z.; Bernieh, D.; Salzano, A.; Cassambai, S.; Yazaki, Y.; Heaney, L.M.; Jones, D.J.; Ng, L.L.; Suzuki, T. Association of gut-related metabolites with outcome in acute heart failure. Am. Heart J. 2021, 234, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Israr, M.Z.; Zhan, H.; Salzano, A.; Voors, A.A.; Cleland, J.G.; Anker, S.D.; Metra, M.; van Veldhuisen, D.J.; Lang, C.C.; Zannad, F.; et al. Surrogate markers of gut dysfunction are related to heart failure severity and outcome-from the BIOSTAT-CHF consortium. Am. Heart J. 2022, 248, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Cassambai, S.; Salzano, A.; Yazaki, Y.; Bernieh, D.; Wong, M.; Israr, M.Z.; Heaney, L.M.; Suzuki, T. Impact of acute choline loading on circulating trimethylamine N-oxide levels. Eur. J. Prev. Cardiol. 2019, 26, 1899–1902. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, B.; Liu, B.; Liang, Y.; Luo, Q.; Zhao, Z.; Liu, Z.; Zeng, Q.; Xiong, C. Circulating choline levels are associated with prognoses in patients with pulmonary hypertension: A cohort study. BMC Pulm. Med. 2023, 23, 313. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.T.; Chi, P.L.; Cheng, C.C.; Huang, W.C.; Chen, L.W. Application of homocysteine as a non-invasive and effort-free measurements for risk assessment of patients with pulmonary hypertension. Cardiol. J. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hanberg, J.S.; Rao, V.; Ter Maaten, J.M.; Laur, O.; Brisco, M.A.; Perry Wilson, F.; Grodin, J.L.; Assefa, M.; Samuel Broughton, J.; Planavsky, N.J.; et al. Hypochloremia and Diuretic Resistance in Heart Failure: Mechanistic Insights. Circ. Heart Fail. 2016, 9, e003180. [Google Scholar] [CrossRef] [PubMed]
- Prins, K.W.; Kalra, R.; Rose, L.; Assad, T.R.; Archer, S.L.; Bajaj, N.S.; Weir, E.K.; Prisco, S.Z.; Pritzker, M.; Lutsey, P.L.; et al. Hypochloremia Is a Noninvasive Predictor of Mortality in Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2020, 9, e015221. [Google Scholar] [CrossRef]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef]
- Cunha, S.I.; Magnusson, P.U.; Dejana, E.; Lampugnani, M.G. Deregulated TGF-β/BMP Signaling in Vascular Malformations. Circ. Res. 2017, 121, 981–999. [Google Scholar] [CrossRef]
- Rol, N.; Kurakula, K.B.; Happé, C.; Bogaard, H.J.; Goumans, M.J. TGF-β and BMPR2 Signaling in PAH: Two Black Sheep in One Family. Int. J. Mol. Sci. 2018, 19, 2585. [Google Scholar] [CrossRef]
- Ryanto, G.R.T.; Musthafa, A.; Hara, T.; Emoto, N. Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int. J. Mol. Sci. 2023, 24, 3332. [Google Scholar] [CrossRef] [PubMed]
- Yndestad, A.; Larsen, K.O.; Oie, E.; Ueland, T.; Smith, C.; Halvorsen, B.; Sjaastad, I.; Skjonsberg, O.H.; Pedersen, T.M.; Anfinsen, O.G.; et al. Elevated levels of activin A in clinical and experimental pulmonary hypertension. J. Appl. Physiol. (1985) 2009, 106, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Guignabert, C.; Savale, L.; Boucly, A.; Thuillet, R.; Tu, L.; Ottaviani, M.; Rhodes, C.J.; De Groote, P.; Prévot, G.; Bergot, E.; et al. Serum and Pulmonary Expression Profiles of the Activin Signaling System in Pulmonary Arterial Hypertension. Circulation 2023, 147, 1809–1822. [Google Scholar] [CrossRef] [PubMed]
- Kümpers, P.; Nickel, N.; Lukasz, A.; Golpon, H.; Westerkamp, V.; Olsson, K.M.; Jonigk, D.; Maegel, L.; Bockmeyer, C.L.; David, S.; et al. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur. Heart J. 2010, 31, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, J.; Thanikachalam, S.; Parikh, K.; Shanmugasundaram, S.; Bangera, S.; Shapiro, L.; Pott, G.B.; Vnencak-Jones, C.L.; Arneson, C.; Wade, M.; et al. Exercise improvement and plasma biomarker changes with intravenous treprostinil therapy for pulmonary arterial hypertension: A placebo-controlled trial. J. Heart Lung Transplant. 2010, 29, 137–149. [Google Scholar] [CrossRef]
- Arvidsson, M.; Ahmed, A.; Säleby, J.; Ahmed, S.; Hesselstrand, R.; Rådegran, G. Plasma TRAIL and ANXA1 in diagnosis and prognostication of pulmonary arterial hypertension. Pulm. Circ. 2023, 13, e12269. [Google Scholar] [CrossRef] [PubMed]
- Mismetti, V.; Delavenne, X.; Montani, D.; Bezzeghoud, S.; Delezay, O.; Hodin, S.; Launay, D.; Marchand-Adam, S.; Nunes, H.; Ollier, E.; et al. Proteomic biomarkers for survival in systemic sclerosis-associated pulmonary hypertension. Respir. Res. 2023, 24, 273. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, S.; Liu, W.; Lin, Q.; Yang, Y.; Qiu, Q.; Zong, Y.; Xiao, T.; Hou, C.; Xie, L. Serum Metabolomic Profile in Hypoxia-Induced Pulmonary Hypertension Mice after C75 Treatment. Front. Biosci. (Landmark Ed.) 2023, 28, 251. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.E.; Ambade, A.S.; Harlan, R.; Roux, A.; Aja, S.; Graham, D.; Shah, A.A.; Hummers, L.K.; Hemnes, A.R.; Leopold, J.A.; et al. Kynurenine pathway metabolism evolves with development of preclinical and scleroderma-associated pulmonary arterial hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2023, 325, L617–L627. [Google Scholar] [CrossRef]
- Wei, C.; Henderson, H.; Spradley, C.; Li, L.; Kim, I.K.; Kumar, S.; Hong, N.; Arroliga, A.C.; Gupta, S. Circulating miRNAs as potential marker for pulmonary hypertension. PLoS ONE 2013, 8, e64396. [Google Scholar] [CrossRef]
- Caruso, P.; Dempsie, Y.; Stevens, H.C.; McDonald, R.A.; Long, L.; Lu, R.; White, K.; Mair, K.M.; McClure, J.D.; Southwood, M.; et al. A role for miR-145 in pulmonary arterial hypertension: Evidence from mouse models and patient samples. Circ. Res. 2012, 111, 290–300. [Google Scholar] [CrossRef]
- Guo, L.; Qiu, Z.; Wei, L.; Yu, X.; Gao, X.; Jiang, S.; Tian, H.; Jiang, C.; Zhu, D. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C. Hypertension 2012, 59, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Lee, W.C.; Lin, Y.W.; Shih, J.Y.; Hong, C.S.; Chen, Z.C.; Chu, C.Y.; Hsu, C.H. Transpulmonary Expression of Exosomal microRNAs in Idiopathic and Congenital Heart Disease-Related Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2023, 12, e031435. [Google Scholar] [CrossRef]
- Zhang, W.; Hua, Y.; Zheng, D.; Chen, Q.; Huang, R.; Wang, W.; Li, X. Expression and Clinical Significance of miR-8078 in Patients with Congenital Heart Disease-Associated Pulmonary Hypertension. Gene 2023, 896, 147964. [Google Scholar] [CrossRef] [PubMed]
- Hemnes, A.R.; Zhao, M.; West, J.; Newman, J.H.; Rich, S.; Archer, S.L.; Robbins, I.M.; Blackwell, T.S.; Cogan, J.; Loyd, J.E.; et al. Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2016, 194, 464–475. [Google Scholar] [CrossRef]
- Benza, R.L.; Gomberg-Maitland, M.; Demarco, T.; Frost, A.E.; Torbicki, A.; Langleben, D.; Pulido, T.; Correa-Jaque, P.; Passineau, M.J.; Wiener, H.W.; et al. Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2015, 192, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Lacedonia, D.; Valerio, G.; Palladino, G.P.; Carpagnano, G.E.; Correale, M.; Di Biase, M.; Foschino Barbaro, M.P. Role of vasoactive intestinal peptide in chronic obstructive pulmonary disease with pulmonary hypertension. Rejuvenation Res. 2014, 17, 33–39. [Google Scholar] [CrossRef]
- Yu, J.; Huang, S.; Shen, W.; Zhang, Z.; Ye, S.; Chen, Y.; Yang, Y.; Bian, T.; Wu, Y. Expression Profiles of circRNAs and Identification of hsa_circ_0007608 and hsa_circ_0064656 as Potential Biomarkers for COPD-PH Patients. Int. J. Chron. Obstruct Pulmon Dis. 2023, 18, 2457–2471. [Google Scholar] [CrossRef]
- Correale, M.; Totaro, A.; Lacedonia, D.; Montrone, D.; Di Biase, M.; Barbaro Foschino, M.P.; Brunetti, N.D. Novelty in treatment of pulmonary fibrosis: Pulmonary hypertension drugs and others. Cardiovasc. Hematol. Agents Med. Chem. 2013, 11, 169–178. [Google Scholar] [CrossRef]
- Mattei, A.; Strumia, A.; Benedetto, M.; Nenna, A.; Schiavoni, L.; Barbato, R.; Mastroianni, C.; Giacinto, O.; Lusini, M.; Chello, M.; et al. Perioperative Right Ventricular Dysfunction and Abnormalities of the Tricuspid Valve Apparatus in Patients Undergoing Cardiac Surgery. J. Clin. Med. 2023, 12, 7152. [Google Scholar] [CrossRef]
Diagnosis | Prognosis | Treatment |
---|---|---|
BNP and NTproBNP | BNP and NTproBNP | BNP and NTproBNP |
ANP | ANP | ANP |
Cystatin C | ST2 | Endothelin-1 |
Endothelin-1 | IL6, IL8, IL10 | SNO-Hb |
ADMA | Choline | NO |
Urinary cGMP | Homocysteine | cGMP |
Ang-1 and Ang-2 | Endostatin | ADM |
Endostatin | Hypochloremia | ß-NGF, CXCL9, TRAIL |
IDO-TMs, kynurenine | Cytokines | CRP |
Ghrelin | Activin A | Uric Acid |
FSTL3 | Ghrelin | |
sCD40L | ||
Genomics, proteomics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correale, M.; Tricarico, L.; Bevere, E.M.L.; Chirivì, F.; Croella, F.; Severino, P.; Mercurio, V.; Magrì, D.; Dini, F.; Licordari, R.; et al. Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update. Biomolecules 2024, 14, 552. https://doi.org/10.3390/biom14050552
Correale M, Tricarico L, Bevere EML, Chirivì F, Croella F, Severino P, Mercurio V, Magrì D, Dini F, Licordari R, et al. Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update. Biomolecules. 2024; 14(5):552. https://doi.org/10.3390/biom14050552
Chicago/Turabian StyleCorreale, Michele, Lucia Tricarico, Ester Maria Lucia Bevere, Francesco Chirivì, Francesca Croella, Paolo Severino, Valentina Mercurio, Damiano Magrì, Frank Dini, Roberto Licordari, and et al. 2024. "Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update" Biomolecules 14, no. 5: 552. https://doi.org/10.3390/biom14050552
APA StyleCorreale, M., Tricarico, L., Bevere, E. M. L., Chirivì, F., Croella, F., Severino, P., Mercurio, V., Magrì, D., Dini, F., Licordari, R., Beltrami, M., Dattilo, G., Salzano, A., & Palazzuoli, A. (2024). Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update. Biomolecules, 14(5), 552. https://doi.org/10.3390/biom14050552